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Abstract
In this paper, we give the factorizations of the Lucas and inverse Lucas matrices. We
also investigate the Cholesky factorization of the symmetric Lucas matrix. Moreover, we
obtain the upper and lower bounds for the eigenvalues of the symmetric Lucas matrix by
using some majorization techniques.
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1. Introduction
The Fibonacci and Lucas numbers play an important role in various areas such as

mathematics, physics, computer science and related fields. For n > 0, the Fibonacci and
Lucas numbers are defined by following recurrence relations

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 (1.1)
and

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1, (1.2)
respectively. For more information about these numbers and their properties, we refer to
the book [6].

Matrix factorizations provide considerable convenience while performing some difficult
computations. Recently, several researchers have studied the factorizations of some matri-
ces whose elements are the Fibonacci numbers. For example, Lee et al. investigated the
factorizations and eigenvalues of the Fibonacci and symmetric Fibonacci matrices which
are defined by

Fn = [fij ] =
{
Fi−j+1, i− j + 1 > 0
0, i− j + 1 < 0 (1.3)

and

Qn = [qij ] = [qji] =
{ ∑i

k=1 F
2
k , i = j

qi,j−2 + qi,j−1, i+ 1 6 j
, (1.4)

respectively [7]. Kılıç and Taşçı, presented factorizations and eigenvalues of the Pell
matrix and symmetric Pell matrix whose elements are the Pell numbers [5]. They also
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give some bounds for the eigenvalues of the symmetric Pell matrix. Motivated by the
above works, several authors studied factorization of the lower triangular matrices and
investigated some special type matrices (see [1, 2, 5, 8, 10]).

Besides these works, in this paper, we define the Lucas matrix and the symmetric Lucas
matrix as follows:

Ln = [lij ] =
{
Li−j+1, i− j + 1 > 0

0, i− j + 1 < 0 , (1.5)

and

Rn = [rij ] = [rji] =


∑i
k=1 L

2
k, i = j

ri,j−2 + ri,j−1 + 2, i+ 1 = j
ri,j−2 + ri,j−1, i+ 2 6 j

, (1.6)

where r1,0 = 0. For example,

L5 =


1 0 0 0 0
3 1 0 0 0
4 3 1 0 0
7 4 3 1 0
11 7 4 3 1

 and R5 =


1 3 4 7 11
3 10 15 25 40
4 15 26 43 69
7 25 43 75 120
11 40 69 120 196

 .
From (1.5) and (1.6), we can see that r1,j = rj,1 = Lj .

Here, we note that the definition of the Lucas matrix and its inverse were given directly
in [11]. However, the factorization of this matrix was not given by using the (0, 1, 2) matrix
whose entries are 0, 1 and 2.

In this paper, we fulfill this gap.
The set of all n−square matrices is denoted by Mn. Let B ∈ Mn. If the matrix B can

be written as B = CCT or B = CTC, where C is lower triangular matrix with nonnegative
diagonal entries, then this factorization is called as Cholesky factorization. It is known
that if B is nonsingular, then this factorization is unique.

A matrix A ∈ Mn of the form

A =


A11 0
0 A22 0

. . .
0 Akk


in which Aii ∈ Mni , i = 1, 2, . . . , k and

∑k
i=1 ni = n, is called block diagonal. This type

of matrix is indicated as A = A11 ⊕A22 ⊕ . . .⊕Akk.

2. Factorization of the Lucas matrix
In [7], the authors gave the Cholesky factorization of the Fibonacci matrix. Motivated

by this paper, we find the factorization of the Lucas matrix.
Let In be the n× n identity matrix. We define the matrices Sn,Ln and Gk as

S0 =

 1 0 0
1 1 0
1 0 1

 , S−1 =

 1 0 0
0 1 0
0 1 1

 ,
and Sk = S0 ⊕ Ik, k = 1, 2, ..., Lk = [1] ⊕ Ln−1, G1 = In, G2 = In−3 ⊕ S−1, and
Gk = In−k ⊕ Sk−3 for k > 3.

Now, we define factor matrix as

Wn = [wij ] =


1, i = j
2, i = j + 1
0, otherwise

.

By using the matrices Gk and Wn, we have the following theorem.
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Theorem 2.1. The Lucas matrix Ln can be factored by the Gk’s and Wn as follows:
Ln = G1G2 · · ·GnWn

= WnG1G2 · · ·Gn.

