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Original Article 

Abstract − A mathematical model for hard-to-treat infections with culturing and antibiotic 

susceptibility testing (CAST) as an intervention strategy in a population is formulated and analysed. 

The analysis of the model has been done qualitatively to investigate the existence and stability of 

equilibria. Using the Lyapunov function, the disease-free equilibrium of the model proved to be 

globally asymptotically stable with respect to the threshold quantity Rc < 1. Of course, this entails 

local stability. A similar approach is employed in proving the global stability of the endemic 

equilibrium state in the case Rc > 1. However, the local stability of the endemic equilibrium is 

investigated using the method of row elimination. The model was validated using the Tuberculosis case 

in South Africa, and the result reveals that patients without adopting CAST strategy are prone to drug 

resistance and delay in quick response to the treatment regimen. On the contrary, individuals who have 

adopted the strategy have shown greater recovery potential from the infection. Based on that, self - 

medication, blind prescription should be avoided to curtail the consequences of drug resistance. 

Keywords – Hard- to- treat infections, Culturing, Antibiotic susceptibility testing, Global stability, Lyapunov function 

1. Introduction 

In the world of medicine, the consequences of an improper diagnosis of most hard-to-treat infections such as 

Mycobacterium Tuberculosis, Typhoid fever, Gonorrhoea, staphylococcus etc. are responsible for high human 

mortality and morbidity [1]. To this paper, hard-to-treat infections refer to diseases/infections that prove 

incurable without culturing and antibiotic susceptibility testing. It is primarily culturing to ascertain the main 

cause of an infection and determine drug resistance strains under laboratory-controlled conditions to give a 

correct diagnosis and treatment [2]. It is observed that those who carry out culture testing tends not to have 

antibiotic-resistant strains and do heal quickly [3]. To achieve this, it is necessary to carry out antibiotic 

susceptibility testing, which involves culturing the disease in the presence of antibiotics. If the bacteria grow, 

they are resistant to the drugs, but if it fails to multiply, it implies that the drugs are effective and the bacteria 

are not resistant [4, 5].  

[6] explains the need for rapid diagnostic testing to determine the causative organism of infection and 

maintained that diagnosis through culture before treatment plays a valuable and critical role in the cure of 

patients and those at risk of developing the infection. [7] identify disk diffusion and broth dilution techniques 
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for bacterial culture and antibiotic susceptibility testing used in veterinary medicine and [8] made a case for 

integrating culture-based and molecular methods in agro-ecosystems to understand better ways of bacterial 

inhibition. [9] gave an overview of the current methods available to identify antimicrobial susceptibility testing 

of anaerobes (aerobic bacterial).  

The number of mortality and morbidity cases recorded against drug resistance to diseases due to non-culturing 

and antibiotic susceptibility testing is alarming, and mathematical models under this area are few and not 

widely explored. People have made attempts to model this kind of infections on specific diseases as far back, 

as seen in [10, 11].  [12] projected that rapid expansion of Tuberculosis (TB) culture and drug sensitivity 

testing (DST) among South African adults could save >47,000 lives and prevent >7,000 multidrug-resistant 

(MDR)-TB cases during the 10 years from 2008 to 2017. This corresponds to a reduction of 17% in total TB 

mortality, 14% in MDR-TB incidence, and 47% in MDR-TB mortality. Their model projected that culture and 

DST impact depends most strongly on the speed and sensitivity of culture, treatment rates in diagnosed TB 

patients, and TB case detection rates in the absence of culture. In the paper, Detection of antibiotic resistance 

is essential for gonorrhoea point-of-care (POC) testing: a mathematical modelling study, [13] addressed 

clinically relevant situations to evaluate the potential impact of gonorrhoea POC tests on antibiotic-resistant 

Gonorrhoea and can guide the introduction of POC tests. [14] used mathematical modelling to provide a 

framework that integrates information regarding the transmission and control of foodborne pathogens and 

antimicrobial resistance. [15] provided a highlight on critical questions in the management of Gonorrhoea that 

can be addressed by mathematical models and identify key data needs. Their overarching aim is to articulate a 

shared agenda across gonococcus-related fields from microbiology to epidemiology that will catalyse a 

comprehensive evidence-based clinical and public health strategy to manage gonococcal infections 

antimicrobial resistance.  

Because of the above, the present study uses this opportunity to consider the general dynamics of hard – to - 

treat infections with antibiotic susceptibility testing as a robust way of enhancing proper medical treatment. 

This paper's organisation begins with an introduction in Section 1 and follows model formulation in Section 

2. The analysis of the model is presented in Section 3 with numerical simulations and discussion in Section 4. 

Finally, the conclusion is given in Section 5. 

2. Model formulation and the Feasible Region 

The model classifies the total population at time t, denoted by 𝑁, into susceptible individuals 𝑆, infected 

individuals without CAST strategy 𝐼𝑤, infected individuals with CAST strategy 𝐼𝑐 and individuals who 

recovered from the infection 𝑅. It is assumed that individuals are recruited at a constant rate  𝜙 to the 

susceptible population 𝑆 and recovered individual also become susceptible at 𝛾 rate. Susceptible individuals 

can be infected with disease following the contact with infected individuals at an average rate 𝜆 = 𝛽 (
𝐼𝑤+θ𝐼𝑐

𝑁
), 

where  𝛽 is effective contact rate and 𝜃 is the modification parameter which takes the values 0 ≤ 𝜃 ≤ 1. When 

𝜃 = 1 implies that CAST strategy is ineffective in disease control while when 𝜃 = 0 signifies that the strategy 

can effectively control the spread of the infection. Individuals with culture and antibiotic susceptibility testing 

can acquire the infection at a reduced rate of (1 − 𝜋)𝜆 and a higher recovery rate of 𝜌𝑐 compared to those 

without. It is also assumed that some of the infectives 𝐼𝑤 move to join 𝐼𝑐 class with a rate  𝛼 depending on 

CAST strategy. It is also assumed that the natural death rate occurs in all populations at a per-capita rate of 𝜇. 

