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Abstract 

In this study, it is defined almost sequence spaces 𝑓(�̂�), 𝑓0(�̂�) and 𝑓𝑠(�̂�) as domain of the matrix  ∆𝑢
𝜆. Some 

topological properties of these spaces are investigated and determined 𝛽−, 𝛾 −duals of aforementioned sequence 

space. Futhermore, it is characterized the class of matrices (𝑓(�̂�): 𝜇), (𝑓𝑠(�̂�): 𝜇), ( 𝜇: 𝑓(�̂�)) and ( 𝜇: 𝑓𝑠(�̂�)), where 𝜇 

is any given sequence space.  

 

Keywords: Almost Convergent, Dual Spaces, Matrix Transformations, Matrix Domain of a Sequence Space, Sequence 

Spaces 

 

 

Öz 

Bu çalışmada ∆𝑢
𝜆 matrisinin etki alanları olarak 𝑓(�̂�), 𝑓0(�̂�) ve 𝑓𝑠(�̂�) hemen hemen yakınsak dizi uzayları tanımlandı. 

Bu uzayların bazı topolojik özellikleri incelendi ve  𝛽−, 𝛾 −dualleri belirlendi. Ayrıca, (𝑓(�̂�): 𝜇), 

(𝑓𝑠(�̂�): 𝜇), ( 𝜇: 𝑓(�̂�)) ve ( 𝜇: 𝑓𝑠(�̂�)) matris sınıfları karakterize edildi. 

 

Anahtar kelimeler: Hemen Hemen Yakınsaklık, Dual Uzaylar, Matris Dönüşümleri, Bir Dizi Uzayının Matris Etki 

Alanı, Dizi Uzayları 
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1. Introduction 

 

Let us denote space of functionals from ℕ to ℂ,  
by 𝑤, where ℕ and ℂ show sets of natural 

numbers and complex numbers, respectively. 

When the sequence space is called, it is 

understood a linear subspace of 𝑤. The famous 

classic sequence spaces are 𝑙∞, 𝑐, 𝑐0,𝑙𝑝. These 

symbols represents sequence space all bounded, 

convergent, null and absolutely 𝑝 −summable 

sequences, respectively. Also, we denote the 

spaces of all bounded and convergent series by 𝑏𝑠 
and 𝑐𝑠.  
 

Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix of real or 

complex numbers, 𝜗 and 𝜎 optional sequence 

spaces.  If 𝑥 ∈ 𝜗 implies that sequence 𝐴𝑥 =
{(𝐴𝑥)𝑛} ∈  𝜎,  where sequence 𝐴𝑥 is the 𝐴-

transform of the sequence 𝑥 and the general term 

of this sequence is  

 

(𝐴𝑥)𝑛 = ∑ 𝑎𝑛𝑘𝑥𝑘𝑘 ,               (1) 

 

in this case, for each 𝑛 ∈ ℕ, the series on the right 

side of the above equation is convergent. Then we 

say that the matrix 𝐴 is a matrix transformation 

from  𝜗 to 𝜎 and denote it by 𝐴: 𝜗 → 𝜎. The class 

of such matrices is showed by (𝜗: 𝜎 ).   
 
For simplicity in notation, here and in what 

follows, the summation without limits runs from 0 

to ∞.  
 

A matrix 𝐸 is called triangle, if main diagonal’s 

elements aren’t zero and elements on the top of 

the main diagonal are zero. For triangle matrices 

𝐸, 𝐹 and a sequence 𝑦, the equality 𝐸(𝐹𝑦) =
(𝐸𝐹)𝑦 holds. Further, a triangle matrix 𝑊 

uniquely has an inverse 𝑊−1 = 𝑍, also a triangle 

matrix. The equality 𝑦 = 𝑊(𝑍𝑦) = 𝑍(𝑊𝑦) yields 

for talked about matrices. 

 

If there exists a single sequence (𝑡𝑘) of scalars 
satisfied the following equation, then the sequence 

(𝑡𝑘) is known a Schauder basis (or shortly basis) 

for a normed sequence space 𝜗, where mentioned 

above equation is, for every 𝑦 ∈ 𝜗, 

 

𝑙𝑖𝑚‖𝑦 − ∑ 𝛼𝑛𝑡𝑛
𝑘
𝑛=0 ‖ = 0              (2) 

 
 

The series ∑ 𝛼𝑛𝑡𝑛𝑛  which has the sum 𝑦 is called 

the enlargement of 𝑦 according to (𝑡𝑘) and written 

as 𝑦 = ∑ 𝛼𝑛𝑡𝑛𝑛 . Schauder basis and algebraic 

basis coincide for finite sequence spaces.  

 

The matrix domain 𝜗𝐴 of an infinite matrix 𝐴 in a 

sequence space 𝜗 is defined by 
 

𝜗𝐴 = {𝑦 = (𝑦𝑘) ∈ 𝑤: 𝐴𝑦 ∈ 𝜗}             (3) 

 
which is a sequence space. Although in the most 

cases, the new sequence space is the expansion or 

the contraction of the original space 𝜗, in some 

cases, these spaces are overlap. 
 

Combined with a linear topology a sequence 

space 𝜗 is denominated a 𝐾 −space, if for each 

𝜗 ∈ ℕ, coordinate maps 𝑝𝑖:𝜗 → ℂ, described by 

𝑝𝑖(𝑦) = 𝑦𝑖  are continuous. A 𝐾 −space which is a 

complete linear metric space is entitled an 𝐹𝐾 − 

space. An 𝐹𝐾 −space whose topology is 

normable is called a 𝐵𝐾 − space (Lorentz, 1948) 

which comprises 𝛷, the set of all finitely nonzero 

sequences. 

