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1. Introduction

Let us denote space of functionals from N to C,
by w,where N and C show sets of natural
numbers and complex numbers, respectively.
When the sequence space is called, it is
understood a linear subspace of w. The famous
classic sequence spaces are [y, c,col,. These
symbols represents sequence space all bounded,
convergent, null and absolutely p —summable
sequences, respectively. Also, we denote the
spaces of all bounded and convergent series by bs
and cs.

Let A= (a,,) be an infinite matrix of real or
complex numbers, 9 and o optional sequence
spaces. If x €9 implies that sequence Ax =
{(Ax),,} € o, where sequence Ax is the A-
transform of the sequence x and the general term
of this sequence is
(Ax)n = Xk Qi Xk, 1
in this case, for each n € N, the series on the right
side of the above equation is convergent. Then we
say that the matrix A is a matrix transformation
from 9 to o and denote it by A:199 — . The class
of such matrices is showed by (9: ¢ ).

For simplicity in notation, here and in what
follows, the summation without limits runs from 0
o oo.

A matrix E is called triangle, if main diagonal’s
elements aren’t zero and elements on the top of
the main diagonal are zero. For triangle matrices
E,F and a sequence y, the equality E(Fy) =
(EF)y holds. Further, a triangle matrix W
uniquely has an inverse W~ = Z, also a triangle
matrix. The equality y = W(Zy) = Z(Wy) yields
for talked about matrices.

If there exists a single sequence (t;) of scalars
satisfied the following equation, then the sequence
(tx) is known a Schauder basis (or shortly basis)
for a normed sequence space 9, where mentioned
above equation is, for every y € 9,

lim|ly — Zfi-o anta]| = 0 )

The series Y., a,t, which has the sum y is called
the enlargement of y according to (t;) and written
as y = X, ant,. Schauder basis and algebraic
basis coincide for finite sequence spaces.

322

The matrix domain 9, of an infinite matrix A in a
sequence space 9 is defined by

9=y =0n) eEw:4y €9} (3)
which is a sequence space. Although in the most
cases, the new sequence space is the expansion or

the contraction of the original space 9, in some
cases, these spaces are overlap.

Combined with a linear topology a sequence
space U is denominated a K —space, if for each
9 € N, coordinate maps p;:9 — C, described by
pi(y) = y; are continuous. A K —space which is a
complete linear metric space is entitled an FK —
space. An FK —space whose topology is
normable is called a BK — space (Lorentz, 1948)
which comprises @, the set of all finitely nonzero
sequences.

Let us assume that E —is a triangle matrix, in that
case, we can obviously say that the sequence
spaces Yz and ¥ are linearly isomorphic, i.e.,
I =9 and if 9 is a BK — space, then 95 is also a
BK —space with the norm given by [lylly, =
|Eyllg, for allyedg. As well as above
mentioned sequence spaces lo,c,co and almost
convergent sequence space f are BK —spaces with
the ordinary supnorm described by

I¥lleo = genlVicl- 4)
Also [,, are BK — spaces with the ordinary norm

defined by

1
IYll, = CilyilP) /7, (1 <p < o). 5)
Since the sequence space to be defined is almost
convergent sequence space in this study, let's first
remember the definition of almost convergent
sequence space.

A continuous linear functional ¥ on [, is said a
Banach limit, if

i) Forevery y = (y), ¥(y) =0,

i) l/J(_’yp(k)) = Y(yy), Where p is shift operator
which is described onto w with p(k) = k + 1,

iii) Y(e) =1, wheree = (1,1, ...,1, ...).

A sequence y = (yi) € l, is entitled to be
almost convergent to generalized limit [, if all
Banach limits y are [ (Lorentz, 1948), and
denoted f —limy=1. In other words, f —
limy = L iff uniformly inn
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(6)

lim _Zk “o Yk+n = L.

m—oco m+1

We indicate the sets of all almost convergent
sequences by f and series by fs and define as
follow:

f= {y = (yx) Ew: 7311310 Smn () =1,

uniformly in n} (7)
where [ exists uniformly in n,

Smn(y) = EZZLO Vi+n )
and

f5={ =(y) Ew:3leC>

11m i OZ””‘ y’ = luniformly in n} )]

