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1. Introduction

Let ¥ be denote the class of all functions f(z) of the form
=243 (1
N o n=1 !

*
which are regular in £ = {z : 0 < |z| < 1}, with a simple pole at the origin. Let > , > (a) and

S
> (), (0 < a < 1) denote the subclasses of Y that are univalent, moromorphically starlike of order
k

a and meromorphically convex of order « respectively. Analytically f(z) of the form (1) is in > («)

lic , Oé, Z € E 2

Similarly, f € > («) if and only if f(z) is of the form (1) and satisfies
k

Re {— (1 + ZJ{é?) } >a,(z € B) (3)

It being understood that if & = 1 then f(z) = 1 is the only function which is }-(1) and > (1).
k
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The classes > («) and > («) have been extensively studied by Pommerenke [1], Clunie [2], Royster

k
[3] and others. Recently the integral operator of f(z) in ) for o > 0 is denoted by I? and defined as
S
following

z
z

1) = [ (0g2) trpar (4)

0
That is defined by Jung et al. [4]. It is easy to verify that if f(z) is of the form (1), then

Loy () o 6)
=- anZ
z — n-+2 "

The aim of the present paper is to introduce the class of meromorphically starlike functions which
we denote by Z( ) for some (0 < a < 1), B(0 < f < 1) and ¢ > 0. We then consider the
class Z ,0) = Z N Z( ,0) and extend some of the results of Juneja et al. [5] to this class. We

P
obtain coefficient est1mates distortion properties and radius of convexity for the class. Furthermore it

is shown that the class Z( ,0) is closed under convex linear combinations and integral transforms.

Definition 1.1. Let the function f(z) be defined by (1). Then f(z) € > («, 8,0) if and only if

2[17 f(2)] 1' 7))
I7f(z) 17f(z)

for some a(0 << 1), f(0< S <1), 0 >0and for all z € E.

+ 20 — 11,

2. Coefficient estimates

*
In this section we obtain a sufficient condition for a function to be in > («, 3, 0).

oo
Theorem 2.1. Let f(z) =2+ 3" a,2" be regular in E. If

n=1

Sl B+ 2o 1541 || el <250 - ©)

for some 0 << 1,0 < <1 and o >0 then f(2) € > (a,,0).

PROOF. Suppose (6) holds for all admissible values of « and /3. Consider the expression

H(f, f") = [2[I7 f(2)] + [I7 f(2)]] = BlI7f(2)] + (20 = 1)[I7 f(2)]| (7)

The we have

/ = 1 7 n 1 = 1 7 n
Y R B B R L 3 e P T
= rH(f, f) :ni::l(n—kl) {niz]a\an\rnﬂ —6{2(04— 1) —ni:o:l(n—i-Qa— 1) [7141_2]0\@”]7"”“}

= Z[(l +B)n+ (2o — 1) + 1] {n}rz} ’ lan|r" T —26(1 — a).

n=1

Since the above inequality holds for all r,0 < r < 1,letting r — 1, we have

<Z 148+ a= 03+ 1] || ol - 250 - )

SO, by( )-
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fR) IfZ)]
=10 0] +2a—1].

So that f(z) € Z(a, B,0). Hence the theorem. O

Hence it follows that [

+1]

o0 *
Theorem 2.2. Let the function f(2) = 1+ 3 an2", a, > 0 be regular in E. Then f(2) € Y («, 8,0)
n=1