 

Let us assume that 𝐸 −is a triangle matrix, in that 

case, we can obviously say that the sequence 

spaces 𝜗𝐸  and 𝜗 are linearly isomorphic, i.e., 

𝜗𝐸 ≅ 𝜗 and if 𝜗 is a 𝐵𝐾 − space, then 𝜗𝐸  is also a 

𝐵𝐾 −space with the norm given by ‖𝑦‖𝜗𝐸 =
‖𝐸𝑦‖𝜗, for all 𝑦 ∈ 𝜗𝐸. As well as above 

mentioned sequence spaces 𝑙∞, 𝑐, 𝑐0, and almost 

convergent sequence space f are 𝐵𝐾 −spaces with 

the ordinary supnorm described by 
 

‖𝑦‖∞ = |𝑦𝑘|𝑘∈ℕ
𝑠𝑢𝑝

.                                              (4) 

 

Also 𝑙𝑝 are 𝐵𝐾 − spaces with the ordinary norm 

defined by 

 

‖𝑦‖𝑝 = (∑ |𝑦𝑘|
𝑝

𝑘 )
1
𝑝⁄ , (1 ≤ 𝑝 < ∞).              (5) 

 

Since the sequence space to be defined is almost 
convergent sequence space in this study, let's first 

remember the definition of almost convergent 

sequence space.  
 

A continuous linear functional 𝜓 on 𝑙∞ is said a 

Banach limit, if 

 

i) For every 𝑦 = (𝑦𝑘),   𝜓(𝑦) ≥ 0,  

ii) 𝜓(𝑦𝜌(𝑘)) = 𝜓(𝑦𝑘), where 𝜌 is shift operatör 

which is described onto 𝑤 with  𝜌(𝑘) = 𝑘 + 1, 

iii) 𝜓(𝑒) = 1, where 𝑒 = (1,1, … ,1, … ). 
 

A sequence 𝑦 = (𝑦𝑘) ∈ 𝑙∞  is entitled to be 

almost convergent to generalized limit 𝑙, if all 

Banach limits  𝑦 are 𝑙 (Lorentz, 1948), and 

denoted 𝑓 − 𝑙𝑖𝑚𝑦 = 𝑙.  In other words, 𝑓 −
𝑙𝑖𝑚𝑦 = 𝑙 iff uniformly in 𝑛 



Kılınç / GUFBED 10(2) (2020) 321-329 

323 

𝑙𝑖𝑚
𝑚→∞

1

𝑚+1
∑𝑚𝑘=0 𝑦𝑘+𝑛 = 𝑙.                                (6) 

 

We indicate the sets of all almost convergent 

sequences by 𝑓 and series by 𝑓𝑠 and define as 

follow: 

 

𝑓 = {𝑦 = (𝑦𝑘) ∈ 𝑤: lim
𝑚→∞

𝑠𝑚𝑛(𝑦) = 𝑙,

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑛}                                                (7) 

 

where 𝑙 exists uniformly in 𝑛,   

 

𝑠𝑚𝑛(𝑦) =
1

𝑚+1
∑ 𝑦𝑘+𝑛
𝑚
𝑘=0 ,                              (8) 

and  

 

𝑓𝑠 = {𝑦 = (𝑦𝑘) ∈ 𝑤: ∃𝑙 ∈ 𝐶 ∋

lim
𝑚→∞

∑ ∑
𝑦𝑗

𝑚+1

𝑛+𝑘
𝑗=0

𝑚
𝑘=0 = 𝑙 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑛}.      (9)  

 

As known that the containments 𝑐 ⊂ 𝑓 ⊂ 𝑙∞ are 

precisely acquired. Owing to these containments, 

norms ‖. ‖𝑓 and ‖. ‖∞ of the spaces 𝑓 and  𝑙∞  are 

equivalent. Therefore the sets 𝑓 and 𝑓0 are BK- 

spaces having the following norm 

 

‖𝑦‖𝑓 = |𝑠𝑚𝑛(𝑦)|𝑚,𝑛
𝑠𝑢𝑝

                                     (10) 

 

When we look according to summability theory 
perspective, we can see that to define new Banach 

spaces by the matrix domain of triangle and 

investigate their algebraical, geometrical and 
topological properties is well-known. Therefore, 

many authors were interested in this subject and 

by using some known matrices, they did many 
studies by using some known matrices. Some of 

them are here:  

(Başar et al., 2011; Candan, 2014, 2018; Candan 

et al., 2015; Karaisa et al., 2015; Kayaduman et 
al., 2012a,b; Kirisçi, 2012, 2014). 

 

The matrix to be used to construct sequence 
spaces in this paper is below: 

Let 𝜆 = (  𝜆𝑘)𝑘=0
∞  be strictly increasing sequence 

of positive reals tending to infinity, i.e.  
 

0 <  𝜆1 <  𝜆2 < ⋯ and  𝜆𝑘 → ∞, as 𝑘 → ∞. 
 

Let 𝑢 = ( 𝑢𝑘) be a sequence such that  𝑢𝑘 ≠ 0, for 

all 𝑘 ∈ ℕ. We define the matrix �̂� = ∆𝑢
𝜆= (�̂�𝑛𝑘) 

as  

�̂�𝑛𝑘 =

{
 
 

 
 
( 𝜆𝑘− 𝜆𝑘−1)−( 𝜆𝑘+1− 𝜆𝑘)

 𝜆𝑛
 𝑢𝑘 , 𝑖𝑓 𝑘 < 𝑛,

 𝜆𝑛− 𝜆𝑛−1

 𝜆𝑛
 𝑢𝑛, 𝑖𝑓 𝑘 = 𝑛,

0, 𝑖𝑓 𝑘 > 𝑛,

    (11) 

Where 

�̂�𝑛(𝑥)=
1

 𝜆𝑛
∑ ( 𝜆𝑘 −  𝜆𝑘−1) 𝑢𝑘( 𝑥𝑘 −  𝑥𝑘−1)
𝑛
𝑘=0         (12) 

 

and if 𝑦 = (𝑦𝑘) is �̂�-transform of a sequence 𝑥 =
(𝑥𝑘), where for all 𝑘 ∈ ℕ 

 

𝑦𝑘 = ∑
( 𝜆𝑖− 𝜆𝑖−1)

 𝜆𝑘

𝑘
𝑖=0  𝑢İ(𝑥İ − 𝑥İ−1).                  (13) 

 

In (Ganie et al., 2013), using the matrix above, the 

sequence spaces 𝑐0(∆𝑢
𝜆) and 𝑐(∆𝑢

𝜆) were defined 

and investigated. Using the same matrix, we also 

define the following sequence spaces. 