It is noted that the recovery rate of infective due to CAST strategy is greater than those without the strategy 

(𝜌𝑐 > 𝜌𝑤). The mortality rate due to 𝐼𝑐 is lower than that of  𝐼𝑤 (𝛿𝑐 < 𝛿𝑤). The variables and parameters of 

the model (1) are hereby presented in Table 1. 
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Table 1: Parameters of the Model. 

Parameter Interpretation 

𝑆 Number of susceptible persons 

𝐼𝑤 Number of infected persons without CAST strategy 

𝐼𝑐 Number of infected persons with CAST strategy 

𝑅 Number of recovered persons due to treatment 

Φ Recruitment number of susceptible persons 

𝜋 The fraction of susceptible persons who become infected and do not adopt CAST strategy 

𝛼 The rate of adopting CAST strategy 

𝛽 Effective contact rate 

𝜆 The force of infection 

𝜇 Natural death rate 

𝜃 Modification parameter 

𝛿𝑤 Disease induced death rate for infectives without CAST strategy 

𝛿𝑐 Disease induced death rate for infectives with CAST strategy 

𝜌𝑐 Recovery rate based on CAST intervention strategy 

𝜌𝑤 Recovery rate based on ordinary medical test prescription (without CAST strategy) 

𝛾 The rate at which recovered persons regain susceptibility 

 

Fig. 1. Flow diagram of the generalised model of hard-to-treat infections 

2.1.  Model Equations 

Using the description of model and Fig. 1, we derive the differential equations below. 

                                        

𝑑𝑆

𝑑𝑡
= 𝜙 − 𝜆𝑆 + 𝛾𝑅 − 𝜇𝑆

𝑑𝐼𝑤
𝑑𝑡

= 𝜋𝜆𝑆 − (𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)𝐼𝑤

𝑑𝐼𝑐
𝑑𝑡

= (1 − 𝜋)𝜆𝑆 + 𝛼𝐼𝑤 − (𝜇 + 𝜌𝑐 + 𝛿𝑐)𝐼𝑐

𝑑𝑅

𝑑𝑡
= 𝜌𝑤𝐼𝑤 + 𝜌𝑐𝐼𝑐 − (𝜇 + 𝛾)𝑅 }

 
 
 

 
 
 

,                                      (1) 

where 

                                                  𝜆 = 𝛽 (
𝐼𝑤 + θ𝐼𝑐
𝑁

).                                                                                     (2) 

Adding the whole equations of (1) yields 

𝑑𝑁

𝑑𝑡
= ϕ − 𝜇𝑁 − 𝛿𝑤𝐼𝑤 − 𝛿𝑐𝐼𝑐 .                                                                 (3) 
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2.2.  The feasible region 

This sub-section examines the model's invariant region (1) whereby the system is mathematically and 

epidemiologically well-posed. 

Theorem 2. 1. The model (1) is a dynamical system on the biologically feasible region: 

𝐷 = {(𝑆, 𝐼𝑤 , 𝐼𝑐 , 𝑅) ∈ ℝ+
4 :𝑁+ ≤ 𝑁(𝑡) ≤ 𝑆0}, 

where 𝑆0 =
ϕ

μ
 and 𝑁+ =

ϕ

𝜇+𝛿𝑤+𝛿𝑐
. 

PROOF. The proof follows a two-step approach [16] 

Step 1. We prove that the solution 𝑆(𝑡), 𝐼𝑤(𝑡), 𝐼𝑐(𝑡) and 𝑅(𝑡) of the model (1) based on the initial conditions 

such that 𝑆(0), 𝐼𝑤(0), 𝐼𝑐(0) and 𝑅(0) are non-negative. Let 𝑡̃ = 𝑠𝑢𝑝{𝑡 > 0: 𝑆 > 0, 𝐼𝑤 ≥ 0, 𝐼𝑐 ≥ 0, 𝑅 ≥ 0}. 

Then, 𝑡̃ > 0 and it shows from the first equation of the model (1) that 

𝑑𝑆

𝑑𝑡
= ϕ − (𝜇 + 𝜆(𝑡))𝑆 + 𝛾𝑅 ≥ ϕ − (𝜇 + 𝜆(𝑡))𝑆,  

The above inequality equation has the form 

𝑑

𝑑𝑡
[𝑆(𝑡)𝑒𝑥𝑝 {𝜇𝑡 + ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

}] ≥ ϕexp {𝜇𝑡 + ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0

}. 

Thus, 

𝑆(𝑡̃)𝑒𝑥𝑝 {𝜇𝑡̃ + ∫ 𝜆(𝑠)𝑑𝑠
𝑡̃

0

} − 𝑆(0) ≥ ∫ ϕexp
𝑡̃

0

{𝜇𝑝 + ∫ 𝜆(𝑣)𝑑𝑣
𝑝

0

} 𝑑𝑝, 

So that 

𝑆(𝑡̃) ≥ 𝑆(0)𝑒𝑥𝑝 {−(𝜇𝑡̃ + ∫ 𝜆(𝑠)𝑑𝑠
𝑡̃

0

)} + (0)𝑒𝑥𝑝 {−(𝜇𝑡̃ + ∫ 𝜆(𝑠)𝑑𝑠
𝑡̃

0

)} × ∫ ϕexp
𝑡̃

0

{𝜇𝑝 + ∫ 𝜆(𝑣)𝑑𝑣
𝑝

0

}𝑑𝑝

> 0. 

