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Abstract

In this paper, we give the factorizations of the Lucas and inverse Lucas matrices. We
also investigate the Cholesky factorization of the symmetric Lucas matrix. Moreover, we
obtain the upper and lower bounds for the eigenvalues of the symmetric Lucas matrix by
using some majorization techniques.
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1. Introduction

The Fibonacci and Lucas numbers play an important role in various areas such as
mathematics, physics, computer science and related fields. For n > 0, the Fibonacci and
Lucas numbers are defined by following recurrence relations

Frio= Fn+1 +F, =0 F =1 (11)

and

Ln+2 = Ln+1 —+ Ln, LO = 2, L1 = 1, (12)
respectively. For more information about these numbers and their properties, we refer to
the book [6].

Matrix factorizations provide considerable convenience while performing some difficult
computations. Recently, several researchers have studied the factorizations of some matri-
ces whose elements are the Fibonacci numbers. For example, Lee et al. investigated the
factorizations and eigenvalues of the Fibonacci and symmetric Fibonacci matrices which
are defined by

Fiivn, i—j+120
Fn = {fz-j]={ of JH i_j+1<0 (1.3)
and
i, F2 i=i
n [qU] [%z] { Gij—2+ Gij1, it1<j ( )

respectively [7]. Kili¢ and Tagg, presented factorizations and eigenvalues of the Pell
matrix and symmetric Pell matrix whose elements are the Pell numbers [5]. They also
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give some bounds for the eigenvalues of the symmetric Pell matrix. Motivated by the
above works, several authors studied factorization of the lower triangular matrices and
investigated some special type matrices (see [1,2,5,8,10]).

Besides these works, in this paper, we define the Lucas matrix and the symmetric Lucas
matrix as follows:

Li—jy1, i—j+1>0
.,sfn—[zij]—{ ZOJ’H i ii1<0 (1.5)

and '
et L, i=j
Rn = [rij) = [rji) = § rija+rija+2, i+l=j , (1.6)
rij—2+rij-1, 1+2<]

where 719 = 0. For example,

1 00 00 1 3 4 7 11
31 000 3 10 15 25 40
=14 3 1 00 and %= |4 15 26 43 69
7 4310 7T 25 43 75 120
11 7 4 3 1 11 40 69 120 196

From (1.5) and (1.6), we can see that 7 ; =r;; = Lj;.

Here, we note that the definition of the Lucas matrix and its inverse were given directly
in [11]. However, the factorization of this matrix was not given by using the (0, 1, 2) matrix
whose entries are 0, 1 and 2.

In this paper, we fulfill this gap.

The set of all n—square matrices is denoted by #,,. Let B € .#,,. If the matrix B can
be written as B = CCT or B = CTC, where C is lower triangular matrix with nonnegative
diagonal entries, then this factorization is called as Cholesky factorization. It is known
that if B is nonsingular, then this factorization is unique.

A matrix A € .4, of the form

A 0
0 Ao 0
A=
0 Apg

in which A;; € A, i =1,2,...,k and Zle n; = n, is called block diagonal. This type
of matrix is indicated as A = Aj1 ® Ao @ ... D App.

2. Factorization of the Lucas matrix

In [7], the authors gave the Cholesky factorization of the Fibonacci matrix. Motivated
by this paper, we find the factorization of the Lucas matrix. o
Let I, be the n x n identity matrix. We define the matrices S,,.-%, and G}, as

1 00 100
50:[1 ! 0],51=[o 1 0],
1 01 0 1 1
and Sk = SO @Ikv k = 172""’ Z = [1] EB~=%TL71a Gl = Ina GZ = I, 3® Sfly and
G =1, ® Si_3 for k > 3.
Now, we define factor matrix as

1, 1=7
Wn:[wij]: 2, 1=7+1
0, otherwise

By using the matrices Gy, and W,,, we have the following theorem.
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Theorem 2.1. The Lucas matriz £, can be factored by the Gy ’s and Wy, as follows:
L =G1Gy -G, W,

=WnG1G2--- Gy,
For example,
s = W5G1GaG3G4Gs
rt 0000771 00O0O0O7T71 0000
21000 01 000 01000
= 02100 00100 00100
00210 00010 00110
L0002 1JLOOOT1T1JLOO0OT1O0T1
rt 00007171 0O0O0 07
01000 110 00
01100 101 00
01010 00010
L0 O 0O 0O 1/LOOOO 1]
1 0 0 00
3 1000
= 4 31 00
7 4310
L 11 7 4 3 1
Now, we give other factorization of .Z,. Define n x n matrix C,, = [¢;;] by
Ly 0 -+ 0
Ly 1 -+ 0
=1 . . . .| (2.1)
L, 0 - 1
Theorem 2.2. For n > 2, the Lucas matriz £, can be factored by the Cy,’s as
L= Cn (I, ® Cot) (s ® Cs) - (Tnz ® ). (2.2)

In order to find factorization of the inverse Lucas matrix, we need inverse of the factor
matrix. So, the following lemma explains inverse of the factor matrix W,,.