Firstly, let us define sequence spaces 𝑓(�̂�) 

and 𝑓0(�̂�): 
 

𝑓(�̂�) = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝑦 = (𝑦𝑘) = �̂�(𝑥) ∈ 𝑓}.    (14) 

 

If 𝑦 = (𝑦𝑘 ) ∈  �̂�(𝑥) ∈ 𝑓, it means that ∃𝑙 ∈ ℂ 

such that uniformly in 𝑛, 

 

𝑙𝑖𝑚
𝑚→∞

1

𝑚 + 1
∑𝑦𝑘+𝑛

𝑚

𝑘=0

= 

𝑙𝑖𝑚
𝑚→∞

1

𝑚 + 1
∑(∑(

 𝜆𝑖 −  𝜆𝑖−1
 𝜆𝑘+𝑛

)

𝑘+𝑛

𝑖=0

 𝑢İ(𝑥İ − 𝑥İ−1))

𝑚

𝑘=0

= 𝑙. 

(15) 

 

If 𝑙 = 0, 𝑦 = (𝑦𝑘 ) ∈  �̂�(𝑥) ∈ 𝑓0, and we can 
define 

 

𝑓0(�̂�) = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝑦 = (𝑦𝑘) = �̂�(𝑥) ∈ 𝑓0},  

(16) 
 

The other sequence space is 𝑓𝑠(�̂�): 

 

𝑓𝑠(�̂�) = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝑦 = (𝑦𝑘) = �̂�(𝑥) ∈ 𝑓𝑠}, 

(17) 

 

i.e. If 𝑦 = (𝑦𝑘 ) ∈  �̂�(𝑥) ∈ 𝑓𝑠, then ∃𝑙 ∈ ℂ ∋ 

uniformly in 𝑛,  

 

lim
𝑚→∞

1

𝑚+ 1
∑∑∑

( 𝜆𝑖 −  𝜆𝑖−1)

 𝜆𝑗

𝑗

𝑖=0

𝑘+𝑛

𝑗=0

𝑚

𝑘=0

 𝑢İ(𝑥İ − 𝑥İ−1) = 𝑙. 

(18) 

 

We can redefine the spaces 𝑓𝑠(�̂�), 𝑓(�̂�) and 

𝑓0(�̂�) by the notation of (3), 𝑓𝑠(�̂�) = (𝑓𝑠)�̂�, 

𝑓(�̂�) = (𝑓)�̂� and 𝑓0(�̂�) = (𝑓0)�̂�. 

 
This paper is organized as following: In chapter 2: 

some topological properties of defined sequence 

spaces; in chapter 3: dual spaces of these spaces; 
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in chapter 3: the characterization of some matrix 

classes between these spaces and some classical 
sequence spaces are given. 

 

2. Some Topological Properties Of These 

Spaces 

 

Theorem 2.1: 

i)  The sequence space 𝑓(�̂�) is normed space with 

                                               ‖𝑥‖ 𝑓(�̂�)

=
𝑠𝑢𝑝
𝑚, 𝑛

|
1

𝑚+ 1
∑(∑

(𝜆𝑖 − 𝜆𝑖−1)

𝜆𝑘+𝑛

𝑘+𝑛

𝑖=0

)𝑢𝑖(𝑥𝑖 − 𝑥𝑖−1)

𝑚

𝑘=0

| 

(19) 

 

ii) The sequence space 𝑓𝑠(�̂�) is normed space 

with with  
                                                      ‖𝑥‖ 𝑓𝑠(�̂�)

=  
𝑠𝑢𝑝
𝑚, 𝑛 |

1

𝑚 + 1
∑(∑∑

(𝜆𝑖 − 𝜆𝑖−1)

𝜆𝑗
𝑢𝑖(𝑥𝑖 − 𝑥𝑖−1)

𝑗

𝑖=0

𝑘+𝑛

𝑗=0

)

𝑚

𝑘=0

| 

(20) 

Theorem 2.2: The spaces 𝑓(�̂�), 𝑓0(�̂�) and 𝑓𝑠(�̂�) 

are linearly isomorphic to the spaces 𝑓, 𝑓0 and 𝑓𝑠, 
respectively, i.e. 𝑓(�̂�) ≅ 𝑓, 𝑓0(�̂�) ≅ 𝑓0, and 

𝑓𝑠(�̂�) ≅ 𝑓𝑠.  

 

Proof: We show that there is a linear 

transformation between  𝑓(�̂�) and 𝑓. Therefore 

we have to define a transformation from 𝑓(�̂�) to 

𝑓. Using the matrix �̂�, it can be described the 

transformation 𝑇 as 𝑇(𝑥) = �̂�(𝑥), for each 𝑥 ∈
 𝑓(�̂�). It is easy to see that 𝑇 is linear. If 𝑇(𝑥) =

0, then 𝑥 = 0, so 𝑇 is one-to-one. Finally, we need 

to show that 𝑇 is surjective. 