Similarly, it can be proven that  𝐼𝑤 ≥ 0, 𝐼𝑐 ≥ 0, 𝑎𝑛𝑑 𝑅 ≥ 0 for all 𝑡 > 0. 

Step 2. We now show that the total population at time 𝑡, 𝑁(𝑡) satisfies the boundedness property 

𝑁+ ≤ 𝑁(𝑡) ≤ 𝑆
0 whenever 𝑁+ ≤ 𝑁(𝑡0) ≤ 𝑆

0. 

From equation (3), one has that 

ϕ− (𝜇 + 𝛿𝑤 + 𝛿𝑐)𝑁(𝑡) ≤
𝑑𝑁

𝑑𝑡
≤ ϕ − 𝜇𝑁(𝑡).                                                  (4) 

Applying the Gronwall inequality to the equation (4) yields 

ϕ

𝜇 + 𝛿𝑤 + 𝛿𝑐
[1 − 𝑒−(𝜇+𝛿𝑤+𝛿𝑐)𝑡] + 𝑆(0)𝑒−(𝜇+𝛿𝑤+𝛿𝑐)𝑡 ≤ 𝑆(0)𝑒−𝜇𝑡 +

ϕ

𝜇
(1 − 𝑒−𝜇𝑡) 

which implies that  

𝑁+ ≤ 𝑁(𝑡) ≤ 𝑆
0.                                                                                              

Bringing step 1 and step 2 together, Theorem 2.1 follows from the classical theory of dynamical systems. 
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3. Existence of model equilibria and stability 

3.1. Local stability of disease-free equilibrium (DFE) 

The disease-free equilibrium point occurs at the state in which there is no infection. Hence, the DFE point of 

the model (1) is given by Ε0 = (𝑆
0, 0,0,0), where the infected compartment tends to zero and 𝑆0 is the same 

as in Theorem 2.1. 

The local stability of the DFE  (Ε0) depends on the control reproduction number, 𝑅𝑐 , which is computed by a 

next-generation operator [17]. Using their notations 𝐹 and 𝑉 which denote the matrix of the new infections 

and transition matrix respectively, we have  

 𝐹 = 𝛽 (
𝜋 𝜋𝜃

1 − 𝜋 (1 − 𝜋)𝜃
)  and 𝑉 = (

𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤 0
−𝛼 𝜇 + 𝜌𝑐 + 𝛿𝑐

), 

with 

𝑉−1 =

(

 

1

𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤
0

𝛼

(𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)(𝜇 + 𝜌𝑐 + 𝛿𝑐)

1

𝜇 + 𝜌𝑐 + 𝛿𝑐)

 .                        

Therefore, the control reproduction number is  

𝑅𝑐 = 𝜌(𝐹𝑉
−1) = 𝛽 (

𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃

𝑑1𝑑2
),                                          (5) 

where 

𝑑1 = 𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤  and 𝑑2 = 𝜇 + 𝜌𝑐 + 𝛿𝑐 . 

Therefore, by Theorem 2 in [17], we can claim the following result. 

 Lemma 3.1. The DFE of the model (1) is locally asymptotically stable if 𝑅𝑐 < 1 and unstable otherwise. 

 

Biologically, lemma 3.1 implies that an adequate pool of few infected individuals into the susceptible 

population will not generate an outbreak of infection except 𝑅𝑐 > 1. Therefore, to ensure better control of 

infection, the global asymptotic stability of DFE is needed as addressed in the next subsection.  

 

3.2. Global Stability of the DFE 

The global investigation of stability at the disease-free state using Lyapunov function's construction depends 

on the infected compartments only. 

Lemma 3.2. The DFE of the model (1) is globally asymptotically stable in 𝐷 provided that 𝑅𝑐 < 1 and 

unstable if 𝑅𝑐 > 1. 

PROOF.  Following the work of [18], we consider the Lyapunov function 

𝐿 = 𝐴𝐼𝑤 + 𝐵𝐼𝑐 ,                                                                                                        (6) 

where 𝐴 > 0 and 𝐵 > 0, with the derivatives of  𝐿 defined by  

𝑑𝐿

𝑑𝑡
= 𝐴

𝑑𝐼𝑤
𝑑𝑡

+ 𝐵
𝑑𝐼𝑐
𝑑𝑡
.                                                                                            (7) 

Thus, substituting the corresponding right-hand side of (1) into (7) gives 

𝑑𝐿

𝑑𝑡
= (𝜋𝐴 + (1 − 𝜋)𝐵)𝜆𝑆 − (𝑑1𝐴 − 𝛼𝐵)𝐼𝑤 − 𝑑2𝐵𝐼𝑐 .                                   (8) 



 

6 

 

Journal of New Theory 33 (2020) 01-14 / A Generalized Mathematical Model of Hard-to-treat Infections … 

Therefore, setting the coefficients of 𝜆𝑆 to the numerator of 𝑅𝑐 (excluding 𝛽) and that of 𝐼𝑤 to the denominator 

of 𝑅𝑐, we have 

𝜋𝐴 + (1 − 𝜋)𝐵 = 𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃,
𝑑1𝐴 − 𝛼𝐵 = 𝑑1𝑑2,                               

                                                                

from which we obtain 

𝐴 = 𝑑2 + 𝛼𝜃 > 0 and 𝐵 = 𝑑1𝜃 > 0.                               