Lemma 2.3. Let k be the non-negative integer and W, 1 = [w;j} be the inverse of the
matriz W,,. Then
/ { 0, i <7,
w.4 =

(=2)% i=j+k

holds.
For example,
10 0 0 0
-2 1 0 0 0
Wel=| 4 -2 1 0 0
-8 4 -2 1 0
16 -8 4 -2 1

Proof. Let q;; = > 14 wikw;gj. Obviously, g;; = 1 and ¢;; = 0 for i < j. For i > j,
g =2(=2)F +1(=2)* =0

follows. This proves the lemma. ]
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The inverses of the matrices Sy and S; are given in [7] as follows:

1 00 1 0 0
Sg'=|-110] and S{=|0 1 0].
-1 0 1 0 -1 1
We know that S ' = Sy! @ Iy. Define Hy, = G} *. Then

H =G{'=1, Hy=G;'=1, 30 S| and H, = S, 1.

We also know that

Ly 0 --- 0
-1 _LZ 1 -0 4 .
-L, 0 --- 1

We know that inverse of the Lucas matrix is given directly by (see [11] p. 459, Theorem
2.9).

1, ifi=j
_ / -3 ifi=j5+1
1 = .. = . " . .
Zn [ZW] 5(=1)77207972 ifixj+2
0, otherwise

Here, we find inverse of the Lucas matrix by using the matrices G,;l and W, 1. Thus, the
following theorem explains the factorization of the inverse Lucas matrix.

Theorem 2.4. The inverse of the Lucas matriz £, ! can be factored by the G,;l ’s and
W, as
L =66 Gy G
= H,H, 1 HyH,W, !
=(In2®Co) - (1 ® Crr) ' O L

For example, we have

1 000071 0 0O0O0][1L 0 0 00
-11000(|0 1 00O0|l0O1 0 00
Lt = | -10100||0 -1 10O0|[0O0 1 00
0 0010[]0 ~-1010|l0O0-110
Lo ooo1JLo o oo0o1JLoo -101
100 0 071 0 0 0 0
010 0 0]]-21 0 00
001 0 0 4 -2 1 0 0
000 1 0]]-8 4 -2 1 0
L0000 -1 1J[16 -8 4 -2 1
1 0 0 0 0
-3 1 0 0 0
= 5 -3 1 0 0
-10 5 -3 1 0
20 10 5 -3 1

Now, we give the following lemma by using the definition of the symmetric Lucas matrix.
Lemma 2.5. Each entries of the matriz %y, = [r; ;| can be expressed by

= Livjr = Lj—iyivec: ij 21
)] Li-|—_j+1 - Li*j+1+£(j)7 ij <1



Linear algebra of the Lucas matrix 553

where {(k) = k — QL%J

Proof. One can use the induction method together with the definition of the Lucas matrix.
O

Before giving the Cholesky factorization of the matrix Z,,, we need to give the following
main theorem.

Theorem 2.6. If1 <i < j, then
i—2 ]
5 (=2) 2y = Bria +rig =L (2.3)
t=1

holds. Otherwise, we have

V)

/L'_
5 (—2)1_2_t Tt — Sri—l,j +ri; = 0
t

Il
i

Proof. Assume that 1 < ¢ < j. We use the induction method in order to prove the
theorem. From the definition of (1.6), we observe that 7; j;2 = 75 j41 + r; ;. This finishes
the induction on j. A

Now, we focus on the induction on i. Since 53 Z2 (—2)2t r; = 0, the equation (2.3)
is true for 7 = 1, 2. For i = 3 in the equation (2.3),

57“1,j — 3’!"2’]' + 13, = 5 (Lj+2 — Lj+1) -3 (Lj+3 — Ljfl) + Lj+4 — Lj,1
= Lj+4 — 3Lj+3 + 5Lj + 2Lj_1
=L,

holds as claimed. Now, suppose that it is true for all integer ¢ > 4. By using the equation
(2.3) and induction hypothesis, we have

7

i—1 -2
5 (=2)' " vy = 3rig v =5 (Tz‘—l,j -23 (-2 ”"m’) = 3rij it
t=1 t=1

= 5ric1,j = 2(Ljmir +3rio1j — Tijg) = 3rij + Tig
= —Ti—1j T Tit15 — Tij — 2Lj-it1.
From Lemma 2.5, we know that r; j = Liyjt1 — Lj_j114¢@;)- Therefore we have
i—1 '
5 (=2 ey = 3rig vy = —risag iy — i — 2L
t=1
= —Liyj — Liyj+1 + Livjp2 —2Lj-ip1
* Lj—ivore-1) T Lj—iv14e) — Li-itern)
=L it1yetir1) T Lj—iviyeq) — 2Lj—ita
=Ljit+3—2Lj—it1
= Lj—i-
The other case j < ¢ can be proven similarly. Therefore, we omit the details. So, the proof
is completed. O

Theorem 2.7. Forn > 1 positive integer, HyH, 1 ... H1Wn_1%n = fg and the Cholesky
factorization is given by Zp = L. L.