 

Let us assume 𝑦 = (𝑦𝑘) ∈ 𝑓 and describe 𝑥 =
(𝑥𝑘)  by 

                                    𝑥𝑘 =

∑ (∑ (−1)𝑗−𝑚
𝜆𝑚

𝑢𝑗(𝜆𝑗−𝜆𝑗−1)
𝑦𝑚

𝑗
𝑚=𝑗−1 )𝑘

𝑗=0           (21) 

 

From here, we have 

 

∑(
𝜆𝑖 − 𝜆𝑖−1

𝜆𝑘
)

𝑘

𝑖=0

𝑢𝑖(𝑥𝑖 − 𝑥𝑖−1) = 

∑(
𝜆𝑖 − 𝜆𝑖−1

𝜆𝑘
)

𝑘

𝑖=0

𝑢𝑖 (∑ ∑ (−1)𝑗−𝑚 .
𝜆𝑚

𝑢𝑗(𝜆𝑗 − 𝜆𝑗−1)

𝑗

𝑚=𝑗−1

𝑖

𝑗=0

𝑦𝑚)−∑ ∑ (−1)𝑗−𝑚

𝑗

𝑚=𝑗−1

𝑖−1

𝑗=0

𝜆𝑚

𝑢𝑗(𝜆𝑗 − 𝜆𝑗−1)
𝑦𝑚 

=∑
(𝜆𝑖 − 𝜆𝑖−1)

𝜆𝑘
𝑢𝑖

𝑘

𝑖=0

( ∑ (−1)𝑖−𝑚 .
𝜆𝑚

𝑢𝑖(𝜆𝑖 − 𝜆𝑖−1)
𝑦𝑚

𝑖

𝑚=𝑖−1

) 

= 𝑦𝑘               (22) 
 

 

For all 𝑘 ∈ ℕ, which leads us to the truth that 

uniformly in 𝑚 
 

𝑓�̂� − 𝑙𝑖𝑚𝑥 = 𝑓 − 𝑙𝑖𝑚𝑦             (23) 

 

which implies that 𝑥 ∈ 𝑓�̂�, consequently, we see 

that 𝑇 is surjective. Hence, T is a linear bijection 

that therefore shows that the spaces 𝑓(�̂�) and 𝑓 

are linearly isomorphic, as desired. This 

completes the proof. The fact 𝑓0(�̂�) ≅ 𝑓0 can be 

analogously attested. 

 

Due to the well known fact that the matrix domain 

𝜆𝐴 of the normed sequence space denoted by 𝜆 has 

got a base iff the matrix domain 𝜆𝐴 of the normed 

sequence space denoted by 𝜆 has got a base, 

whenever a matrix 𝐴 = (𝑎𝑛𝑘) is a triangle (Jarrah, 

et al., 1990). (Remark 2.4) and since the space 𝑓 

has no Schauder basis, we have;  
 

Corollary 2.1: The space 𝑓�̂� has no Schauder 

Basis. 
 

3. The 𝜶−, 𝜷−, 𝜸 −Duals Of These Spaces 

 

The 𝛼−, 𝛽−, 𝛾 −duals of the sequence space X are 

defined by 

 

𝑋𝛼 = {
𝑎 = (𝑎𝑘) ∈ 𝑤:𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑙1,

 ∀𝑥 = (𝑥𝑘) ∈ 𝑋
}       (24) 

 

𝑋𝛽 = {
𝑎 = (𝑎𝑘) ∈ 𝑤: 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑐𝑠,

∀𝑥 = (𝑥𝑘) ∈ 𝑋
}      (25) 

 

 𝑋𝛾 = {
𝑎 = (𝑎𝑘) ∈ 𝑤: 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑏𝑠,

∀𝑥 = (𝑥𝑘) ∈ 𝑋
}     (26) 

 

here 𝑐𝑠 and 𝑏𝑠 are defined to be sequence spaces 
of all convergent and bounded series, respectively. 
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Lemma 3.1: (Sıddıqi, 1971) So as to the matrix 𝐴 

belongs to the matrix class from 𝑓 to 𝑙∞ is 
necessary and sufficient condition 

 ∑ |𝑎𝑛𝑘|𝑘𝑛∈ℕ
𝑠𝑢𝑝

< ∞                                           (27) 

 
is satisfied. 

 

Lemma 3.2: (Sıddıqi, 1971) So as to the matrix 𝐴 

belongs to the matrix class from 𝑓 to 𝑐 is 

necessary and sufficient conditions:  

 

i) 𝑠𝑢𝑝𝑛∈ℕ ∑ |𝑎𝑛𝑘| < ∞𝑘                    (28) 
 

ii) for each k ∈ ℕ        lim
𝑛→∞

𝑎𝑛𝑘 = 𝛼𝑘       (29) 

 

iii) lim
𝑛→∞

∑ 𝑎𝑛𝑘𝑘 = 𝛼                          (30) 

 

iv) lim
𝑛→∞

∑ |∆(𝑎𝑛𝑘 − 𝛼𝑘)| = 0 𝑘              (31) 

 

are satisfied.  

 

Theorem 3.1: The 𝛾−dual of the space fΛ̂ is the 

intersection of the sets 

 

𝑏1 = {𝑎 = (𝑎𝑘) ∈ 𝑤:
sup
n N ∑|�̂�𝑘(𝑛)|

𝑛−1

𝑘=0

 < ∞}, 

(32) 

 

𝑏2 = {𝑎 = (𝑎𝑘) ∈ 𝑤:
sup
n N |

𝜆𝑛

𝑢𝑛(𝜆𝑛−𝜆𝑛−1)
𝑎𝑛|  < ∞}.  

(33) 
 

Proof: For an optional sequence 𝑎 = (𝑎𝑘) ∈ 𝑤 

and take into consideration the following equality. 
 