As known that the containments ¢ c f c [, are
precisely acquired. Owing to these containments,
norms ||. || and || ||, of the spaces f and I, are
equivalent. Therefore the sets f and f, are BK-
spaces having the following norm
Iyl = mnlSmn ()] (10)
When we look according to summability theory
perspective, we can see that to define new Banach
spaces by the matrix domain of triangle and
investigate their algebraical, geometrical and
topological properties is well-known. Therefore,
many authors were interested in this subject and
by using some known matrices, they did many
studies by using some known matrices. Some of
them are here:

(Basar et al., 2011; Candan, 2014, 2018; Candan
et al., 2015; Karaisa et al., 2015; Kayaduman et
al., 2012a,b; Kirisgi, 2012, 2014).

The matrix to be used to construct sequence
spaces in this paper is below:

Let 2 = ( Ap)p=, be strictly increasing sequence
of positive reals tending to infinity, i.e.

0< A3 < A, <--and A, — o0, as k — oo,

Let u = (uy) be a sequence such that u; # 0, for

all k € N. We define the matrix A = A= (1)
as

(lk_lk—l);(lk+1_lk) uk, lf k < n,
A = Iahnesy, if k= n, (1)
0, if k>n,
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Where

n 0= Eoo( A = A we(x = 1) (12)
and if y = (yy) is A-transform of a sequence x =

(xx), where for all k € N

k(A

— Ai—1)
i=0 Ak

Vi = wi (g — x1-1)- (13)

In (Ganie et al., 2013), using the matrix above, the
sequence spaces co(A%) and c(A2) were defined
and investigated. Using the same matrix, we also
define the following sequence spaces.

Firstly, let us define sequence spaces f(A)

and f,(4):
fA)=fx=@)ewy=0) =A@ ef}. (14

If y=(yx)€ A(x) € f, it means that 3l € C
such that uniformly in n,

1 m
Lim —— 1Z)Yk+n =
1 m k+n ﬂ A
. i~ A _
(5w )
(15)

If =0, y=(y)€ Ax) €f,, and we can
define

fo(/i) = {x = () eEw:y = () = Ax) € fo},
(16)

The other sequence space is fs(A):

fs(/i) = {x =(xx) Ew:y = (yp) = A(x) € fs},

17)
ie. If y=(y)€ Ax) €fs, then IL€C>
uniformly in n,

m k+n J (l )
k=0 j=0 i=0
(18)

We can redefine the spaces fs(A),f(A)and
fo(4) by the notation of (3), fs(A) = (fs)z,
f(A) = (Hz and f(4) = (f)z.

This paper is organized as following: In chapter 2:

some topological properties of defined sequence
spaces; in chapter 3: dual spaces of these spaces;
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in chapter 3: the characterization of some matrix Theorem 2.2: The spaces f(A), fo(A) and fs(A)

classes between these_ spaces and some classical are linearly isomorphic to the spaces f, f, and fs,

sequence spaces are given. respectively, ie. f(A)=f, fo(Ad)=f, and

2. Some Topological Properties Of These fS(A) =/s.

Spaces . .

Proof: We show that there is a linear

Theorem 2.1 transformation between f(A) and f. Therefore

||x||f(7l) f. Using the matrix A, it can be described the

Sup transformation T as T(x) = A(x), for each x €

f(A). It is easy to see that T is linear. If T(x) =
0,then x = 0, so T is one-to-one. Finally, we need
to show that T is surjective.

m k+n
" (2 45wt

(19)

ii) The sequence space fs(A) is normed space Let us assume y = (y,) € f and describe x =

with with (xx) by
||x||fs(ﬁ) Xy =
m [k+n J
Y _ Am
_ SUP Z(ZZ( 1) L(xl Xi_ 1)> ‘I]?=0( m= ] 1( 1) mmym) (21)
k=0 \ j=0 i=0

(20) From here, we have

k
A=A
2 (Pt = i) =
i=0 k
k 1 1 i ] A i—-1
Sl D ) e ”
> u Cim— sy =Y Vi
i=0 Ak j=0m=j-1 u](lf _A] 1) j=0m=j—-1 u}(AJ _Aj_l)
S (A= A i 1
i~ li-1 i m
=) ——y —im ——
N Ry Wy R
=0 m=i—1
= Yk (22)
Corollary 2.1: The space f3; has no Schauder
For all k € N, which leads us to the truth that Basis.

