fstanbul Univ. Fen Fak. Mat. Dergisi '55 - 56 (1996 - 1997), 85-97

ON GAUSSIAN SUMS OVER FINITE FIELDS

NESE YELKENKAYA

Abstract
In this paper, it has been determined the sings of normed Gaussian sums over finite
fields.
INTRODUCTION

Let p be an odd prime number and F, := GF{g) be a finite field of order ¢ = p° for some
s € IN. Then F, = F(8) with f(#) =0, where I’ = F;

fl@)=Irr(@,z, F) =z 4+ a, 12" '+ ...+ a1z + ag
is the minimal polynomial of # over . Thus
Fq:FGBFﬁ’EBGBFBS‘I

becomes an additive elementary abelian group. On the other hand FyY = F; \ {0}, the multip-
licative group of the field Fq, is cyclic of order ¢ — 1 and F, =< p > for some generator p. Let
K =< p? > then

=K UpK (disjoint).

Now 1 := p* is a generator of F* where u = (p*—1)/{p—1), i.é., Fr=<r> LetW¥ =9, ., be
a non-trivial irreducible character of additive group of F, which is also called additive character
such that 0 < hy,...,hs <p—1; (hy,.... he) #(0,...,0),

‘I’(ﬁ) — Ek1h1+...+k_ghs

where 8 = kilp+koll+.. 4k 0<k; <p—1,i=1,. ; € = cos(2m/p) + isin(2r /p)
and by abuse of notation we may also write k,.. k € F. On the other hand, let { be the
irreducible character of the multiplicative group #7 Wthh is also called multiplicative character
with

¢(p)=(-1)" forany icZ.

Now define
(GO = 3 (B)E(B)

O£ Fy
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which is called a Gaussian sum over the field F, with respect to {, ¢ and 8. If s = 1 then
. ; H — z \ hr
71(¢; ¥) becomes the usual Gaussian sum 74, = 1355:;:4 ( b ) g

, where (%) is the Legendre .
symbol and ¢ turns out to be the so called Legendre symbol. E

Lemma 1. (C W) = (=1)e- 02

Proof. -
L {(=1) = (-1)l=0/2,
2. As ( is a non-trivial irreducible multiplicative character of Fy¥, we have > ((8) = 0.
0F#BEFy
3. As ¥ is non-trivial irreducible additive character of Fy, we also have ¥ ¥(F) = —
0£BEF,
4. Now taking fd¢ = v
THGY) = 3 BB+ = X (()FA1+ )]
0B, 1EF, n;é,a 3EF,
= ((~-Dig-1)+ >, & > vB(1+6)
0,1 Fy 06EF,
= ()P —((-1) - ¥ )
0,~1AGER,
= (_1)(q-l)f2q — Z ((6) = (-1 )(q 1)f2q
' 044 F,
as desired.

Note. By Lemma 1, 74,((; ¥) is independent of the choice of ¥ # ¥ o and 6. A_nd
Tisy(¢; ) is determined umquelv up to factor 1. :

Let‘ T (W) —ﬁg{@(ﬁ) and  y(¥) = ﬁgp:KlII(ﬁ)‘

Lemma 2. {2)(8), 45)(¥)} = {=3(-nv/T+ 1), — {07+ 1)}
) _ A1 g=1 (modd) . —
“heren_{_i_i;if ¢=3 (mod 4) coi=4/~1

Note that we shall keep this notation for n throughout this paper.

Proof. As ¥ is a non-trivial irreducible additive character of F,, we already know that

5 () = i (¥) + yia)(¥). 1)
0EBER,
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On the other hand by Lemma 1, 7{(; ¥) = 0,/g with ¢ = F5. Thus
o7 =16 (G; V) = 5 (V) -y (¥). (2)

Therefore {1) and (2) yield the desired result:

i (U) = -2 (~ny/g+1) and yu,(¥) = ‘é(ﬂﬁ‘l‘ 1).

(=

This completes the proof of the Lemma.

From now on we fix ¥ = W5 o and write T(s), T(s), Y(s) instead of ¢ (¢; ), xg (T},
i (T) and we call 7(;) the normed Gaussian sum over the finite field ,. Note that 7qy =7
is the usual normed Gaussian sum. To determine ¢ is an important problem which should be
dealt with, next.