∑𝑎𝑘

𝑛

𝑘=0

𝑥𝑘 = 

 

∑{∑[ ∑ (−1)𝑗−𝑖
𝜆𝑖

𝑢𝑗(𝜆𝑗 − 𝜆𝑗−1)
𝑦𝑖

𝑗

𝑖=𝑗−1

]

𝑘

𝑗=0

}

𝑛

𝑘=0

𝑎𝑘 = 

∑
𝜆𝑘
𝑢𝑘

𝑛−1

𝑘=0

[
𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1
(

1

𝜆𝑘 − 𝜆𝑘−1

−
1

𝜆𝑘+1 − 𝜆𝑘
) ∑ 𝑎𝑗

𝑛−1

𝑗=𝑘+1

] 𝑦𝑘 

+
𝜆𝑛

𝑢𝑛(𝜆𝑛 − 𝜆𝑛−1)
𝑎𝑛𝑦𝑛 

= ∑ �̂�𝑘

𝑛−1

𝑘=0

(𝑛)𝑦𝑘 +
𝜆𝑛

𝑢𝑛(𝜆𝑛 − 𝜆𝑛−1)
𝑎𝑛𝑦𝑛 

 
= 𝐷𝑛(𝑦)                                 (34) 

 

where the general term 𝑑𝑛𝑘 of the matrix 𝐷 is 

determined as follows, 

 

𝐷 = (𝑑𝑛𝑘) = {

�̂�𝑘(𝑛), 𝑘 < 𝑛,
𝜆𝑛

𝑢𝑛(𝜆𝑛−𝜆𝑛−1)
𝑎𝑛, 𝑘 = 𝑛,

 0, 𝑘 > 𝑛,

          (35) 

 

for all 𝑘, 𝑛 ∈ ℕ, where 
 

�̂�𝑘(𝑛) =
𝜆𝑘
𝑢𝑘
[

𝑎𝑘
𝜆𝑘 − 𝜆𝑘−1

+ (
1

𝜆𝑘 − 𝜆𝑘−1

−
1

𝜆𝑘+1 − 𝜆𝑘
) ∑ 𝑎𝑗

𝑛−1

𝑗=𝑘+1

]. 

(36) 

 

Thus, we deduce from (4), that 𝑎𝑘𝑥𝑘 ∈ 𝑏𝑠 
whenever  𝑥 = (𝑥𝑘) ∈ 𝑓�̂�      iff 𝐷𝑦 ∈ 𝑙∞ whenever 

   𝑦 = (𝑦𝑘) ∈ 𝑓, where 𝐷 = (𝑑𝑛𝑘) is described in 

(35). That’s why with assistance of Lemma 3.1, 

𝑓�̂�
𝛾 = 𝑏1 ∩ 𝑏2. 

 

Theorem 3.2: The 𝛽 −dual of the space fΛ̂ is the 

intersection of the sets 

 

𝑏3 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim
𝑛→∞

𝑑𝑛𝑘 𝑒𝑥𝑖𝑠𝑡𝑠},           (37) 

 

𝑏4 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim 
𝑛→∞

∑ 𝑑𝑛𝑘𝑘  𝑒𝑥𝑖𝑠𝑡𝑠},     (38) 

 

𝑏5 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim 
𝑛→∞

∑ ∆(𝑑𝑛𝑘 − 𝛼𝑘)𝑘 < ∞},  

(39) 

 

where 𝛼𝑘 = lim
𝑛→∞

𝑑𝑛𝑘 . Then 𝑓�̂�
𝛽 =∩𝑘=1

5 𝑏𝑘. 

 

Proof: Let us take any sequence 𝑎 ∈ 𝑤. By (4), 

𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑐𝑠 whenever  𝑥 = (𝑥𝑘) ∈ 𝑓�̂� iff 

𝐷𝑦 ∈ 𝑐 whenever 𝑦 = (𝑦𝑘) ∈ 𝑓, where 𝐷 =
(𝑑𝑛𝑘) is designated in (35). We derive the 

consequence by Lemma 3.2 that {𝑓�̂�}
𝛽 = . 

 

Theorem 3.3: The 𝛾 −dual of the space 𝑓𝑠�̂�  is the 

intersection of the sets 

𝑏6 = {𝑎 = (𝑎𝑘) ∈ 𝑤:
sup

n ∑ ∆(𝑑𝑛𝑘)𝑘 < ∞}    (40) 
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𝑏7 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim
𝑘→∞

𝑑𝑛𝑘 = 0},               (41) 

 

That is, {𝑓𝑠�̂�}
𝛾=𝑏6 ∩ 𝑏7. 

Proof: This might be acquired in a similar concept 
as talk about in the proof of theorem 3.1 with 

lemma 3.1 instead of Lemma 4.2 (iii). So, we 

neglect details. 
 

Theorem 3.4: Defined the set  

 

 𝑏8 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim 
𝑛→∞

∑ |∆2(𝑑𝑛𝑘)|𝑘 < ∞},  

(42) 

 

Then, {𝑓𝑠�̂�}
𝛽=𝑏3 ∩ 𝑏6 ∩ 𝑏7 ∩ 𝑏8. 

 
Proof: This, might be acquired in a similar 

concept as talk about in the proof of theorem 3.2 

with Lemma 3.2 instead of lemma 4.2 (iv). So, we 
disregard details. 