Now replacing the expressions for 𝐴 and 𝐵 in (8) above yields  

𝑑𝐿

𝑑𝑡
= 𝛽 (

𝐼𝑤 + θ𝐼𝑐
𝑁

)𝑆(𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃) − 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐), 

= 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐) (𝛽 (
𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃

𝑑1𝑑2
)
𝑆

𝑁
− 1). 

Since 𝑆 ≤ 𝑁 is in the region of the invariant set, it then follows that  

𝑑𝐿

𝑑𝑡
≤ 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐) (𝛽 (

𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃

𝑑1𝑑2
) − 1), 

   = 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐)(𝑅𝑐 − 1).                                               

This shows that 

  
𝑑𝐿

𝑑𝑡
< 0 if 𝑅𝑐 < 1                                                                                        

Equality holds at 𝑅𝑐 = 1 and 𝐼𝑤 = 𝐼𝑐 = 0. Therefore, we can conclude from the LaSalle's invariance principle 

stated in Theorem 3.1 below that the DFE is globally asymptotically stable since 𝑆 →
ϕ

𝜇
as 𝑡 → ∞ at 𝐼𝑤 = 𝐼𝑐 =

0. 

Theorem 3.1. [19] (La Salle Invariance Principle). Let 𝐻(𝑥) be a locally Lipschitz function defined over a 

domain 𝐺 ⊂ 𝑅𝑛 and Ω ⊂ 𝐺 be a compact set that is positively invariant concerning 𝑥̇ = 𝐻(𝑥). Let 𝑉(𝑥) be a 

continuously differentiable positive definite function on 𝐺 such that 𝑉̇(𝑥) ≤ 0 in Ω for all 𝑥 ∈ 𝐺. Let E =

{𝑥 ∈ Ω⌈𝑉̇(𝑥) = 0}, and 𝑀 be the largest invariant set in 𝐸. Then every solution starting in Ω approaches 𝑀 as 

t ⟶ ∞. 

3.3. Existence of Endemic Equilibrium State (EES) 

The endemic equilibrium state defines the persistence of an infection in the population. Suppose 

Ε∗∗ = (𝑆∗∗, 𝐼𝑤
∗∗, 𝐼𝑐

∗∗, 𝑅∗∗) > 0 is the endemic equilibrium of the model (1). Then,  

0 = ϕ − 𝜆∗∗𝑆∗∗ + 𝛾𝑅∗∗ − 𝜇𝑆∗∗,          

0 = 𝜋𝜆∗∗𝑆∗∗ − 𝑑1𝐼𝑤
∗∗,                           

0 = (1 − 𝜋)𝜆∗∗𝑆∗∗ + 𝛼𝐼𝑤
∗∗
− 𝑑2𝐼𝑐

∗∗,

0 = 𝜌𝑤𝐼𝑤
∗∗ + 𝜌𝑐𝐼𝑐

∗∗ − 𝑑3𝑅
∗∗.            

 

Therefore, 

{
 
 
 
 

 
 
 
 𝑆∗∗ =

𝜙 + 𝛾𝑅∗∗

𝜆∗∗ + 𝜇
,

𝐼𝑤
∗∗ =

𝜋

𝑑1
𝜆∗∗𝑆∗∗,

𝐼𝑐
∗∗ = (

𝛼𝜋

𝑑1𝑑2
+
1 − 𝜋

𝑑2
) 𝜆∗∗𝑆∗∗,

𝑅∗∗ = (
𝜋

𝑑1
(
𝜌𝑤
𝑑3
+
𝜌𝑐𝛼

𝑑2𝑑3
) +

(1 − 𝜋)𝜌𝑐
𝑑2𝑑3

)𝜆∗∗𝑆∗∗.

                                          (9) 
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To be specific, the value of 𝑆∗∗ is  

  𝑆∗∗ =
ϕ

𝜇 + 𝜆∗∗ (1 −
𝛾
𝑑3
(
𝜋
𝑑1
(𝜌𝑤 +

𝜌𝑐𝛼
𝑑2
) + (1 − 𝜋)

𝜌𝑐
𝑑2
))

.                             (10) 

 

Recall from (2) that the force of infection at the equilibrium state is  

𝜆∗∗ = 𝛽 (
𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗

𝑁∗∗
) =

𝑅𝑐 − 1

𝐾
,                                                                 (11) 

with 

𝐾 =
𝜋

𝜇
(1 +

𝜌𝑤
𝑑3
+
𝛼

𝑑2
(1 +

𝜌𝑐
𝑑3
)) +

1 − 𝜋

𝑑2
(1 +

𝜌𝑐
𝑑3
).  

Note that 𝜆∗∗ ≠ 0 defines the endemic equilibrium which exists at the point,   𝑅𝑐 > 1. From the above, the 

following result can be inferred. 

Lemma 3.3.  If  𝑅𝑐 > 1, then the model (1) admits a unique positive endemic equilibrium state. 