Lemma 3.(Gauss) If s =1 then o = n; i.e. 7 =1,/p,

1 1
z:z(1)=—§(—n\/ﬁ+1) and yzy(l):“i(ﬂx/iﬁ‘Fl)-

The concept -Gaussian sum- has been introduced by Gauss himself in order to prove his
theorem on quatratic reciprocity and Gauss has also gave a proof of Lemma 3, There are some
other proofs of this important theorem, but all of them are either long or require some deep
results belonging to algebraic number theory. We give here the proof due to Kronecler stated
in Borevich & Shafarevich, Number Theory, p.355 as exercises 13-16.

(r-1)/2
Assertion L Let p be an odd prime and set £ = cos 3]} +isin %"‘ Letd= T[] (¢f—e7=)
T=1
then 6% = (—1)®~1/2p, Thus §? coincides with the square 72 of the Gaussian sum

Proof. Since £ — ™ = i2sin{2Zrz/p) for z=1,...,(p - 1)/2

(p-1)/2
§=ir W22 T sin(2rz/p) = i*~V/2)4] (3)

=1
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where 4| denotes the absolute value of 6 € €. Thus
52 — (_l)(p—l)/2162i .
On the other hand,

=Ly p-1)/2 ‘
16 =80= J[ ("= e =)= [T 1~ -%).
r=1 z=1

Since p /2 then 72, F2.2,...,F2.(p—1)/2 is a complete residue system with a complete resid
system mod(p), 1,2,....p— 1. So that
(-1}

B2l = I[ 1= )= (1) =p (

=1
where f(y) =v* '+ 9" 2+ ...+ y+ 1. Thus we obtain the desired result
6t = (=)0

Assertion TI. With the same notations, we have

iy -2y vP ;for g=1 (mod4) .
(7) (T’D_)J—{ﬁ\/ﬁ;for ¢ =3 (mod 4) oi=v—1.

Further, setting A = 1 — &, we have that the congruence

(?,z) (;p%) d = (8_;,.1_)])\(11‘1)/'2 (mod )\(p+])/2)

holds in the order Z {g]. !
Proof. (¢). By (3) and (4) in the proof of Assertion I, § = i(p'])/z\/p?, to prove (i), it
encugh to show that .

woe [ 22V _ [ #lifor p=1 (mod 4)
TAp T ] +i;for p=3 (mod4)

Ifp=1 (mod 4) then p = 4n + 1 for some n € IN. In this case

%= (_1)(?’”])/2{_1)(172—1)/8;'[(17*1)/2 =41,

If p=3 (mod 4) then p = 4n + 3 for some n € IV U {0}. In this case

uw=+i,
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(#1) Let A:=1 ¢ then e =1— A and Z [¢] = Z [A]. On the other hand,

p—1 cp=l

F) = 4+ + oty +1= [y~ andp=r1)=T[(1-&).

i=1 i=1

—1

Let g(y) := pH (1-(1-y))eZly,p=2Ag(y);ie p=0 (mod A). By Euler’s criterion

(:ﬁ?) = (=¥ (mod p)
and
(:2) = (—2)% D72 (mod A).
P7ozm
Thus,
-9 {(r-1)/2
(Z)s = a0 T w-ar- 0=
’ Z [A] z=1
(»-1)/2
= (=)0 TIT ((p—22)A+ (. A2+
Z [A w=1
= (—2)Hp-1)72 p-1 1) (p—1)/2
= ()
= E 1)ip-1)/2 (mod ,\(P+1)/2) )
s )

Because, {—2)27"1/2 = 1 (mod p); i.e. (=2)%7"1/2 =1 (mod A),
p=(1-e}{l=-¢¥...(01 =) =0 a()) and (251} = (?5%) + 1.

Assertion III. We have the following congruence

r—1
Z (E) Ef=7r= (7%1)})\(%1)/2 {mod A(p+1)/2)

=1 r

in the ring Z [¢].
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Proof. By Euler's criterion
(g) = P12 (mod p)

and by Wilson's theorem .