For example,
L5 = W5G1G2G3G4G5

=


1 0 0 0 0
2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 1 0 1




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 0 0 0 1




1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1



=


1 0 0 0 0
3 1 0 0 0
4 3 1 0 0
7 4 3 1 0
11 7 4 3 1

 .
Now, we give other factorization of Ln. Define n× n matrix Cn = [cij ] by

cij =


L1 0 · · · 0
L2 1 · · · 0
...

... . . . ...
Ln 0 · · · 1

 . (2.1)

Theorem 2.2. For n > 2, the Lucas matrix Ln can be factored by the Cn’s as
Ln = Cn (I1 ⊕ Cn−1) (I2 ⊕ Cn−2) · · · (In−2 ⊕ C2) . (2.2)

In order to find factorization of the inverse Lucas matrix, we need inverse of the factor
matrix. So, the following lemma explains inverse of the factor matrix Wn.

Lemma 2.3. Let k be the non-negative integer and W−1
n =

[
w

′
ij

]
be the inverse of the

matrix Wn. Then

w
′
ij =

{
0, i < j,

(−2)k i = j + k

holds.

For example,

W−1
5 =


1 0 0 0 0

−2 1 0 0 0
4 −2 1 0 0

−8 4 −2 1 0
16 −8 4 −2 1

 .

Proof. Let qij =
∑n
k=1wikw

′
kj . Obviously, qii = 1 and qij = 0 for i < j. For i > j,

qij = 2 (−2)k + 1 (−2)k+1 = 0
follows. This proves the lemma. �
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The inverses of the matrices S0 and S1 are given in [7] as follows:

S−1
0 =

 1 0 0
−1 1 0
−1 0 1

 and S−1
−1 =

 1 0 0
0 1 0
0 −1 1

 .
We know that S−1

k = S−1
0 ⊕ Ik. Define Hk = G−1

k . Then
H1 = G−1

1 = In, H2 = G−1
2 = In−3 ⊕ S−1

−1 and Hn = S−1
n−3.

We also know that

C−1
n =


L1 0 · · · 0

−L2 1 · · · 0
...

... . . . ...
−Ln 0 · · · 1

 and (Ik ⊕ Cn−k)−1 = Ik ⊕ C−1
n−k.

We know that inverse of the Lucas matrix is given directly by (see [11] p. 459, Theorem
2.2).

L −1
n =

[
l

′
ij

]
=


1, if i = j

−3, if i = j + 1
5 (−1)i−j 2i−j−2, if i > j + 2

0, otherwise

.

Here, we find inverse of the Lucas matrix by using the matrices G−1
k and W−1

n . Thus, the
following theorem explains the factorization of the inverse Lucas matrix.
Theorem 2.4. The inverse of the Lucas matrix L −1

n can be factored by the G−1
k ’s and

W−1
n as

L −1
n = G−1

n G−1
n−1 · · ·G−1

2 G−1
1 W−1

n

= HnHn−1 · · ·H2H1W
−1
n

= (In−2 ⊕ C2)−1 · · · (I1 ⊕ Cn−1)−1C−1
n .

For example, we have

L −1
5 =


1 0 0 0 0

−1 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 −1 1




1 0 0 0 0
−2 1 0 0 0
4 −2 1 0 0

−8 4 −2 1 0
16 −8 4 −2 1



=


1 0 0 0 0

−3 1 0 0 0
5 −3 1 0 0

−10 5 −3 1 0
20 −10 5 −3 1

 .

Now, we give the following lemma by using the definition of the symmetric Lucas matrix.
Lemma 2.5. Each entries of the matrix Rn = [ri,j ] can be expressed by

ri,j =
{
Li+j+1 − Lj−i+1+ξ(i), if j > i
Li+j+1 − Li−j+1+ξ(j), if j < i
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where ξ(k) = k − 2⌊k2 ⌋.

Proof. One can use the induction method together with the definition of the Lucas matrix.
�

Before giving the Cholesky factorization of the matrix Rn, we need to give the following
main theorem.

Theorem 2.6. If 1 6 i 6 j, then

5
i−2∑
t=1

(−2)i−2−t rt,j − 3ri−1,j + ri,j = Lj−i+1 (2.3)

holds. Otherwise, we have

5
i−2∑
t=1

(−2)i−2−t rt,j − 3ri−1,j + ri,j = 0

Proof. Assume that 1 6 i 6 j. We use the induction method in order to prove the
theorem. From the definition of (1.6), we observe that ri,j+2 = ri,j+1 + ri,j . This finishes
the induction on j.