 

3.4. Local Stability of EES 

The linearised form of system (1) at Ε∗∗ gives the Jacobian, 𝐽, 

𝐽 =

(

 
 
 
 
 
−(𝜇 + 𝛽

(𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗)

𝑁∗∗
) −𝛽

𝑆∗∗

𝑁∗∗
−𝛽𝜃

𝑆∗∗

𝑁∗∗
𝛾

𝜋𝛽
(𝐼𝑤

∗∗ + 𝜃𝐼𝑐
∗∗)

𝑁∗∗
−(𝑑1 − 𝜋𝛽

𝑆∗∗

𝑁∗∗
) 𝜋𝛽𝜃

𝑆∗∗

𝑁∗∗
0

(1 − 𝜋)𝛽
(𝐼𝑤

∗∗ + 𝜃𝐼𝑐
∗∗)

𝑁∗∗
𝛼 + (1 − 𝜋)𝛽

𝑆∗∗

𝑁∗∗
−(𝑑2 − (1 − 𝜋)𝛽𝜃

𝑆∗∗

𝑁∗∗
) 0

0 𝜌𝑤 𝜌𝑐 −(𝜇 + 𝛾))

 
 
 
 
 

. (12) 

The transition by row reduction into an upper triangular matrix of the Jacobian is given by  

𝑇𝑈 = (

−𝑔1 −𝑔2 −𝑔3 𝛾
0 −𝐴1 −𝐴2 𝐴3
0 0 −(𝐴1𝐵2 + 𝐴2𝐵1) (𝐴3𝐵1 + 𝐴1𝐵3)
0 0 0 𝑄

),                                  (13) 

where 

𝐴1 = 𝑔1𝑔5 + 𝑔2𝑔4, 𝐴2 = 𝑔3𝑔4 − 𝑔1𝑔6, 𝐴3 = 𝛾𝑔4, 

𝐵1 = 𝑔1𝑔8 − 𝑔2𝑔7, 𝐵2 = 𝑔1𝑔9 + 𝑔3𝑔7, 𝐵3 = 𝛾𝑔7,  

and 𝑄 = (𝐴1𝐵2 + 𝐴2𝐵1)(𝜌𝑤𝐴3 − 𝑔10𝐴1) + (𝜌𝑐𝐴1 − 𝜌𝑤𝐴2)(𝐴3𝐵1 + 𝐴1𝐵3), 

with  

𝑔1 = 𝜇 + 𝛽
(𝐼𝑤

∗∗ + 𝜃𝐼𝑐
∗∗)

𝑁∗∗
, 𝑔2 = 𝛽

𝑆∗∗

𝑁∗∗
, 𝑔3 = 𝛽𝜃

𝑆∗∗

𝑁∗∗
, 𝑔4 = 𝜋𝛽

(𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗)

𝑁∗∗
,   

𝑔5 = (𝑑1 − 𝜋𝛽
𝑆∗∗

𝑁∗∗
) , 𝑔6 = 𝜋𝛽𝜃

𝑆∗∗

𝑁∗∗
, 𝑔7 = (1 − 𝜋)𝛽

(𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗)

𝑁∗∗
, 

𝑔8 = 𝛼 + (1 − 𝜋)𝛽
𝑆∗∗

𝑁∗∗
, 𝑔9 = (𝑑2 − (1 − 𝜋)𝛽𝜃

𝑆∗∗

𝑁∗∗
) , 𝑔10 = (𝜇 + 𝛾). 

For the system to be Locally Asymptotically Stable at the endemic state, we now show that all the diagonal 

elements of the upper triangular matrix, which are the eigenvalues of (12) are negative. 
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Then, from (13) 

𝜆1 = −𝑔1 = −(𝜇 +
(𝑅𝑐 − 1)

𝐾
) < 0 iff 𝑅𝑐 > 1.                                    (14) 

Similarly,  

𝜆2 = −𝐴1 = −(𝑑1 (𝜇 +
(𝑅𝑐 − 1)

𝐾
) − 𝜇𝛽𝜋

𝑆∗∗

𝑁∗∗
) < 0 iff 𝑅𝑐 > 1.        (15) 

For  𝜆3 = −(𝐴1𝐵2 + 𝐴2𝐵1) < 0, 

it implies that (𝐴1𝐵2 + 𝐴2𝐵1) > 0, and detail simplification gives 

𝜆3 = −𝜇𝛽
𝑆∗∗

𝑁∗∗
(𝜃 (𝛽

𝑆∗∗

𝑁∗∗
(𝜇𝜋 − 𝛼) − 𝑑1(1 − 𝜋)(1 + 𝜇)) − (𝜇 + (

𝑅𝑐 − 1

𝐾
)) (𝑑2𝜋 + 𝛼𝜃))

           −𝑑1𝑑2 ((
𝑅𝑐 − 1

𝐾
)
2

+ 2𝜇 (
𝑅𝑐 − 1

𝐾
) + 𝜇2) < 0 iff 𝑅𝑐 > 1.

 (16) 

Lastly,  

 
𝜆4 = 𝑄 = (𝐴1𝐵2 + 𝐴2𝐵1)(𝜌𝑤𝐴3 − 𝑔10𝐴1) + (𝜌𝑐𝐴1 − 𝜌𝑤𝐴2)(𝐴3𝐵1 + 𝐴1𝐵3). 