(p—gl*)!(vl)("‘”/2 (E%l)' =@p-1'=-1 (med p) ;

(E) = W2 (mod A7)
Z [
and
—1)p-1)/2 -
(—Uf—( ) = (p—l)! (mod A*71) .
2;1)g 2
( 2 Z[A]
Set gm(y) = yly—1)...(v—m+1)
= y" 4+ am!m_lym—l 4.t api¥ Fomp € Z [y]

form=1,2,...,T; Gmm = L.
As we already know that

Ly 0 (modp) for O<m<p—1
-1 (modp) for m=p-1.

p-1
Now decomposing the sum ¥ 2P~ D/2(1 — X)* into powers of A, by (5) we bave
=1

1
r = Z P A 6 B Y
=1

= pilx(”'”ﬁil+(—1)?/\+..,.(_ﬁ1)mgm_(1$),\m+n_] )
z /\] z=1 .

Thus

! p-1
- = Z P02 (-1) Z e Ve AT
Z [/\] z=1 =1

1 ™ p—1 .
+[("1)m'ﬁ7 Dy I&?'l+’]x\m +... (mod ARHI2Y
ti=l w=1

s e,
o
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1 Ly ’
= (p-/2__ -~ _ _ p-13(p—1)/2 (pi1)/2
T = (-1) (Ei)ﬁ.p_;llp_?_l _II A (mod A )
Z |A] 7 ) =
Then we obtain by (§) that
F = (p;})u[p—l)/? (mod )\lp+1}/2) )
Zp oo

Assertion IV. Using two preceding assertions we get

ypifor ¢g=1 (modd) = .
Tf{-‘r—i\/ﬁ;for =3 (mod4) ' i=v-1.

Proof. By Assertion I, 72 = % = [('TQ) 5]2 so that

SGEET

Ifr= (_-p_z) d, by Assertion II, we obtain the desired result.
Assume that 7 & (‘f) 4. In this case by Assertion II and Assertion III

2 (p—;l) [\ 1/2 27 0 (mod APHD/2)

Z:[)\] 21:[)\]

i.e. there is a polynomial k{y) € Z [y| such that

9 (?3;—1) = A2

Thus,N(2 (%1)1) = N{A)N(k(})}, since N(}) = N(1 —¢) = f(1) = p, N(k(\)) € Z

and N(2 (P;—l)‘) = {2 (-";—l)'] P~ we arrive at a contradiction 2 (’;—1)’ = 0 (mod p) where

N{a) = NQ Q. (a) fora € Q (g) = Q (N).

Lemma 4. Let s = 2n+ 1 for some n € IN. Then

1 1
Te =04 F(s) = *5[-"0'\/(}-1“ 1] 5 ywy= —E[a\/q-—k 13

- 34
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is equivalent to

1 T lTl- Tt 1 _— T
u=§(p2 =1) 5 v=gpt@o4p) 5 w=gp"(-Te+ o)

where u, v and w are the numbers of square elemets 0 # 8 = Zsj b0t with b, =0, 5, = 1 and
i=1
b, = r respectively and % denotes the complex conjugate of 7.

Proof. 1. Since s is odd » is not a square in Fj; i.e. r ¢< p? >
2. By making use of 1, we have

F1-1) = Kl=ut56-Do+u) )
and
25) = —3l-o v+ )= u+ w1+ (v - w) [~ (-ny/5+ 1) 0

hold since z(3) + ¥y = —1 and by Lemma 3, o) = —2{-71./p+ 1). But then “ (7) and {8) ”
is equivalent to

n 1 =, 1” vt n
u=s("-1) 5 v= "0+ w= (N0 +p")

which can easily be checked.
Lemma 5: Let
ki n
Poi= {20, M- Ani iy oy i) € FED 02 b N 0+ 5 bi? 4
=1 =1

+ 2 it D daptue =1}
1<y<k<n 1<j<ksn
where 0 # a,bi, ¢, djr € F5 (i =1,2,...,n), 1 <j<k<n)and FC) = Fx xF
n € IN, here the number of product is 2n 4+ 1 times. Then |P,| =p"(p™ + 1).