Now, we focus on the induction on i. Since 5
∑i−2
t=1 (−2)i−2−t rt,j = 0, the equation (2.3)

is true for i = 1, 2. For i = 3 in the equation (2.3),

5r1,j − 3r2,j + r3,j = 5 (Lj+2 − Lj+1) − 3 (Lj+3 − Lj−1) + Lj+4 − Lj−1

= Lj+4 − 3Lj+3 + 5Lj + 2Lj−1

= Lj−2

holds as claimed. Now, suppose that it is true for all integer i > 4. By using the equation
(2.3) and induction hypothesis, we have

5
i−1∑
t=1

(−2)i−1−t rt,j − 3ri,j + ri+1,j = 5
(
ri−1,j − 2

i−2∑
t=1

(−2)i−2−t rt,j

)
− 3ri,j + ri+1,j

= 5ri−1,j − 2 (Lj−i+1 + 3ri−1,j − ri,j) − 3ri,j + ri+1,j

= −ri−1,j + ri+1,j − ri,j − 2Lj−i+1.

From Lemma 2.5, we know that ri,j = Li+j+1 − Lj−i+1+ξ(i). Therefore we have

5
i−1∑
t=1

(−2)i−1−t rt,j − 3ri,j + ri+1,j = −ri−1,j + ri+1,j − ri,j − 2Lj−i+1

= −Li+j − Li+j+1 + Li+j+2 − 2Lj−i+1

+ Lj−i+2+ξ(i−1) + Lj−i+1+ξ(i) − Lj−i+ξ(i+1)

= Lj−i+1+ξ(i+1) + Lj−i+1+ξ(i) − 2Lj−i+1

= Lj−i+3 − 2Lj−i+1

= Lj−i.

The other case j < i can be proven similarly. Therefore, we omit the details. So, the proof
is completed. �

Theorem 2.7. For n > 1 positive integer, HnHn−1 . . .H1W
−1
n Rn = L T

n and the Cholesky
factorization is given by Rn = LnL T

n .

Proof. Together with the facts HnHn−1 . . .H1W
−1
n = L −1

n and L −1
n Rn = L T

n , we have
Rn = LnL T

n . This gives the Cholesky factorization of the matrix Rn. �
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In particular, with the help of Theorem 2.7, we can give the Cholesky factorization
of the inverse symmetric Lucas matrix as R−1

n =
(
L T
n

)−1
L −1
n =

(
L −1
n

)T
L −1
n . For

example,

R−1
7 =



8535 −4268 2135 −1070 540 −280 80
−4268 2135 −1068 535 −270 140 −40
2135 −1068 535 −268 135 −70 20

−1070 535 −268 135 −68 35 −10
540 −270 135 −68 35 −18 5

−280 140 −70 35 −18 10 −3
80 −40 20 −10 5 −3 1


. (2.4)

3. Eigenvalues of Rn

In this section, we consider the eigenvalues of the symmetric Lucas matrix Rn.
Let Ω be an n × n matrix. The authors, in [4], stated that if Ω is an n × n Hermitian

matrix then it is positive definite if and only if det Ω > 0. For n > 2, we observe that Rn

is Hermitian and by Theorem 2.7, we have det Rn = det
(
LnL T

n

)
= 1. Hence, Rn is a

positive definite matrix and therefore the eigenvalues of Rn are all positive.
Let D = {x = (x1, x2, . . . , xn) ∈ Rn;x1 > x2 > . . . > xn}. For x, y ∈ D ,

x ≺ y, if
{∑i

j=1 xj 6
∑i
j=1 yj , i = 1, 2, . . . , n− 1,∑n

j=1 xj =
∑n
j=1 yj

.

When x ≺ y, x is said to be majorized by y or y is said to majorize x. On the other hand,
the condition for majorization can be rewritten as follows:

x ≺ y, if
{∑i

j=0 xn−j >
∑i
j=0 yn−j , i = 0, 1, . . . , n− 2,∑n−1

j=0 xn−j =
∑n−1
j=0 yn−j .

.

Note that, there is an interesting simple fact as follows:

(x, x, . . . , x) ≺ (x1, x2, . . . , xn) , (3.1)

where x =
∑n

i=1 xi

n . For more information about majorizations, we refer to the book [9].
For i, j = 1, 2, . . . , n, an n×n matrix Φn = [ϕij ] is a doubly stochastic matrix if ϕij > 0,∑n
i=1 ϕij = 1 and

∑n
j=1 ϕij = 1. Hardy, Littlewood and Pólya [3], stated that a necessary

and sufficient condition that x ≺ y is that there exists a doubly stochastic matrix Φn such
that x = yΦn.