Proof. Together with the facts H,H,,_1 ... H1Wn_1 = fn_l and fn_lﬂ’n = fg, we have
Rp = £, LT . This gives the Cholesky factorization of the matrix Z,. O
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In particular, with the help of Theorem 2.7, we can give the Cholesky factorization
-1
of the inverse symmetric Lucas matrix as %, ! = (ZHT ) Lt = (L 1)T$n_1. For

example,

[ 8535 —4268 2135 —1070 540 —280 80 |
—4268 2135 —1068 535 —270 140 —40

2135 —1068 535 —-268 135 =70 20

%’7_1 —1070 535 —268 135 —68 35 —10 (2.4)

540 —270 135 —68 35 —18 5

—280 140 —70 35 —18 10 -3
80 —40 20 —10 ) -3 1]

3. Eigenvalues of %,

In this section, we consider the eigenvalues of the symmetric Lucas matrix Z,.

Let €2 be an n x n matrix. The authors, in [4], stated that if Q is an n x n Hermitian
matrix then it is positive definite if and only if det 2 > 0. For n > 2, we observe that %,
is Hermitian and by Theorem 2.7, we have det %,, = det (ﬁfnZnT ) = 1. Hence, %, is a

positive definite matrix and therefore the eigenvalues of %, are all positive.
Let 2 = {x = (z1,22,...,2,) ER"; 21 229> ... 2 xy}. For x,y € 9,

iy <y, i=1,2,...,n—1,
x <y, if { fl_l J\Zﬁl_lyj :
j=1%Lj = Ej:l Yj
When x < y, x is said to be majorized by y or y is said to majorize z. On the other hand,
the condition for majorization can be rewritten as follows:

i i .
T =<y, if {Zgl:(ixnj = z];;olyn—j, i1=0,1,...,n—2,
j=0 Tn—j = 2.j=0 Yn—j-
Note that, there is an interesting simple fact as follows:
(Z,Z,...,T) < (z1,22,...,Zn), (3.1)
where T = # For more information about majorizations, we refer to the book [9].
Fori,j =1,2,...,n, an n xn matrix ®,, = [¢;;] is a doubly stochastic matrix if ¢;; > 0,

Yie1 @iy = 1and 377 ¢i; = 1. Hardy, Littlewood and Pélya [3], stated that a necessary
and sufficient condition that < y is that there exists a doubly stochastic matrix ®,, such
that z = y®,,.

Note that det %, = 1 and det Z,, = 1. Let A1, Ao, ..., A, be the eigenvalues of %Z,,. We
know that %, = £,%] and Zle L? = (Lyy1Lg —2), all of the eigenvalues of %, are
positive and

(Lpt1Ln —2,LpLyp—q1 —2,...,LaL; —2) < (A1, A2, ..., An) - (3.2)
So, we have the following corollaries.
Corollary 3.1. Let A1, Ao, ..., \, be the eigenvalues of %,. Then
M+ A+ -+ Ay =Lopyo —2n—3 —&(n). (3.3)

Proof. By virtue of (Ly41Ln —2,LyLy—1 —2,...,Laly —2) < (A1, A\2,...,\y), we get

if n is even

= Loio — 20— 3 — £(n).
if n is odd t2 = <R £n)

(Lps1)* —2n—1,
M4+ -+ =
LA {(Ln+1)2 — 90— 6,
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Corollary 3.2. Let A\, Mo, ..., A\, be the eigenvalues of %,. Then

nAp < Lopyo —2n — 3 —£(n) < nq.

Proof. Let s, = A1 + Ao+ -+ + A,. Since

Sn Sn Sn
— e, — | < (A, A2, A 3.4
(’I’l ' ) n) ( 1, A2, ) n)7 ( )
we get A, < 2% < A;. Hence, the proof is completed. O

From (2.4), we get

92n—4 _ 22n—6 _ | 11 11
2(« - 2(<« - - -
<10+5 < 5 >,10+5 ( 3 ),...,35,10,1)<<AH,AH_1,...,A2,A1). (3.5)

Hence, there exists a doubly stochastic matrix ®, = [p;;] such that

22n—4 -1 2277,—6 -1
<10+52 (3) .10+ 52 (3 ,...,35,10,1

Y11 P12 .. Pin

_(1 1 1 1> Y21 P22 ... Paon
YD S D VR Y| : S
$nl $n2 - Pnn

Namely, we have ﬁgpln + ﬁgpgn + -+ /\%gonn =1and ¢ip + pon + -+ ©nn = 1.