3

Proof. (Induction on n)
1. Let n =1 and consider the equation A} + aXyp; + bju? = 1 defined over F. Then

1Pl = Ho dym) € B oy =05 A€ FY +
(Ao A m) €P i #0; M €FY =2p+plp-1)=plp+1)

as required.




2. Assume 7 > 2 and suppose the claim is true for (n — 1). Then

LPn! = l{(ADa"-:)‘n;p‘l!'"!an)GP‘H: I—"’n#G1 )‘07"':)‘11-—1;!}'11---:#?1—1EF}l+
+l{()‘€h---a/\n;,uly--')#n) € Pn By o :0: )‘n = F;()‘Da'--:An—l;P"la-")ru‘n—-l) € Pn—}}l
= (p-1p" " +plBal =" + 1)

as desired.
Note. The assertion in Lemma 5 remains true if we replace 1 in the equation by any d €< r% >.

Lemma 8. Let s = 2n+1, n € IN. Then the number v of the square elements 3 = 53 b;git

i=1

with by = 1 equals $p™(p" +1).

Proof. For any element 0 # v € F, we can write

n n
¥ =N+ Z )\i9n+1 - + Z ,(1j9n+j

i=1 i=l

with (Ao, A1y Ani i1, i) 7 (0,0,...,0). Set 4* = i ¢;6°'. Then we have
. =1

o= (—2a0) Y M+ b+ D el D dikpph :
i=1 i=1 1<j<k<n 1<j<k<n - f
for some b, .. djx € F; (i = 1,...,n); (1 < j <k < n) by making use of §° = §*"*! =
—ag — a0 — ... — a3, 0*; ay # 0. For any 0 # v € F, we have vy # —v and v = (—v)? and this
enables us to obtain 1 1
v =P = -p"(p" +1
v=olPul = op" (" +1)

with P, defined in Lemma 5.

Corollary 7. If s =2n+1, n € N then 7,y = /G, z(s) = —3(-—ny/@ + 1),
Yoy = —3{n/G -+ 1) where

_{ +1;if g=1 (mod4) .,
"‘{+i;if ¢=3 (modd) -+ 1TVl

Proof. Since s =2n+ 1, n € IN then by Lemma 4 and Lemma 6 e = 1;i.e. ¢ = and
(o) = DG B = — 5 (=G + 1), o) = —3(n/7 + 1).
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Now we shall discuss the remaining case s = 2n, n € IN.
Lemma 8. Let s=2n, n € N. Then =1 and o = +1;

) = 03/Q I(s)=“%(-0\/5+1)= y(s)=—%(0\/§+1)

is equivalent to ‘
u:%[(q-p)Jrcr(p—l)\/é] and vzi[q—a\/ﬂ :

where ¢ and v are the numbers of the square elements 0 # § = j;l ;0 with b, =0and b, =1

respectively.

Proof. 1. By Lemma 1, and s is even, i.e. g =1 (mod 4) we get 7 =1 and o = +1.

2. As s =2n,n € N and for r = p! W1 < v >= F* it {ollows that r is a square in
Fy.

3. By 2 we have the following

K= 3(g=1) = ut (= 1) (9
and
T(s) = —%(—J\/q_—i— D=u—wv (10)

is equivalent to
u=(1/2p)l(g—p)+olp—1)\gl and v=(1/2p)ig - /g
which can easly be verified.
n—1
Lemma 9. Let P" = {()\0,)\1, Caa !Aﬂ—l; Hoy oo ),U"n—-l) € F(Qn)\(o) . ,0) : Ag+a, E )\i#i‘i‘
=1

n—1
(=0 + Zobasf + X cadipk+ T dipipe = 0} where 0 # 0,0 # b by, o €

1<j<k<n—1 o<i<k<n
Fi(=12..n-1),(1<j<k<n-1),dyp€eF, (0<j<k<n-1),and n € N. Then

b
A= -1+ -0 )

where (%) is the Legendre symbol.
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Proof. (Induction on n)
1. Let 5 = 1. Then we have the equation

X+ (=bjug = 0

defined over F. Thus |P| = 0, if (5) = —1and |P| = 2(p - 1) if (%) = +1. Therefore

IPl=p-1+(p~1) (%) as desired.