Note that det Ln = 1 and det Rn = 1. Let λ1, λ2, . . . , λn be the eigenvalues of Rn. We
know that Rn = LnL T

n and
∑k
i=1 L

2
i = (Lk+1Lk − 2) , all of the eigenvalues of Rn are

positive and

(Ln+1Ln − 2, LnLn−1 − 2, . . . , L2L1 − 2) ≺ (λ1, λ2, . . . , λn) . (3.2)

So, we have the following corollaries.

Corollary 3.1. Let λ1, λ2, . . . , λn be the eigenvalues of Rn. Then

λ1 + λ2 + · · · + λn = L2n+2 − 2n− 3 − ξ(n). (3.3)

Proof. By virtue of (Ln+1Ln − 2, LnLn−1 − 2, . . . , L2L1 − 2) ≺ (λ1, λ2, . . . , λn), we get

λ1 + λ2 + · · · + λn =
{

(Ln+1)2 − 2n− 1, if n is even
(Ln+1)2 − 2n− 6, if n is odd

= L2n+2 − 2n− 3 − ξ(n).

�
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Corollary 3.2. Let λ1, λ2, . . . , λn be the eigenvalues of Rn. Then

nλn 6 L2n+2 − 2n− 3 − ξ(n) 6 nλ1.

Proof. Let sn = λ1 + λ2 + · · · + λn. Since(
sn
n
,
sn
n
, . . . ,

sn
n

)
≺ (λ1, λ2, . . . , λn) , (3.4)

we get λn 6 sn
n 6 λ1. Hence, the proof is completed. �

From (2.4), we get(
10 + 52

(
22n−4 − 1

3

)
, 10 + 52

(
22n−6 − 1

3

)
, . . . , 35, 10, 1

)
≺
(

1
λn
,

1
λn−1

, . . . ,
1
λ2
,

1
λ1

)
. (3.5)

Hence, there exists a doubly stochastic matrix Φn = [φij ] such that(
10 + 52

(
22n−4 − 1

3

)
, 10 + 52

(
22n−6 − 1

3

)
, . . . , 35, 10, 1

)

=
( 1
λn
,

1
λn−1

, . . . ,
1
λ2
,

1
λ1

)
φ11 φ12 . . . φ1n
φ21 φ22 . . . φ2n

...
... . . .

...
φn1 φn2 . . . φnn

 .
Namely, we have 1

λn
φ1n + 1

λn−1
φ2n + · · · + 1

λ1
φnn = 1 and φ1n + φ2n + · · · + φnn = 1.

Lemma 3.3. For each i = 1, 2, . . . , n, we have φn−(i−1),n 6 λi
n−1 .

Proof. Suppose that φn−(i−1),n >
λi
n−1 . Then

φ1n + φ2n + · · · + φnn >
λ1

n− 1
+ λ2
n− 1

+ · · · λn
n− 1

= 1
n− 1

(λ1 + λ2 + · · · + λn) . (3.6)

Since
∑n
i=1 φin = 1 and

∑n
i=1 λi > n, this yields a contradiction, so φn−(i−1),n 6 λi

n−1 . �
Let

τ = 1
n

(
1 + 10 + 35 + . . .+ 10 + 52

(
22n−4 − 1

3

))
= 524n−1 + 15(n− 2) − 1

9n
= 1
n

n∑
i=1

1
λi
.

Then, we have

(τ, τ, . . . , τ) ≺
( 1
λn
,

1
λn−1

, . . . ,
1
λ1

)
. (3.7)

The next theorem explains the majorization of the eigenvalues of Rn.

Theorem 3.4. For (λ1, λ2, . . . , λn) ∈ D , we have( 1
n− 1

(
sn − 1

τ

)
, . . . ,

1
n− 1

(
sn − 1

τ

)
,

1
τ

)
≺ (λ1, λ2, . . . , λn) . (3.8)

Proof. Let Ψn be an n× n matrix as follows:

Ψn =


1−ψ1n

n−1
1−ψ1n

n−1 · · · 1−ψ1n

n−1 ψ1n
1−ψ2n

n−1
1−ψ2n

n−1 · · · 1−ψ2n

n−1 ψ2n
...