 

4. Characterization of Some Matrix Classes 

 

For shortness, let us write  

 

𝑎𝑛𝑘 = ∑ 𝑎𝑗𝑘
𝑛
𝑗=0                                                  (43) 

 

𝑎(𝑛, 𝑘,𝑚) =
1

𝑚+1
∑ 𝑎𝑛+𝑗,𝑘
𝑚
𝑗=0                           (44) 

 

∆𝑎𝑛𝑘 = 𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1.                                      (45) 

 

Theorem 4.1: (Başar, 2012) Let 𝜇 be an FK-

space, 𝑈 be a triangle matrix, 𝑃 = 𝑈−1 and 𝜂 be 

optional subset of 𝑤. Then, we have 𝐴 = (𝑎𝑛𝑘) ∈
(𝜇𝑈: 𝜂) iff for all 𝑛 ∈ ℕ, 

𝐶(𝑛) = (𝑐𝑚𝑘
(𝑛)) ∈ (𝜇, 𝑐)                                     (46) 

and  
 

𝐶 = (𝑐𝑛𝑘) ∈ (𝜇, 𝜂),                                     (47) 

 
where  

 

𝑐𝑚𝑘
(𝑛) = {

∑ 𝑎𝑛𝑗𝑝𝑗𝑘
𝑚
𝑗=𝑘 , 0 ≤ 𝑘 ≤ 𝑚

0, 𝑘 > 𝑚,
             (48) 

 

and for all 𝑘,𝑚, 𝑛 ∈ ℕ,   
  

𝑐𝑛𝑘 = ∑ 𝑎𝑛𝑗𝑝𝑗𝑘
∞
𝑗=𝑘 .                    (49) 

 

Lemma 4.1: 𝐴 ∈ (𝑓: 𝑓) iff 
 

i) 𝑠𝑢𝑝𝑛∈ℕ∑ |𝑎𝑛𝑘| < ∞𝑘                                   (50) 

 

ii) 𝑓 − 𝑙𝑖𝑚𝑎𝑛𝑘 = 𝛼𝑘, exist, for each fixed 𝑘 ∈ ℕ(51) 

 

iii) 𝑓 − 𝑙𝑖𝑚∑ 𝑎𝑛𝑘 = 𝛼𝑘                                   (52) 

 

iv) uniformly in 𝑛 𝑙𝑖𝑚
𝑚→∞

∑ |∆[𝑎(𝑛, 𝑘,𝑚) −𝑘

𝛼𝑘]|=0,                                                      (53) 

 

are satisfied. 
 

For an infinite matrix 𝐴 = (𝑎𝑛𝑘), we shall write 

for shortness that: 

 

𝑑𝑚𝑘
𝑛 = �̃�𝑛𝑘(𝑚) =

𝜆𝑘
𝑢𝑘
[

𝑎𝑛𝑘
𝜆𝑘 − 𝜆𝑘−1

+ (
1

𝜆𝑘 − 𝜆𝑘−1

−
1

𝜆𝑘+1 − 𝜆𝑘
) ∑ 𝑎𝑛𝑗

𝑚

𝑗=𝑘+1

]             

(54) 
 

where 𝑘 < 𝑚. 
 

𝑑𝑛𝑘 = �̃�𝑛𝑘 

 

=
𝜆𝑘
𝑢𝑘
[

𝑎𝑛𝑘
𝜆𝑘 − 𝜆𝑘−1

+ (
1

𝜆𝑘 − 𝜆𝑘−1

−
1

𝜆𝑘+1 − 𝜆𝑘
) ∑ 𝑎𝑛𝑗

∞

𝑗=𝑘+1

] 

(55) 

 

�̂�𝑛𝑘 =∑(
𝜆𝑖 − 𝜆𝑖−1

𝜆𝑘
)

𝑛

𝑖=0

𝑢𝑖(𝑎𝑖𝑘 − 𝑎𝑖−1,𝑘) 

(56) 

 
Theorem 4.2: Let us assume that the entries of the 

infinite matrices given by 𝐴 = (𝑎𝑛𝑘) and  

 

𝐻 = (ℎ𝑛𝑘) are related by the following relation  

 

ℎ𝑛𝑘 = �̃�𝑛𝑘                                                        (57) 

 

for all 𝑘, 𝑛 ∈ ℕ,  𝜇 is an orbitrary sequence space. 

Then 𝐴 ∈ (𝑓�̂�: 𝜇) iff for all 𝑛 ∈ ℕ, {𝑎𝑛𝑘}𝑘∈ℕ ∈
(𝑓�̂�)

𝛽  and 𝐻 ∈ (𝑓: 𝜇). 
 

Proof: Let us take an orbitrary sequence space 𝜇 

and it is satisfied the condition (56) and recall that  

𝑓�̂� and 𝑓 are linearly isomorphic. We take 𝐴 ∈
(𝑓�̂�: 𝜇) and 𝑦 = (𝑦𝑘) ∈ 𝑓. 
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Thus, 𝐻. �̂� does exist and  {𝑎𝑛𝑘}𝑘∈ℕ  ∈∩𝑘=1
5 𝑏𝑘 

which satisfies that {ℎ𝑛𝑘}𝑘∈ℕ ∈ 𝑙1,  for each 𝑛 ∈
ℕ. Therefore, 𝐻𝑦 exists and thus for all 𝑛 ∈ ℕ 

 

∑ ℎ𝑛𝑘𝑦𝑘 = ∑ 𝑎𝑛𝑘𝑥𝑘𝑘𝑘 .                                  (58) 

 

We have by (56) that  𝐻𝑦 = 𝐴𝑥, which leads us to 

consequence 𝐻 ∈ (𝑓: 𝜇). 
 

Conversely, let {𝑎𝑛𝑘}𝑘∈ℕ ∈ (𝑓�̂�)
𝛽, for each 𝑛 ∈ ℕ 

and 𝐻 ∈ (𝑓: 𝜇) satisfy, and take any 𝑥 = (𝑥𝑘) ∈ 

𝑓�̂� . Then, 𝐴𝑥 exists. Thus, we acquire from the 

following equality for each 𝑛 ∈ ℕ, 
                       ∑ 𝑎𝑛𝑘𝑥𝑘 =

𝑚
𝑘=0

∑ [∑ (∑ (−1)𝑗−𝑖 .
𝑗
𝑖=𝑗−1

𝜆𝑖

𝑢𝑗(𝜆𝑗−𝜆𝑗−1)
𝑦𝑖𝑎𝑛𝑗)

𝑘
𝑗=0 ] .𝑚

𝑘=0  

(59) 

 

As 𝑚 → ∞ that 𝐴𝑥 = 𝐻𝑦  and this shows that 𝐴 ∈
(𝑓�̂�: 𝜇). 
 