Since (𝐴1𝐵2 + 𝐴2𝐵1) and (𝐴3𝐵1 + 𝐴1𝐵3) are positive, we are left to show that (𝜌𝑤𝐴3 − 𝑔10𝐴1) and 
(𝜌𝑐𝐴1 − 𝜌𝑤𝐴2) are negative. This implies that  

𝜌𝑤𝐴3 − 𝑔10𝐴1 < 0⟺ 𝜌𝑤𝐴3 < 𝑔10𝐴1 yields  

𝜌𝑤 < 𝑔10
𝐴1
𝐴3
,                                                                                                               (17) 

and 

𝜌𝑐𝐴1 − 𝜌𝑤𝐴2 < 0⟺ 𝜌𝑐𝐴1 < 𝜌𝑤𝐴2.  

This gives  

𝜌𝑐
𝐴1
𝐴2
< 𝜌𝑤 .                                                                                                                 (18) 

Combining equations (17) and (18), we get the inequality 

𝜌𝑐
𝐴1
𝐴2
< 𝜌𝑤 < 𝑔10

𝐴1
𝐴3

 

from which we arrived at  

𝜆4 < 0 iff 𝜌𝑐 >
−𝜇(𝜇+𝛾)𝜃𝑆∗∗

𝛾𝜋𝑁∗∗(𝐼𝑤
∗∗+𝜃𝐼𝑐

∗∗)
= −(𝜇 + 𝛾)𝜇𝛽𝜃

𝑆∗∗

𝑁∗∗
𝐾

𝛾𝜋(𝑅𝑐−1)
 , provided 𝑅𝑐 > 1. 

Lemma 3.4. The endemic equilibrium is locally asymptotically stable iff 𝑅𝑐 > 1. 

 

3.5 . Global Stability of the Endemic Equilibrium 𝚬∗∗ 

Lemma 3.5.  The endemic equilibrium point of the model (1) is globally asymptotically stable if and only if 

𝑅𝑐|𝛼=𝛾=0 > 1. 

PROOF. We consider a nonlinear Lyapunov function of Volterra type as applied in [20] 

𝐿1 = 𝑆 − 𝑆
∗∗ − 𝑆∗∗ ln (

𝑆

𝑆∗∗
) +

1

𝜋
[𝐼𝑤 − 𝐼𝑊

∗∗ ln (
𝐼𝑤
𝐼𝑊

∗∗)] +
1

1 − 𝜋
[𝐼𝑐 − 𝐼𝑐

∗∗ ln (
𝐼𝑐
𝐼𝑐
∗∗)].      
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The derivative of 𝐿1 with respect to time is given by 

𝐿1 
′ = (1 −

𝑆∗∗

𝑆
)
𝑑𝑆

𝑑𝑡
+
1

𝜋
(1 −

𝐼𝑤
∗∗

𝐼𝑤
)
𝑑𝐼𝑤
𝑑𝑡

+
1

1 − 𝜋
(1 −

𝐼𝑐
∗∗

𝐼𝑐
)
𝑑𝐼𝑐
𝑑𝑡
.                                  (19) 

Putting the equations of the model (1) at 𝛾 = 0 in (19), we have 

𝐿1 
′ = (1 −

𝑆∗∗

𝑆
) [ϕ − 𝛽 (

𝐼𝑤 + 𝜃𝐼𝐶
𝑁

)𝑆 − 𝜇𝑆] +
1

𝜋
(1 −

𝐼𝑤
∗∗

𝐼𝑤
) [𝛽𝜋 (

𝐼𝑤 + 𝜃𝐼𝐶
𝑁

)𝑆 − (𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)𝐼𝑤]

         +
1

1 − 𝜋
(1 −

𝐼𝑐
∗∗

𝐼𝑐
) [𝛽(1 − 𝜋) (

𝐼𝑤 + 𝜃𝐼𝐶
𝑁

)𝑆 + 𝛼𝐼𝑤 − (𝜇 + 𝜌𝑐 + 𝛿𝑐)𝐼𝑐] .

 

For convenience, let 𝐻(𝐼) =
𝐼𝑤+𝜃𝐼𝐶

𝑁
 ,  then simplification gives  

𝐿1 
′ = (1 −

𝑆∗∗

𝑆
) [ ϕ − 𝛽𝐻(𝐼)𝑆 − 𝜇𝑆] + (

1

𝜋
) × (1 −

𝐼𝑤
∗∗

𝐼𝑤
) [𝛽𝜋𝐻(𝐼)𝑆 − (𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)𝐼𝑤]

         + (
1

1 − 𝜋
) × (1 −

𝐼𝑐
∗∗

𝐼𝑐
) [𝛽(1 − 𝜋)𝐻(𝐼)𝑆 + 𝛼𝐼𝑤 − (𝜇 + 𝜌𝑐 + 𝛿𝑐)𝐼𝑐].                                      (20)

 

Using the following equilibrium relations of the model (1) obtained at 𝛾 = 0, 

ϕ = 𝛽𝐻(𝐼∗∗)𝑆∗∗ + 𝜇𝑆∗∗,

𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤 =
𝛽𝜋𝐻(𝐼∗∗)𝑆∗∗

𝐼𝑤
∗∗ ,

𝜇 + 𝜌𝑐 + 𝛿𝑐 =
𝛽(1 − 𝜋)𝐻(𝐼∗∗)𝑆∗∗ + 𝛼𝐼𝑤

∗∗

𝐼𝑤
∗∗ ,

                                                                                  

Then, equation  (20) becomes 

𝐿1 
′ = 𝜇𝑆∗∗ (1 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + 𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 1 −

𝐻(𝐼)𝑆

𝐻(𝐼∗∗)𝑆∗∗
−
𝑆∗∗

𝑆
+
𝐻(𝐼)

𝐻(𝐼∗∗)
]