...
...

...
1−ψnn

n−1
1−ψnn

n−1 · · · 1−ψnn

n−1 ψnn

 , (3.9)

where
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ψij = 1 − ψin
n− 1

, i = 1, 2, . . . , n, j = 1, 2, . . . , n− 1

and

ψin = 1
nτλi

, i = 1, 2, . . . , n.

Then, for i = 1, 2, . . . , n, we observe that ψin > 0 and

ψ1n + ψ2n + · · · + ψnn = 1
nτλ1

+ 1
nτλ2

+ · · · + 1
nτλn

= 1, (3.10)

(n− 1)1 − ψin
n− 1

+ ψin = 1 (3.11)

and

1 − ψ1n
n− 1

+ 1 − ψ2n
n− 1

+ · · · + 1 − ψnn
n− 1

= 1
n− 1

(n− (ψ1n + ψ2n + · · · + ψnn)) = 1.

Therefore, Ψn is a doubly stochastic matrix. Moreover, we have

λ1ψ1n + λ2ψ2n + · · · + λnψnn = 1
τ

(3.12)

and

λ1
1 − ψ1n
n− 1

+ λ2
1 − ψ2n
n− 1

+ · · · + λn
1 − ψnn
n− 1

= 1
n− 1

(sn − (λ1ψ1n + λ2ψ2n + · · · + λnψnn))

= 1
n− 1

(
sn − 1

τ

)
.

Hence, we get( 1
n− 1

(
sn − 1

τ

)
, . . . ,

1
n− 1

(
sn − 1

τ

)
,

1
τ

)
= (λ1, λ2, . . . , λn) Ψn.

As a result, we have( 1
n− 1

(
sn − 1

τ

)
, . . . ,

1
n− 1

(
sn − 1

τ

)
,

1
τ

)
≺ (λ1, λ2, . . . , λn) .

�

By virtue of equation (2.4), we have the following lemma which explains the lower bounds
of the eigenvalues of Rn.

Lemma 3.5. For k = 2, 3, . . . , n, we have
1
γk

6 λk, (3.13)

where γk = 524k−1+15(k−2)−1
9 is sum of the diagonal elements of R−1.

Proof. By virtue of (2.4), we have

1
λ1

+ 1
λ2

+ · · · + 1
λk

6 1 + 10 + 35 + . . .+ 10 + 52
(

22k−4 − 1
3

)
= γk. (3.14)
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Hence,

1
λk

6 γk −

 1
λ1

+ 1
λ2

+ · · · + 1
λk−1︸ ︷︷ ︸

>0

 6 γk. (3.15)

Therefore, we have 1
γk

6 λk. �

In the following theorem, we give some upper and lower bounds for the eigenvalues of
Rn.

Theorem 3.6. For k = 1, 2, . . . , n− 2, we have

1
γn−k

6 λn−k 6
1

n− 1

(
n− k − 1

τ
+ ksn

)
−
k−1∑
i=0

1
γn−i

. (3.16)

In particular,
1

n− 1

(
sn − 1

τ

)
6 λ1 6

n∏
i=2

γi (3.17)

and
1
γn

6 λn 6 1
τ
. (3.18)

Proof. By virtue of Theorem 3.4, we observe that 1
n−1

(
sn − 1

τ

)
6 λ1 and λn 6 1

τ . From

Lemma 3.5, we have 1
γn

6 λn. Since det Rn = det
(
LnL T

n

)
= 1 = λ1λ2 . . . λn, by Lemma

3.5, we have

λ1

n∏
i=2

1
γi

6 λ1λ2λ3 . . . λn = 1.

Thus, we obtain λ1 6 ∏n
i=2 γi. From Theorem 3.4, we have

λn + λn−1 + · · · + λn−k 6
1
τ

+ k

n− 1

(
sn − 1

τ

)
= 1
n− 1

(
n− k − 1

τ
+ ksn

)
.

Thus, by using Lemma 3.5, we obtain

λn−k 6
1

n− 1

(
n− k − 1

τ
+ ksn

)
− (λn + λn−1 + · · · + λn−k+1)

6 1
n− 1

(
n− k − 1

τ
+ ksn

)
−
k−1∑
i=0

1
γn−i

.

Therefore, we obtain

1
γn−k

6 λn−k 6
1

n− 1

(
n− k − 1

τ
+ ksn

)
−
k−1∑
i=0

1
γn−i

.

�
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