uniformly inm
3. The a—, f—, y —Duals Of These Spaces

41— limx = f — limy (23)
The a—, B—, y —duals of the sequence space X are
which implies that x € f, consequently, we see defined by
that T is surjective. Hence, T is a linear bijection
that therefore shows that the spaces f(A) and f Yo — {a = (ax) € wiax = (arx;) € 11,} (24)
are linearly isomorphic, as desired. This vx = (x) EX

completes the proof. The fact fo(4) = f, can be

analogously attested. ¥B = {a = (ax) € w:ax = (axxy) € cs

Vx = (x,) €X ’} (25)

Due to the well known fact that the matrix domain

A, of the normed sequence space denoted by A has xr = (@ = (@) Ewiax = (ax) €bs) o0
(26)

got a base iff the matrix domain A, of the normed vx = (x) € X

sequence space denoted by A has got a base, .

whenever a matrix A = (a,,;) is a triangle (Jarrah, here c¢s and bs are defined to be sequence spaces

et al., 1990). (Remark 2.4) and since the space f of all convergent and bounded series, respectively.

has no Schauder basis, we have;
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Lemma 3.1: (Siddiqi, 1971) So as to the matrix A
belongs to the matrix class fromf to [, Iis

necessary and sufficient condition
sup

neN Zklankl < (27)

is satisfied.
Lemma 3.2: (Siddiqi, 1971) So as to the matrix A

belongs to the matrix class from f to c is
necessary and sufficient conditions:

i) SuPpen Lklan| < oo (28)
i) foreachk € N lim a,, = ay (29)
n—oo
iii) lim Y, a, =« (30)
n—oo
V) lim YlA(an, — @)l =0 (31)

are satisfied.

Theorem 3.1: The y—dual of the space f3 is the
intersection of the sets

sup -1
b, =la = () € w: " ka(nn < wl,
k=0
(32)
sup 5
b, =ia = (a;) € w: "N man| < oo,

(33)

Proof: For an optional sequence a = (a;) Ew
and take into consideration the following equality.

+————a
un(ln - /1n—1) nyn
n-1

. An
= Z a M)y + R

k=0
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=Dn(y) (34)

where the general term d,,;; of the matrix D is
determined as follows,

An
D = (dnk) = un(ln_ln—l) an: k =n, (35)
0, k>n,
forall k,n € N, where
Ak ag
ar,(n) =—
« U | Ak — Ag-1
+ ( !
Ak = k-1
n—-1
=) 2
- — a]- .
Rewr = M) Lt
(36)

Thus, we deduce from (4), that agxy € bs
whenever x = (x;) € f3 iff Dy € [, whenever

y = (yx) € f, where D = (d;) is described in
(35). That’s why with assistance of Lemma 3.1,
fa’ = by N b,.

Theorem 3.2: The f —dual of the space f3 is the
intersection of the sets

b; = {a = (ai) € w: lim d, exists}, (37)
n—-oo

b, = {a = (a) € w:lim Y, dpx exists}, (38)
n—oo

b5 = {a = (ak) € w: lim ZRA(dnk — ak) < OO},
n—oo

(39)
where aj, = lim dp. Then f4f =n3_, by.
n—-oco

Proof: Let us take any sequence a € w. By (4),
ax = (apx,) € cs whenever x = (x;) € f iff
Dy € ¢ whenever y = (y,) € f, where D=
(d,) is designated in (35). We derive the

=1
consequence by Lemma 3.2 that {f;}# =Mie=1 b".

Theorem 3.3: The y —dual of the space fs; is the
intersection of the sets
sup

be =qa = (ax) Ew: " XpA(dp,) < oop (40)
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by = {a = () € w: Jim duy =0}, (41)

That is, {fs;}Y=be N by.

Proof: This might be acquired in a similar concept
as talk about in the proof of theorem 3.1 with
lemma 3.1 instead of Lemma 4.2 (iii). So, we
neglect details.

Theorem 3.4: Defined the set

by = {a = (a)) € w: lim 3,142(dn)] < o},
(42)

Then, {fSZ}B:b3 ﬂ b6 ﬂ b7 ﬂ bg.

Proof: This, might be acquired in a similar
concept as talk about in the proof of theorem 3.2
with Lemma 3.2 instead of lemma 4.2 (iv). So, we
disregard details.

