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Abstract: Nowadays, with the rapid prevalence of networked machines and Internet technologies, intrusion 

detection systems are increasingly in demand. Consequently, numerous illicit activities by external and 

internal attackers need to be detected. Thus, earlier detection of such activities is necessary for protecting 

data and information. In this paper, we investigated the use of the Cuttlefish optimization algorithm as a 

new rule generation method for the classification task to deal with the intrusion detection problem. The 

effectiveness of the proposed method was tested using KDD Cup 99 dataset based on different evaluation 

methods. The obtained results were also compared with the results obtained by some classical well-known 

algorithms namely Decision Tree (DT), Naïve Bayes (NB), Support Vector Machine (SVM), and K-Nearest 

Neighborhood (K-NN). Our experimental results showed that the proposed method demonstrates a good 

classification performance and provides significantly preferable results when compared with the 

performance of other traditional algorithms. The proposed method produced 93.9%, 92.2%, and 94.7% in 

terms of precision, recall, and area under curve, respectively. 

Keywords: Intrusion Detection System, Data Mining, Cuttlefish Algorithm, Classification, Rule Discovery 

Saldırı Tespit Sistemi için Değiştirilmiş Mürekkep Balığı Algoritması Tabanlı Kural Üretimi 

Oz: Günümüzde, ağa bağlı makinelerin ve Internet teknolojilerinin hızla yaygınlaşmasıyla, saldırı tespit 

sistemleri giderek daha fazla talep görmektedir. Buna bağlı olarak, dış ve iç saldırganların çok sayıda 

yasadışı faaliyetinin tespit edilmesi gerekmektedir. Bu nedenle, veri ve bilgilerin korunması için bu tür 

yasadışı faaliyetlerin erken tespiti gerekli ve önemlidir. Bu makalede, veri madenciliğinde saldırı tespit 

problemiyle başa çıkmak amacıyla Mürekkepbalığı Optimizasyon Algoritmasının yeni bir kural oluşturma 

yöntemi olarak kullanımı araştırılmıştır. Önerilen yöntemin etkinliği, farklı değerlendirme yöntemlerine 

dayalı olarak KDD Cup 99 veri seti kullanılarak test edilmiştir. Ayrıca, elde edilen sonuçlar Karar Ağacı, 

Naïve Bayes, Destek Vektör Makinesi ve K-En Yakın Komşu gibi bazı klasik iyi bilinen algoritmalar ile 

alınan sonuçlarla karşılaştırılmıştır. Deneysel sonuçlarımız, önerilen yöntemin iyi bir sınıflandırma 

performansı sergilediğini ve diğer geleneksel algoritmaların performansıyla karşılaştırıldığında önemli 

ölçüde tercih edilebilir sonuçlar verdiğini göstermektedir. Önerilen yöntem, hassasiyet, geri çağırma ve eğri 

altındaki alan açısından sırasıyla %93.9, %92.2 ve %94.7 değerlerini elde etmiştir. 
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1. INTRODUCTION 

Extensive use of the Internet and data sharing on the web led the security of the networks to 

become a challenging issue (Duric, 2014; Zhang, 2020). An intrusion detection system (IDS) is 

one of the most important methods used to strengthen the security of the web and help the 

computer systems on how to deal with attacks (Khraisat, 2019). Intrusion is defined as an illicit 

attempt to access the computer systems, and IDS is a critical technology in terms of software and 

hardware that automates the procedure of monitoring and analyzing of illegal events. It is known 

as one of the best suitable methods to prevent and reveal such attacks (Jose, 2018; Vancea, 2014). 

Knowledge Discovery in Databases (KDD) is defined as the operation of extracting patterns 

and models from large databases. Data mining is often used as a synonym for the KDD process, 

and it refers to the process of applying the discovery algorithm to the data (Schuh, 2019). One of 

the most important data mining techniques for IDSs is the rule discovery which tries to locate a 

collection of rules that can recognize the specific class from various groups of classes. Such a rule 

discovery tool is an essential phase for the classification tasks (Kiziloluk & Alatas, 2015; Patel & 

Buddhadev, 2015).  