Theorem 4.3: 𝐴 ∈ (𝑓�̂�: 𝑐) iff 𝐷(𝑛) = (𝑑𝑚𝑘
(𝑛)) ∈

(𝑓: 𝑐) and 𝐷 = (𝑑𝑛𝑘) ∈ (𝑓: 𝑐) . 
 

Theorem 4.4: 𝐴 ∈ (𝑓�̂�: 𝑙∞) iff 𝐷(𝑛) = (𝑑𝑚𝑘
(𝑛)
) ∈

(𝑓: 𝑐) and 𝐷 = (𝑑𝑛𝑘) ∈ (𝑓: 𝑙∞) . 
   

If we change the roles for the spaces 𝑓�̂� and 𝑓 

with 𝜇, we have following theorems. 

 

Theorem 4.5: Assume that the entries of the 

infinite matrices 𝐴 = (𝑎𝑛𝑘) and 𝐿 = (𝑙𝑛𝑘) are 

related by the following relation 𝑙𝑛𝑘 = �̂�𝑛𝑘 in 

(56), for all 𝑘, 𝑛 ∈ ℕ and 𝜇 be any given sequence 

space. Then, 𝐴 ∈ (𝜇: 𝑓�̂�) iff 𝐿 ∈ (𝜇: 𝑓). 
 

Proof: Let 𝑥 = (𝑥𝑘) ∈ 𝜇 and take into account the 

following equality  
 

{�̂�(𝐴𝑥)}
𝑛
=∑

(𝜆𝑖 − 𝜆𝑖−1)

𝜆𝑘

𝑛

𝑖=0

𝑢𝑖[(𝐴𝑥)𝑖 − (𝐴𝑥)𝑖−1] 

=∑
(𝜆𝑖 − 𝜆𝑖−1)

𝜆𝑘

𝑛

𝑖=0

𝑢𝑖∑(𝑎𝑖𝑗 − 𝑎𝑖−1,𝑗)𝑥𝑗
𝑗

 

=∑(∑
(𝜆𝑖 − 𝜆𝑖−1)

𝜆𝑘

𝑛

𝑖=0

𝑢𝑖(𝑎𝑖𝑗 − 𝑎𝑖−1,𝑗)) 𝑥𝑗
𝑗

= (𝐿𝑥)𝑛 

               (60) 

                                                          

which leads us to consequence that 𝐴𝑥 ∈ 𝑓�̂� iff 

𝐿𝑥 ∈ 𝑓. Thus, proof is completed. 

 

At this time, we are going to denote the following 

conditions: 
 

for each fixed 𝑘 ∈ ℕ  

 

𝑙𝑖𝑚 𝑎𝑛𝑘 = 𝛼𝑘 , exist                                         (61) 

 

 𝑙𝑖𝑚
𝑛→∞

∑ 𝑎𝑛𝑘 = 𝛼,𝑘                           (62) 

 

𝑙𝑖𝑚
𝑛→∞

∑ |∆(𝑎𝑛𝑘 − 𝛼𝑘)| = 0𝑘 ,                           (63) 

 

𝑠𝑢𝑝𝑛∈ℕ∑ |∆(𝑎𝑛𝑘)| < ∞,𝑘                                  (64) 

 

for each fixed 𝑛 ∈ ℕ,    
  

𝑙𝑖𝑚
𝑘→∞

𝑎𝑛𝑘 = 0,                                               (65)

       

𝑙𝑖𝑚
𝑛→∞

∑ |∆2𝑎𝑛𝑘| = 𝛼𝑘 ,                                      (66)

     

𝑓 − 𝑙𝑖𝑚𝑎𝑛𝑘 =𝛼𝑘 exists,            (67)

     

uniformly in 𝑛 

 

𝑙𝑖𝑚
𝑚→∞

∑ |𝑎(𝑛, 𝑘,𝑚) − 𝛼𝑘| = 0𝑘 ,                     (68)

      

uniformly in 𝑛 
 

 𝑓 −   𝑙𝑖𝑚∑ 𝑎𝑛𝑘 = 𝛼𝑘 ,                                 (69) 

 

𝑙𝑖𝑚
𝑚→∞

∑ |∆[𝑎(𝑛, 𝑘,𝑚) − 𝛼𝑘]|𝑘 = 0,                    (70) 

 

uniformly in 𝑛 

 

𝑙𝑖𝑚
𝑞→∞

∑
1

𝑞+1
|∑ ∆[𝑎(𝑛 + 𝑖, 𝑘) − 𝛼𝑘]

𝑞
𝑖=0 | = 0𝑘 ,    (71) 

 

𝑠𝑢𝑝𝑛∈ℕ∑ |∆𝑎(𝑛, 𝑘)| < ∞,𝑘                         (72) 

     

for each fixed 𝑘 ∈ ℕ 

𝑓 − 𝑙𝑖𝑚𝑎(𝑛, 𝑘) =𝛼𝑘 exists,                        (73) 

      

uniformly in 𝑛 
 

𝑙𝑖𝑚
𝑞→∞

∑
1

𝑞+1
|∑ ∆2[𝑎(𝑛 + 𝑖, 𝑘) − 𝛼𝑘]

𝑞
𝑖=0 | = 0𝑘 ,   (74) 

𝑠𝑢𝑝𝑛∈ℕ∑ |𝑎(𝑛, 𝑘)| < ∞,𝑘             (75)

    

for each fixed 𝑘 ∈ ℕ 
 
∑ 𝑎𝑛𝑘 = 𝛼𝑘𝑛 ,                                     (76)

    
∑ ∑ 𝑎𝑛𝑘𝑘 = 𝛼,𝑛                                    (77)

      



Kılınç / GUFBED 10(2) (2020) 321-329 

328 

𝑙𝑖𝑚
𝑛→∞

∑ |∆𝑎(𝑛, 𝑘) − 𝛼𝑘|𝑘 = 0,                        (78)

     

Lemma 4.2: Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. 
In that case, the following expressions hold: 

 

i) 𝐴 = (𝑎𝑛) ∈ (𝑙∞: 𝑓) iff conditions (50), 
(67) and (68) hold. (Duran, 1972). 