         +𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 
𝐻(𝐼)𝑆

𝐻(𝐼∗∗)𝑆∗∗
−
𝐼𝑤
𝐼𝑤
∗∗ +

𝐼𝑤
∗∗𝐻(𝐼)𝑆

𝐼𝑤𝐻(𝐼
∗∗)𝑆∗∗

+ 1]

         +𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 
𝐻(𝐼)𝑆

𝐻(𝐼∗∗)𝑆∗∗
−
𝐼𝑐
𝐼𝑐
∗∗ +

𝐼𝑐
∗∗𝐻(𝐼)𝑆

𝐼𝑐𝐻(𝐼
∗∗)𝑆∗∗

+ 1]                                      

         +
𝛼

1 − 𝜋
𝐼𝑤
∗∗ [

𝐼𝑤
𝐼𝑤
∗∗ −

𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝐼𝑤

𝐼𝐶𝐼𝑤
∗∗ + 1]                                                                           (21) 

 

Adding the second, third and fourth terms of (21) and using the fact that 
𝐻(𝐼)

𝐻(𝐼∗∗)
≤ 1, since 𝐻(𝐼) is a decreasing 

function, we get 

𝐿1 
′ = 𝜇𝑆∗∗ (2 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + 𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 4 −

𝐼𝑤
𝐼𝑤
∗∗ −

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
−
𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗
]

       +𝛽𝐻(𝐼∗∗)𝑆∗∗ [ −
𝑆∗∗

𝑆
+
𝑆

𝑆∗∗
] +

𝛼

1 − 𝜋
𝐼𝑤
∗∗ [

𝐼𝑤
𝐼𝑤
∗∗ −

𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝐼𝑤

𝐼𝐶𝐼𝑤
∗∗ + 1].                                   (22) 

 

But 𝛽𝐻(𝐼∗∗) = 𝜆∗∗ =
𝑅𝑐−1

𝐾
 from (11) and setting 𝛼 = 0 in (22), we have  

𝐿1 
′ = 𝜇𝑆∗∗ (2 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + (

𝑅𝑐 − 1

𝐾
) 𝑆∗∗ [ 4 −

𝐼𝑤
𝐼𝑤
∗∗ −

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
−
𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗
] − (

𝑅𝑐 − 1

𝐾
)𝑆∗∗ [ 

(𝑆∗∗)2 − 𝑆2

𝑆𝑆∗∗
], 

from which we arrived at  
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𝐿1 
′ ≤ 𝜇𝑆∗∗ (2 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + (

𝑅𝑐 − 1

𝐾
)𝑆∗∗ [ 4 −

𝐼𝑤
𝐼𝑤
∗∗ −

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
−
𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗
].                        

Thus,  

𝐿1 
′ ≤ 0  if and only if  𝑅𝑐 > 1, 2 ≤

𝑆∗∗

𝑆
+

𝑆

𝑆∗∗
 and  4 ≤

𝐼𝑤

𝐼𝑤
∗∗ +

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
+

𝐼𝑐

𝐼𝑐
∗∗ +

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗.  However, 𝐿1 

′ = 0 if 𝑅𝑐 =

1, 𝑆 = 𝑆∗∗, 𝐼𝑤 = 𝐼𝑤
∗∗ and 𝐼𝑐 = 𝐼𝑐

∗∗.  Hence,  {(𝑆, 𝐼𝑤, 𝐼𝐶) = (𝑆
∗∗, 𝐼𝑤

∗∗, 𝐼𝑐
∗∗
)} is the only singleton set in 𝐷, 

which is the largest compact subset where 𝐿1 
′ = 0.  At this point, we can conclude by invariance principle in 

Theorem 3.1 that the endemic equilibrium is globally asymptotically stable. 

3.6. Threshold Analysis 

The control reproduction number, 𝑅𝑐 , of a model system with CAST strategy defined by (5) is a threshold 

quantity that determines whether the disease will invade the host population. If 𝑅𝑐 is less than unity, the disease 

will be under control, and if it is not, then there will be an outbreak of disease. 

In the absence of CAST strategy, we have 

lim
(𝛼,𝜃,𝜌𝑐,𝛿𝑐)→(0,1,0,0)

𝑅𝑐 =
𝛽𝜋

𝑑1
+
𝛽(1 − 𝜋)

𝑑2
= 𝑅0,                                                             (23)   

where 𝑅0 is the basic reproduction number. 

Thus, the difference between equations 𝑅𝑐  of (5) and 𝑅0 of (23) is 

𝑅0 − 𝑅𝑐 =
𝛽(1 − 𝜋)

𝑑2
(1 − 𝜃) −

𝛽𝜋𝛼𝜃

𝑑1𝑑2
.                                                           (24) 

Clearly from equation (24),  𝑅0 − 𝑅𝑐 is positive if  𝜃 = 0. This epidemiologically implies that CAST strategy 

could be essential for effective treatment of hard-to-treat infections. On the other hand, 𝜃 = 1 biologically 

shows that 𝑅0 − 𝑅𝑐 is negative and thus ineffective in curtailing this kind of infections. 

4. Numerical results and discussion 

As an application of our model developed on hard– to – treat infections, we focus on the case study of 2014 

Mycobacterium Tuberculosis (TB) outbreak in South Africa. 