2
if and only if (6) is satisfied.
PRrROOF. In view of Theorem 2.1, 1t is sufficient to show that only if part.
Let us assume that f(z) = 1 + Z anz", a, > 0is in Z( B,0).
P
175 4 f (n—f—l)[n 7 anz"
Then |-, 2C | = = < B, forall z € E.
o) T2a—l 2(1—a) Z (n+2a— 1)[n+2] an 2"
Using the fact that Re(z) < |z, if follows that
o0
Yo(n+1) {ml_Q} an2"
=1
Re 1" ~ e <B,2z€FE (8)
n—=
Now choose the values of z on the real axis so that Z[IIZ ]J:((j))y is real.
Upon clearing the denominator in (8) and letting z — 1 through positive values,
o0
we obtain Z(n—i— 1) [m] an Sﬁ{2(l—a)— Yo (n+2a—-1) [n}ﬂ]“an}
n=1
- z [(1+ B+ (20 = D +1] [75] Jaal <2801 - a).
n=1
Hence the theorem. O
o0 *
Corollary 2.3. If f(2) =1+ Y a2", ap, > 0isin Y (o, 3,0) then
n=1 p
26(1 — 2)7
ang 5( a>(n+ ) ) :1727"' (9)
(1+8)n+R2a-1)g+1
with equality for each n, for function of the form
1 26(1 —a)(n+2)° n
z)=—+ 2t nm=1,2,--- 10
fa(2) z (14+pB)n+Q2a-1)5+1 (10)

If 5 =1 in the above theorem, we get the following result of Atshan et al. [6].

Corollary 2.4. If f(z) € > (o, 8,0) then
P

PP o) | G ) OIS
n+ «

The result is sharp for the functions f,(z) is given by

1 1-— 2)9
fn(Z):*"i‘( Oé)('”"f’ ) zn, n=1,2,--
Z n—+ o

3. Distortion properties and radius of convexity estimates

In this section we prove the Distortion Theorem and radius of convexity estimates for the class

(B, 0).

p
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Theorem 3.1. Let f(z) € > («,3,0). Then for 0 < |z| =7 < 1,

p
1 3°8(1-a) 1 3°8(1-a)
P Twap MBS o -

with equality for the function

f(z) = i+3016(+1c;5a)2’ at z =r,ir (12)

PROOF. Suppose f(z) € > (o, 3,0). In view of Theorem 2.2, we have

P
3768(1 — )
nS oo 1
EZG-_ e (13)
Thus for 0 < |z| =7 < 1,
=[S e
- z n=1 "

VAN
=
4
(]
)
x

n=1
1 oo
<—+7r) ap
n=1
1, 376(1-0a)
by (1
<t Tias 0 W13
This gives the right hand side of (11). Also
1 oo
f) === ) an2"
z
n=1
1 oo
Z 77 Z an|2|
’ | n=1
> L T i": a
1810
T 14+ ap
which gives the left hand side of (11) . O

Theorem 3.2. Let the function f(z) be in > («, 3,0). Then for f(z) is meromorphically convex of

p
order 6(0 <0 < 1) in |z| <r=r(a,f,0,0), where

1
, 1-0)[A+F)n+ (2a—-1)+1) 1
) = inf =1,2,--- 14
r(e,8,0,0) =in { 26(1 — a)n(n+2—6)(n+2)° P TS (14)
The bound for |z| is sharp for each n with the extremal function being of the form (10).
PROOF. Let f(z) € > (a, 3,0). Then by Theorem 2.2
»
214+ 8)n+R2a—-1)3+1
L <1 15
2: 251—axn+m fn = (15)

n=1
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In view of (3) , it is sufficient to show that

2f"(2)
2+ <1-9¢, for |z|<r(a,pB,o0,0
24 2L 2] < vl 8,0,0)
or equivalently to show that
/ / !/
') +/(zf (2)) <1-90, for|z| <r(a,B, o,0) (16)
f'(2)
Substituting the series expansions for f’(z) and (2f/(2))’ in the left hand side of (16) then we get
S n(n+ a2t S n(n + 1)ag|z|*
n=1 n=1
oo S o0
fz% + > napzn! 1= > nay|z|"t!
n=1 n=1

This will be bounded by (1 — 9) if

> szr"ﬂ <1 (17)

n=1

In view of (15), it follows that (17) is true if

2 — 1 200 — 1 1
n(n+ 5)|Z|n+1§( —i—ﬁ)n—l—(a )B"i' ’n:1’2’”.
1-6 28(1 — a)(n + 2)°
1
1-0)[1+p8)n+ (2a—-1)F+1] ] =1
< —1.2. .. 1
= |Z|—{ 281 — a)n(n + 2 — 0)(n + 2)° n=12 (18)
Setting |z| = r(a, 8,0,0) in (18), the result follows.
The result is sharp, the extremal function being of the form
1 26(1 — 2)°
PR B (T GRS LA

s A+ /m+2a—1DF+1 "