2. Assume n > 2 and suppose that the claim is true for n — 1. Then

iPal = H(o- s dati oy oy din1) € Poe
o1 #0320, o5 Ancas thoy - s a2 € FH +
+[{( Aoy s Anc1i o -+ oy fin-1) € P
o1 =0 An 0N =p; =0 forall :=0,1,...,n- 2} +
FH (Mg« s Anot Mgy -y 1) € P

fnct = 0 Aacs € By (Agy- -, Ancai lor- - s fncz) # (0, 0)}]

= ="+ (- 1) +plPac =" =1+ (p - 1) (g)

as desired.

Lemma 10. Let s = 2n, n € IN. Then the number v of the square elements 0 # g =
8 .
5 b1 with by = 0 equals

i=1

L n—1 { 30
5 |P 1+(p-1)p (p)]

where 8° = 02" = —ag — @10 — ... — Gop 107 G # 0.

Proof. For any element 0 # v € Fy we have

n-—-1 n—1
¥ = Do+ LA 4 Y wl with (Ao, Aacaiboy s o) # (0, -+, 0)
i=1 i=0

n—i .
Set 42 = 21 ;1. Then we get
1=

n—1 n—1
a =X+ (—200) 3 M+ (—ao)pg + Dbl + Y cppdimt+ Y. daiiu
=1 i=1 1<§<k<n~1 0<jck<n—1




for some b, e € F, (i=1,...,n~-1), (1< j<k<n-1}dpeF, (0<j<k<n-1). If
0% v then v # —7 but 7* = (—)*. Thus

_ 1 _ 1) anen _ gyl B0
ﬂ—2!Pnl—2{p l+{p-1)p (p)]

with P, defined in Lemma 8.

Corollary 11. If s =2n, n € IN. Then

(3 -2 ) w(3)

Proposition. 1. Let s =2n, n € IN then (Qpﬂ) =41, ifard only if § €< p? >= K.
2. F, = F(p) = F(p*); i.e. pand p are primitive elements of F, over F. Namely, § can be

chosen as p and p? for any s € IN,

3. a)ifs=2n+1 ne INU{0} then 7(,), 2() and yy,) are independent of the choice of the
primitive element 4,

b) If s =2n,n € IN then

1 1
) = V& F(s) = —5(—\/5+ ),y =-5Ve+1)

for any primitive element 8 €< g* >= K while

1 ‘ 1
T =-Vh o9 =-5(Va+1), we=-3(-vi+1)

for any primitive element 8 € pK .
c) For any s € IN and for any primitive element § €< g >= K we always have

1 1
T =8 3 = —5(=1ve+1), v =-5ve+1)

where )
_J +1;for g=1 (mod4 Y
—{+i;for g=3 (mod4)  '7 -b
Proof. 1. As we already know Gal{f;/F) =< a > with a(y) = 4 for any v € F,. And
s =2n, n € N implies that ap = Ng gz = 667 ...677 = §0*-1/¢-1)_ Let § = pi for some
i € IN. Since r = g~ W01 < p 5= p*
(Epﬂ) = +4i < a =r¥ forsome ;€ N <= gy = pl-D/p-1 = Plie'~1)/(-1)2 .y
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(p* = V)/(p - Dl = [0 = 1)/(p— ]2 (mod (p* — 1)) <= i=2j (mod (p— 1)}

= i=0 (mod 2) &= fe<p® >=K .

2. If s = 1, then each non-zero element of F' is trivially a primitive element over F.. Suppose
s> 2. As Fj =< p> we have F(p) = F,; i.e. pisa primitive element of F, over F. Now we
shall show that p? is also a a primitive element of F, over F. Otherwise Fpe = F(p?) < F, for
some 1 <t <s. Then 1= {p?)*"~! and thus 2(p* — 1) = 0 (mod (p* — 1)). But then

P12 -1)<plpt—1)=p*-p<p—1

which is a contradiction.
3. By Corollary 7 and Corollary 11 and from 1, 2 above we arrive at desired result.
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