4.1. Parameter estimation 

According to the Population Reference Bureau in 2018, the total population of South Africa denoted by 𝑁 was 

estimated as of 2014 to be 53,700,000. The Global TB Report 2015 estimated that South Africa had the second 

highest TB incidence rate in 593 cases per 100, 000 population. Thus, we have the total number of infected 

individuals with TB as in 2014 to be 

𝐼 =
593

100,000
× 53, 700, 000 = 318, 441.                                                       

Meanwhile those individuals 𝐼𝐶 infected with TB who adopted the CAST strategy was 101, 423 [21], and the 

total number of infected individuals 𝐼𝑤 without considering the strategy becomes 

𝐼𝑤 = 𝐼 − 𝐼𝑐 = 318,441 − 101,423 = 217,018.                                             

On the other hand, the total number of people 𝑅 who have recovered from TB during the year under review by 

[4] was 251, 344. To this effect, the number of individuals susceptible to TB in 2014 evidently satisfies the 

relation  

𝑆 = 𝑁 − (𝐼𝑤 + 𝐼𝑐 + 𝑅) = 53,130,215.                                                           
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The death rate is defined as the inverse of the life expectancy at birth. As in the year 2014, the life expectancy 

of South Africans was 60.99 years. Therefore, the natural death rate, 𝜇, is estimated to be  𝜇 =
1

60.99
=

0.0163961  per year. Also, the recruitment number ϕ can be estimated from the relation in the feasible region 

as 

ϕ ≅ 𝑁 × 𝜇 = 880,472.21 

The rest of the parameters can be similarly estimated and appropriately assumed as presented in Table 2 

 

Table 2: Values for population-independent parameters  

of the model ( )1−yr  

Variable/Parameter Value Source 

𝑁 53,700,000 [4] 

𝑆 53,130,215 Estimated 

𝐼𝑤 217,018 Estimated 

𝐼𝑐 101,423 [21] 

𝑅 251,344 [4] 

Φ 880,472.21 Estimated 

𝜋 0.5 Assumed 

𝛼 0 ≤ 𝛼 ≤ 1 Variable 

𝛽 0.6983 [22] 

𝜇 0.0163961 Estimated 

𝜃 0 ≤ 𝜃 ≤ 1 Variable 

𝛿𝑤 0.06908 Assumed 

𝛿𝑐 0.03384 Assumed 

𝜌𝑐 0.06667 [4] 

𝜌𝑤 0.075 [4] 

𝛾 0.007893 Assumed 

 

 

Fig. 2. Effect of 𝜃 on TB infectives, 𝐼𝐶 with CAST strategy 
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Fig. 3. Effect of 𝜃 on TB infectives,  𝐼𝑤 without Fig. 4. The effect of the modification parameter  

CAST strategy (𝜃 = 1) on the dynamics of TB infectives 

 

Fig. 5. Effect of 𝛼 on TB infectives, 𝐼𝐶  with CAST strategy. Fig. 6. Effect of 𝛼 on TB infectives, 𝐼𝐶 

without CAST strategy 

Fig. 2 illustrated the dynamical behaviour of infectives 𝐼𝐶 who have gone for culture and conducted antibiotic 

susceptibility testing concerning the modification parameter, 𝜃. The number of infected individuals remains 

high at 𝜃 = 1, implying that, CAST strategy fails at that point and begins to decline as the value of 𝜃 decreases 

demonstrating the effectiveness of culture and antibiotic susceptibility testing. A similar consideration was 

carried out in Fig. 3 on those infectives 𝐼𝑊 that have gone only for ordinary prescription treatment and indicates 

the same scenario only that the number of people with CAST strategy has a comparative advantage in quick 

response to treatment than those without the intervention strategy. A clear comparison of the above two 

experiments is given in Fig. 4 at 𝜃 = 1 in which 𝐼𝐶 < 𝐼𝑊. This inequality shows the significance of CAST 

strategy as a prerequisite to the proper treatment of infectious diseases and further discourages the ordinary 

diagnosis/blind prescription treatment of patients suffering from hard-to-treat infections. This result agrees 

with the works of [3, 6] that mandated the use of culture before medication as it prevents drug resistance and 

promotes timely cure from infections. The impact of 𝛼 on the infectives is also given in Fig. 5 and 6. In both 

Figures, it is important to say that infection is easily treated in individuals who embrace CAST strategy but 

prove difficult for those who have gone for blind prescription or ordinary diagnosis at 𝛼 = 0. This outcome is 

consistent with [12] that says culture and drug sensitivity test can save more lives and prevent multi-drug 

resistance in patients.  
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5. Conclusion 

This paper aims to model the role of culture and antibiotic susceptibility testing on the treatment of 

hard-to-treat infections. To this end, incidence function that accounts for individuals' behaviour with 

(out) culture has been introduced. Stability analysis concerning 𝑹𝒄 being the key objective of any 

epidemiological study has been done, and the investigation reveals that the basic equilibria of the 

model are stable, both local and global using appropriate standard stability methods. Threshold 

analysis of the effective reproduction number 𝑹𝒄 has proven that CAST strategy is very critical in 

mitigating and controlling the hard-to-treat diseases. Numerically, we simulate the proposed model 

using tuberculosis data from South Africa as a case study. The result confirms that individuals who 

present themselves for treatment of infection without culture and antibiotic susceptibility testing have 

a slow recovery pace and thus increases their mortality. Based on these findings; priority should be 

on culture and drug sensitivity testing by health practitioners before prescribing drugs to patients, 

since this will reduce fatality and boast recovery rates of individuals from hard-to-use infections. 

Additionally, since the study focuses on a generalised model for non-specific infection, we expect 

future research to target specific diseases as each disease may have its peculiar transmission 

dynamics. 
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