Lemma 3.3. For eachi=1,2,...,n, we have @,_(;_1), < %

Proof. Suppose that v,__1), > % Then
At A2 An 1
Pin + P2 + 0+ Onp > + + e =
n—1 n-1 n—1 n-1
Since 37" win = 1 and >34 A; > n, this yields a contradiction, so ¢, _(;_1), < A O

n—1°
Let

A4 X+ 4A). (3.6)

1 92n—4 _ 1 52471 4 15(n—2) -1 1= 1
T n( +10+35+...+10+5 ( 3 )) o n;A

Then, we have

1 1 1
— e — - 3.7
() < (g ) (3.7

The next theorem explains the majorization of the eigenvalues of %,,.

Theorem 3.4. For (A1, Ao,...,\n) € 2, we have

1 1 1 1 1
<n—1 (sn—T),...,n_l <sn—7>,7> <O Az ). (3.8)

Proof. Let ¥,, be an n X n matrix as follows:

17¢1n 1*'¢1n e 1*'¢Jln ,w
n—1 n—1 n—1 in
1_¢%n 1—win L l—win Von
v, = n.— " " . ) (39)
n—1 n—1 n—1 nn

where
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1_ .
iy = n_¢ina :]—727 , 1, j:1)2) ,TL—].
and
1
= —— i=1,2....n.

Then, for i = 1,2,...,n, we observe that v;, > 0 and

1 1 1
- - =1 10
R nTtA  nTA + nT\n ’ (3.10)
1 _ .
(n—1)——~ _1/}1” + Pin =1 (3.11)
and
1_w1n 1_¢2n 1_wnn 1
. - _ e -1,
— T vty =y (Wt Ve e  Yn))
Therefore, ¥,, is a doubly stochastic matrix. Moreover, we have
1
)\17/)171 + )\2¢2n + -+ )\n¢nn = ; (312)
and
1-— 1-— 1-— 1
)\1 wln + /\2 an + -+ )\n wnn = (Sn - ()\lwln + /\2¢2n + -+ )\nwnn))
n—1 n—1 n—1 n—1

“ii(n3)
Th_1\" 1)
Hence, we get

1 1 1 1 1
(n—l (Sn—T),...,n_l (Sn_'r)’7'> :()\1,)\2,...,)\n)\lln.

As a result, we have

1 1 1 1\ 1
(n—l <3n—7—),...7n_1 (371—7_),7_) _<(A17)\27~--7)\n)~

By virtue of equation (2.4), we have the following lemma which explains the lower bounds
of the eigenvalues of Z,.

O

Lemma 3.5. For k=2,3,...,n, we have
1
— < Mgy (3.13)
Tk

where v, = 524k_1+195(k_2)_1 is sum of the diagonal elements of #~ 1.

Proof. By virtue of (2.4), we have

1 22k—4_1
— et —F o — <1H+104354... +10+52 [ — | =% (3.14)
)\1 /\2 )\k 3



Linear algebra of the Lucas matrix 557

Hence,

Therefore, we have = < \. O
Vi

In the following theorem, we give some upper and lower bounds for the eigenvalues of

K74
Theorem 3.6. For k=1,2,...,n — 2, we have

1 1 k-1 =l
<Ak < (” + ksn) - — (3.16)
fYTL—k n— 1 T 'L:O ’Yn—i

In particular,

1 1 .
<Sn - ) < )\1 < H’yi (3.17)

and

1
— <A< - (3.18)
T

Proof. By virtue of Theorem 3.4, we observe that % ( Sp — %) < A and A\, < % From

Lemma 3.5, we have 'T < \,. Since det %, = det ( ) 1=MXMA2...\y, by Lemma
3.5, we have

n
1
M= < Adeds. A, =1
i=2 Vi
Thus, we obtain A\ < [[i5;. From Theorem 3.4, we have

1k 1
An+ Ano1+ 4 Ak < —l—n(sn—)

Thus, by using Lemma 3.5, we obtain

1 n—k—1
An—k < < + ksn) - ()‘n + A1+ )‘n—k:—‘rl)
n—1 T
1 n—k—1 —
< k
() S
Therefore, we obtain
1 1 — k-1 it |
< An—k < (n + k‘sn> -3 .
Tn—k n— 1 T i=0 Yn—i

O
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