 

ii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓: 𝑓) iff conditions (50), 
(67) and (69) hold. (Duran, 1972). 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓𝑠: 𝑙∞) iff conditions 
(64) and (65) hold. (Başar, 2012). 

 

iv) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓𝑠: 𝑐) iff conditions (61), 
(64) and (66) hold. (Öztürk, 1983). 

 

v) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐: 𝑓) iff conditions (50), 
(67) and (69) hold. (King, 1966).  

 

vi) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑓) iff conditions (64), 
(65), (67) and (71) hold. (Başar et al, 
1991).  

 

vii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓𝑠: 𝑓) iff conditions 
(65), (67) (70) and (71) hold (Başar, 
1991). 

 

viii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑓) iff conditions (64) 
and (67) hold (Başar et al., 1989). 

 

ix) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑓𝑠) iff conditions (65), 
(71) and (73) hold (Başar et al., 1991).   

 

x) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓𝑠: 𝑓𝑠) iff conditions (71) 
and (74) hold (Başar, 1991). 

 

xi) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑓𝑠) iff conditions  (72) 
and (73) hold (Başar et al., 1989). 

 

xii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓: 𝑐𝑠) iff conditions (75) 
and (78) hold (Başar, 1989). 

Corollary 4.1: The following statements hold: 

 

i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓�̂�: 𝑙∞) iff {𝑎𝑛𝑘}𝑘∈ℕ ∈
(𝑓�̂�)

𝛽 for all 𝑛 ∈ ℕ and (50) hold with 

�̃�𝑛𝑘  instead of 𝑎𝑛𝑘 . 
 

ii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓�̂�: 𝑐) iff {𝑎𝑛𝑘}𝑘∈ℕ ∈
(𝑓�̂�)

𝛽 for all 𝑛 ∈ ℕ and (50), (61), (63) 
hold with �̃�𝑛𝑘 instead of 𝑎𝑛𝑘 . 

 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓�̂�: 𝑏𝑠) iff {𝑎𝑛𝑘}𝑘∈ℕ ∈
(𝑓�̂�)

𝛽 for all 𝑛 ∈ ℕ and (75) hold with 

�̃�𝑛𝑘  instead of  𝑎𝑛𝑘 . 
 

iv) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑓�̂�: 𝑐𝑠) iff {𝑎𝑛𝑘}𝑘∈ℕ ∈
(𝑓�̂�)

𝛽 for all 𝑛 ∈ ℕ and (75), (78) hold 

with �̃�𝑛𝑘 instead of 𝑎𝑛𝑘 . 
 
Corollary 4.2: The following statements hold: 

 

i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙∞: 𝑓�̂�) iff (50), (67) and 
(68) hold with �̂�𝑛𝑘  instead of  𝑎𝑛𝑘 . 

 

ii)  𝐴 = (𝑎𝑛𝑘) ∈ (𝑓: 𝑓�̂�) iff (50), (67), (69) 
and (70) hold with �̂�𝑛𝑘  instead of 𝑎𝑛𝑘 . 

 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐: 𝑓�̂�) iff (50), (67) and 
(69) hold with �̂�𝑛𝑘  instead of 𝑎𝑛𝑘 . 

 

Corollary 4.3: The following statements hold: 
 

i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑓�̂�) iff (64), (65), (67) 
and (71) hold with �̂�𝑛𝑘 instead of 𝑎𝑛𝑘 . 

 

ii)  𝐴 = (𝑎𝑛𝑘) ∈ (𝑓𝑠: 𝑓�̂�) iff (65), (67) and 
(71)  hold with �̂�𝑛𝑘  instead of 𝑎𝑛𝑘 . 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑓�̂�) iff (64) and (67) 
hold with �̂�𝑛𝑘 instead of 𝑎𝑛𝑘 . 

       

Corollary 4.4: The following statements hold: 

 

i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑓𝑠�̂�) iff (65), (71) and 
(73) hold with �̂�𝑛𝑘  instead of  𝑎𝑛𝑘 . 

 

ii)  𝐴 = (𝑎𝑛𝑘) ∈ (𝑓𝑠: 𝑓𝑠�̂�) iff (71) and (74) 
 hold with �̂�𝑛𝑘 instead of  𝑎𝑛𝑘 . 

 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑓𝑠�̂�) iff (72) and (73) 
hold  with �̂�𝑛𝑘  instead of  𝑎𝑛𝑘 . 

 

5. Conclusions 

 

The purpose of this paper is to define some new 

almost sequence spaces, to give some properties 

of these spaces and to determine  𝛽−, 𝛾 − duals 

of these spaces, also to characterize some matrix 

classes between these spaces and some classical 
sequence spaces. Studying the domain of 

generalized difference matrix  ∆𝑢
𝜆 in the spaces 

𝑓, 𝑓0, 𝑓𝑠 and determining the 𝛽−, 𝛾 − duals of 
these spaces, characterizing the infinite matrices 

belongs to the class of matrices 

(𝑓(�̂�): 𝜇), (𝑓𝑠(�̂�):𝜇), ( 𝜇: 𝑓(�̂�)) and

 ( 𝜇: 𝑓𝑠(�̂�))- where 𝜇 is any given sequence 

space-are significant in terms of filling up a gap in 

the existing literatüre of summability theory. 
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