4. Convex linear combinations

*
In this section we prove that the class Y (a, 3, 0) is closed under convex linear combinations.
p

Theorem 4.1. Let fo(z) = 1 and fu(z) = 1 + —i-(li%()lnj:&gljf))ﬁoﬂzn, n =1,2,---. Then f(z) €

> (a, B,0) if and only if it can be expressed in the form f(z) = > A\,fn(2), where A, > 0 and
p n=0

S A, =1,
n=0
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PROOF. Let f(2) = > Anfu(2), where A, > 0 and > A\, = 1. Then
n=0 n=0

z An] )+ z e
n=1
& 28(1 = a)(n + 2)°
An + An [ 2"
-2 X:
+2

(L+B)n+(2a—1)F+1

_ a)n+2)7”
1+ﬁ n+( a—1)B+1
Since a—1)5+1} 268(1 —a)(n+2)°
251—a n+2)° "1+ 8)n+ 2a—-1)p+1
:ZAn_l—)\0<1
n=1

Therefore f(z) € i(a,ﬁ,a).

p

Conversely suppose that f(z) € > (a, 8, 0).

p
Ba)nin
(1+8)n+(2a—1)5+1> n=1 2, o

oo
Setting A, = HEE 0 a, n=1,2,- and dg=1— 3 An.
n=0

Since a,, <

oo
It follows that f(z) = >  Anfn(z). This completes the proof of the theorem.
n=0

Theorem 4.2. The class Y (a, 8,0) is closed under convex linear combination.

PROOF. Let the function Fj(z) be given by
0 *

Fp(z) =14+ Y fur2", k=1,2--- ,m be in the class > (o, 3, 0).
n=1 P

Then it is enough to show that the function

H(z) = Fi(2)+ (1 = MN)Fy(z), (0<A<1)

tt is also in the class > («, 3, 0). Since for 0 < A <1,
P

o0

H() = 243 (ar + (1= X fao] 2"
n=1

We observe that

Nk

[(1+B8)n+ (2a —1)8+1] Afn1 + (1= X)fn2]

n=1 (n+2)0
> 1
A; L+ 8)n+(Q2a—-1)+ ]mfn,l
[(1+ B)n + ( 2a—1)5+1](n+12)0fn,2

n:l
< 28A(1—a)+ (1 —A)26(1 —a) =251 — )

*
By Theorem 2.2, we have H(2) € Y (o, 8,0).
P

50
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5. Integral transforms

In this section, we consider integral transforms of functions in > («, 3, 0).
P

Theorem 5.1. If f(z) isin > («, 3, 0) then the integral transforms
P

1
F.(2) = c/ucf(uz)du, 0<ec< oo (19)
0
R (1+ap)(c+2) —376¢(l — a)
) ,where § =0 = 20
are in Z(),W ere (o, B,0,¢) (AT af)ct2) L3731 —a) (20)
The result is best possible for the function f(z) = 1 + 3((7&1&73?)2
PROOF. Suppose f(z) € > («, 3,0). We have
P
1 .
. 1 can
F.(z) —c/u fluz)du = . Zn+c+1
0
It is sufficient to show that -
an <1 21
; (n+c+1) (21)
Since f(z) € > (a, B,0), we have
P
- (20— 1)8+1
Z a-DB+1 "y (22)
— 1 - a)(n +2)°
. . . (n+o n o
Thus (21) will be satisfied if ((1:5)) (n+c+1) < (125()1 +O(§(n+12))ﬁ+l for each n
(14 8)n+ 2 — 1)+ 1][n+c+ 1] = 258(1 — a)nc(n + 2)7
=0< (23)
(14 B)n+ 2= 1)+ 1][n+ c+ 1]+ 25(1 — a)nc(n + 2)°
Since the right hand side of (23) is an increasing function of n, putting n = 1 in (23), we get
5 < (LHaf)(c+2) —¥p(l - a)e
T (1+aB)(c+2)+3°8(1 —a)c
Hence the theorem. O
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