4. Characterization of Some Matrix Classes

For shortness, let us write

Ank = Z;'l=0 Ajk (43)
a(n, k,m) = ﬁz;-lo An+jk (44)
Aay, = apg — Ank+1. (45)

Theorem 4.1: (Basar, 2012) Let u be an FK-
space, U be a triangle matrix, P = U~ and n be
optional subset of w. Then, we have A = (a,;) €
(uy:m) iffforalln € N,

cm = (cr(r?,z) € (u,c) (46)
and
€ = (cue) € (wm), (47)
where

m
e
and forall k, m,n € N,
Cnk = Xjek AnjPjk- (49)
Lemma 4.1: A € (f: f) iff
i) suppen Zilankl < oo (50)

i) f—limay,, = ay, exist, for each fixed k € N(51)
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i) f—limYrany =a (52)

iv) uniformly in n lim Y;|Ala(n, k,m) —
m-oo
ax]|=0, (53)

are satisfied.

For an infinite matrix A = (a,;), we shall write
for shortness that:

A a
= =
+ ( !
Ak — Ak-1
m
=) >
— ———————— a .
Tirs = 2 L
(54)
where k < m.
dnk, = dng
— A_k, Ank
U | A — Ag-1
+ ( !
Ak — Ak-1
)
—_— a .
Tirs = 2 L
(55)
==
Ank = Z (1/1—1—1) wi(aw — ai—1 )
i=0 k
(56)

Theorem 4.2: Let us assume that the entries of the
infinite matrices given by A = (a,;,) and

H = (hy,;) are related by the following relation
Pk = Gnk (57)

for all k,n € N, u is an orbitrary sequence space.
Then A € (f4:w) iff for all n € N, {a,}ken €

(f2)? and H € (f: ).

Proof: Let us take an orbitrary sequence space u
and it is satisfied the condition (56) and recall that
fz and f are linearly isomorphic. We take A €

(fa:u) andy = (yi) € f.



Kiling/ GUFBED 10(2) (2020) 321-329

Thus, H.A does exist and {a,x}ren €N3—q by
which satisfies that {h,;}xen € l;, for each n €
N. Therefore, Hy exists and thus for all n € N

Yk hnkVie = 2k QnpeXe- (58)

We have by (56) that Hy = Ax, which leads us to
consequence H € (f: w).

Conversely, let {a,x}xen € (f1)?, for eachn € N
and H € (f:u) satisfy, and take any x = (x;) €
f4. Then, Ax exists. Thus, we acquire from the
following equality for eachn € N,

Do nk Xy =

(59)

Asm — oo that Ax = Hy and this shows that A €
(fa: ).

Theorem 4.3: A€ (f4:c) iff D™ = (df:l‘,)() €
(f:c)and D = (dpx) € (f:0) .

Theorem 4.4: A € (f4:1y) iff DM = (df,’l‘,z) €
(fic)and D = (dpy) € (f:ls) .

If we change the roles for the spaces f; and f
with u, we have following theorems.

Theorem 4.5: Assume that the entries of the
infinite matrices A = (a,,) and L = (1) are
related by the following relation [, = G, in
(56), for all k,n € N and u be any given sequence
space. Then, A € (u: f7) iff L € (u: ).

Proof: Let x = (x;) € u and take into account the
following equality

{A(Ax)} Z(A Ai—1)

Z(A A 1) Z(au a;- 11)"1

i=

(A — Aiy)
= A—ui(aij —ai_15) | %
k

7 \i=0
= (Lx)n

[(Ax)l (Ax)L 1]

(60)

which leads us to consequence that Ax € f; iff
Lx € f. Thus, proof is completed.
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At this time, we are going to denote the following
conditions:

for each fixed k € N

lima,, = ay, exist (61)
rlll_g}o Yk Qnk = Q, (62)
rlll_fglo 2ilA(ank — )| =0, (63)
SUpnen 2kl Alani)| < oo, (64)
for each fixed n € N,

IEL’{% anx = 0, (65)
il_)‘fg Yild’anl = a, (66)
f —limay, = a; exists, (67)
uniformly inn

nlll_Tfolo Yrla(n, k,m) —ay| =0, (68)
uniformly inn

f— limYrau =a, (69)
Lim Yy lAla(n, k,m) — ai ]l = 0, (70)
uniformly inn

llm Zk |Z Ala(n+i,k) — a;]| =0, (71)
SUpPnen 2klda(n, k)| < oo, (72)
for each fixed k € N

f —lima(n, k) = ay exists, (73)

uniformly inn

llmZk—|Z Ala(n+i,k) — ai]| = 0, (74)

q—0o

SUDneN Zkla(n, k)| < oo, (75)
for each fixed k € N

Y Qnie = A, (76)
Y Xk Qi = @, (77)
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lim ¥ylAa(n, k) — ay| = 0, (78)
n—-oo

Lemma 4.2: Let A = (ay;) be an infinite matrix.
In that case, the following expressions hold:

i) A = (ay,) € (lo: f) iff conditions (50),
(67) and (68) hold. (Duran, 1972).

ii) A = (ay) € (f: f) iff conditions (50),
(67) and (69) hold. (Duran, 1972).

iii) A = (ay) € (fs:l,) iff  conditions
(64) and (65) hold. (Basar, 2012).
iv) A = (ay) € (fs:c) iff conditions (61),

(64) and (66) hold. (Oztiirk, 1983).

V) A = (ay) € (c: f) iff conditions (50),
(67) and (69) hold. (King, 1966).

vi) A = (an) € (bs: f) iff conditions (64),

(65),(67) and (71) hold. (Basar et al,

1991).

vii) A= (ay) € (fs:f) iff  conditions

(65),(67) (70) and (71) hold (Basar,

1991).

viii) A = (an) € (cs: f) iff conditions (64)

and (67) hold (Basar et al., 1989).

A = (an) € (bs: fs) iff conditions (65),
(71) and (73) hold (Basar et al., 1991).

X) A = (an,) € (fs: fs) iff conditions (71)
and (74) hold (Basar, 1991).

Xi) A = (an) € (cs: fs) iff conditions (72)
and (73) hold (Basar et al., 1989).
Xii) A = (an,) € (f:cs) iff conditions (75)

and (78) hold (Basar, 1989).
Corollary 4.1: The following statements hold:

i) A= (an) € (fa:le) iff  {anilken €
(f7)# for all n € N and (50) hold with
.y instead of ayy,.

i) A= (an) € (fz:c) Iff {aulren €
(f1)# for all n € N and (50), (61), (63)
hold with @, instead of a,,.

iii) A= (an) € (fz:bs) iff  {anilken €

(f7)# for all n € N and (75) hold with

any Instead of a,y,.
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A= (an) € (fa:cs) iff  {apklren €
(f1) for all n € N and (75),(78) hold
with @, instead of a,;.

iv)

Corollary 4.2: The following statements hold:

i) A = (an) € (le: f7) iff (50), (67) and
(68) hold with @, instead of a,.

i) A = (an) € (f: f7) iff (50), (67), (69)
and (70) hold with @,,, instead of a,.

A = (ap) € (c: f) iff (50), (67) and
(69) hold with @, instead of a,.

i)

Corollary 4.3: The following statements hold:

i) A = (ay) € (bs: f7) iff (64), (65),(67)
and (71) hold with @, instead of a,,.

i) A = (an) € (fs: fz) iff (65), (67) and
(71) hold with @, instead of a,.

iii) A = (an) € (cs: fz) iff (64) and (67)

hold with @, instead of a,,.

Corollary 4.4: The following statements hold:

i) A = (ay) € (bs: fsy) iff (65), (71) and
(73) hold with @, instead of a,.

i) A = (au) € (fs: fsz) iff (71) and (74)
hold with @, instead of a,;.

iii) A = (an) € (cs: fsy) iff (72) and (73)

hold with @, instead of a,,,.

5. Conclusions

The purpose of this paper is to define some new
almost sequence spaces, to give some properties
of these spaces and to determine f—, y — duals
of these spaces, also to characterize some matrix
classes between these spaces and some classical
sequence spaces. Studying the domain of
generalized difference matrix A7 in the spaces
f, fo, fs and determining the f—, y — duals of
these spaces, characterizing the infinite matrices
belongs to the class of  matrices

(F(A): p), (Fs(A): ), ( u: f(/i)) and
(#:fS(/T))- where p is any given sequence

space-are significant in terms of filling up a gap in
the existing literatiire of summability theory.
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