Many classification techniques are applied in the literature for the IDS problem, such as 

Support Vector Machine (Yinhui Li, 2012; Sumaiya Thaseen & Aswani Kumar, 2017; Zhao, 

2010), Decision Tree (Eesa, 2015; Issa & Brifcani, 2011; Khraisat, 2018; Panigrahi & Borah, 

2018), Naïve Bayes (Koc, 2012; Mukherjee & Sharma, 2012; Swarnkar & Hubballi, 2016), K-

Nearest Neighborhood (Aburomman & Ibne Reaz, 2016; Li, 2014; Yang Li & Guo, 2007) and 

many more. In addition, evolutionary algorithms are widely used in IDS domain, including 

biology-inspired algorithms, such as genetic algorithm (Gauthama Raman, 2017; Hamamoto, 

2018), swarm optimization(Ali & Jantan, 2011; Chung & Wahid, 2012; Kanaka Vardhini & 

Sitamahalakshmi, 2017), and ant colony optimization (Aghdam & Kabiri, 2016; Varma, 2016). 

CFA was also successfully applied to generate and select features in the study of (Eesa, 2015; 

Eesa, 2017), the CFA were used in these studies as a feature selection while the DT algorithm 

was used as a classifier to measure the quality of the selected features. The results showed that 

the feature subset obtained by the CFA gave higher detection and higher accuracy rates with lower 

false alarm rates when compared with the obtained results using all features. The same method of 

the CFA was also considered by (Balasaraswathi, 2018) as a feature selection, but this time instead 

of using the random numbers, six different chaotic maps were used to acclimatize the CFA 

parameters. The randomness of the CFA was improved by using the chaotic random sequences 

Chaotic CFA, which improved the performance of CFA in terms of accuracy, detection rate, 

computation time and false alarm rate. In the above-mentioned studies, the operator in case 5 of 

the CFA was used to reduce the number of features by removing one feature at a time and the 

remaining features were evaluated by the DT classifier. Consequently, if the DT produced better 

results, this feature will be removed, and this process was repeated for each feature until all the 

features were tested. This feature selection strategy exists in the CFA was the main motivation 

behind using this algorithm for rule generation instead of features selection. In the proposed 

method, the CFA was used to generate several rules for each class, and in the rule pruning process, 

the case 5 was used to remove one rule with its corresponding feature at a time. In other words, 

if Rule (i) with its corresponding feature (i) is removed and better results obtained, then the Rule 

(i) will be removed and the next rule Rule(i+1) will be tested. This process is repeated until all 

rules are examined. To the best of our knowledge, this is the first attempt to use the CFA as a rule 

generation tool in this area of research. In this study, we aim to use the CFA as a rule generator 

for IDS problem. The generated rules are represented by several sets of Max and Min vectors for 

each feature. These rules will then be used to classify the test data to one of the five target classes 

exist in KDD Cup 99 dataset. 

 



Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021                            

255 

2. CUTTLEFISH OPTIMIZATION ALGORITHM (CFA) 

Cuttlefish algorithm (CFA) is a new bio-inspired optimization method, which was proposed 

in 2013 by (Eesa, 2013) and was successfully used as a possible alternative tool for global 

optimization problems (Eesa, 2014), dimensionality reduction (Arshak & Eesa, 2018) and 

clustering problems (Eesa & Orman, 2019). This algorithm simulates the process of light 

reflection through the three skin layers of a cuttlefish, including iridophores, chromatophores, and 

leucophores. The interaction between these three layers through the six cases are shown in Figure 

1 that allows the cuttlefish to produce complex patterns and colors.  

There are two main processes considered for this algorithm. The first process is called the 

reflection, which mimics the light reflection, and the second process is called the visibility that 

simulates the matching patterns. These two processes are formulated in (1) to calculate the new 

solution. 

𝑛𝑒𝑤𝑝 = 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦                (1) 

The formulas for the interaction between the three layers of cells in six cases are described 

as follows:  

For case 1 and 2: 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑗] = 𝑅 ∗ 𝑆1 [𝑖]. 𝑝𝑜𝑖𝑛𝑡𝑠[𝑗]       (2) 

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦[𝑗] = 𝑉 ∗ (𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] − 𝑆1[𝑖]. 𝑝𝑜𝑖𝑛𝑡𝑠[𝑗])  (3) 

 

Figure 1:  
Six cases of cells interaction used by the cuttlefish 

where R and V are random variables with the values varying between (-1, 1), S1 is a subset 

of the solutions, i is the ith element in S1, j is the jth point in the element i, and Best_points denotes 

the best solution points. For these two cases, the value of R is generated when V is set to 1. 

For case 3 and 4: 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑗] = 𝑅 ∗ 𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗]          (4) 

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦[𝑗] = 𝑉 ∗ (𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] − 𝑆2 [𝑖]. 𝑝𝑜𝑖𝑛𝑡𝑠[𝑗])     (5) 

where R is equal to 1, and V is generated randomly. 



Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS 

256 

For case 5: 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑗] = 𝑅 ∗ 𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗]       (6) 

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦[𝑗] = 𝑉 ∗ (𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] − 𝐴𝑉_𝑏𝑒𝑠𝑡)      (7) 

where Best_points is the optimal solution, and AV_best is the average of all optimal solutions. 

In this case, the value of R is generated, and V is set to 1. 

For case 6: 

𝑛𝑒𝑤𝑃 = 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑈 − 𝐿) + 𝐿         (8) 

where random is a random value between 0 and 1, U and L are the upper and lower limits of 

the problem domain. The algorithm divides the population into four subsets as S1, S2, S3, and S4. 

(2) and (3) in cases 1 and 2 are formulated to be used for the first subset of cells S1 whereas (4) 

and (5) in cases 3 and 4, (6) and (7) in case 5 and (8) in case 6 are considered for S2, S3, and S4, 

respectively. The main steps of CFA are expressed in Figure 2 as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  
The main steps of the CFA  

 

 

Initialize the population P with random solutions using Equation (8). 

Compute and keep both: the best solution and the average of the best solutions. 

While (error > ɛ and the number of iteration is not meet) do 

Begin 

       For each s in S1 do 

       Begin        

              Compute a new solution by applying case 1 and 2 using Equations (2) and (3). 

              If (the new solution is better than the current solutin (s)) 

               Then, s = new solution. 

       End 

      For each s in S2 do 

      Begin 

             Compute a new solution by applying case 3 and 4 using Equations (4) and (5). 

              If (the new solution is better than the current solutin (s)) 

               Then, s = new solution. 

       End 

       For each s in S3 do 

       Begin 

             Compute a new solution by applying case 5 using Equations (6) and (7). 

              If (the new solution is better than the current solutin (s)) 

               Then, s = new solution. 

       End 

       For each s in S4 do 

       Begin 

             Generate a new random solution by applying case 6 using Equations (8). 

              If (the new solution is better than the current solutin (s)) 

               Then, s = new solution. 

       End 

       If (any produced solution in (S1, S2, S3, or S4) is superior to the best solution) 

        Then, best solution = new solution. 

       Update the average of the best solution. 

End 

Return the best solution. 
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3.  THE PROPOSED CFA FOR RULE GENERATOR  

 

This paper aims to use the CFA as a rule generator for IDS problem. The generated rules are then 

used to classify the instances to one of the five class labels in the KDD-Cup-99 dataset: Normal, 

Dos, Probing, R2L, and U2R (Tavallaee, 2009). First, the training dataset is divided into five 

groups according to the number of class labels in the KDD-Cup-99. Then, for each feature in each 

group, the maximum and the minimum values are calculated to produce the two vectors Maxc[N] 

and Minc[N], where c = 1, 2, …, C and C is the number of classes, and N presents the number of 

features in each sample. In the training stage, each newly generated rule (Upper and Lower) for 

each group of training data at each step of the CFA including the initialization process, the newly 

generated rule is tested using the training data set as follows. If any sample belonging to the group 

(i) is satisfied by the newly generated rule, then remove this sample from the group (i) and 

recalculate the Max and Min vectors. This process is repeated for all groups until all samples are 

removed. The initialization process and the work of the CFA are described in the following 

sections. 

 

3.1 Initialization  

 

The population P[M] is initialized with M solutions, where P = {p1, p2, …, pM) and M is the 

size of the population P. Each pi contains a class name and two vectors, Upper[N] and Lower[N], 

and N is the number of features in each instance. Upper[N] presents the upper boundary of this 

rule, while Lower[N] presents the lower boundary. The initialization process of Upper and Lower 

vectors for each pi are calculated using (9), (10) and (11) as follows: 

 

𝑚𝑖𝑑[𝑛] = (𝑀𝑎𝑥[𝑛] + 𝑀𝑖𝑛[𝑛])/2        (9) 

𝑈𝑝𝑝𝑒𝑟[𝑛] = 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑀𝑎𝑥[𝑛] − 𝑚𝑖𝑑[𝑛]) + 𝑚𝑖𝑑[𝑛]    (10) 

𝐿𝑜𝑤𝑒𝑟[𝑛] = 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑚𝑖𝑑[𝑛] − 𝑀𝑖𝑛[𝑛]) + 𝑀𝑖𝑛[𝑛] 𝑛 = 1,2, ⋯ , 𝑁 (11) 
 

where Max[n] is the maximum, and Min[n] is the minimum values of feature n, random is a 

random number to be generated between (0, 1). In the original CFA, the population is divided 

into four subsets; however, in this study, the population is divided into three subsets S1, S2, and 

S3, because case 5 is used for the pruning rule, thus we only need three subsets in our modified 

CFA. After the initialization step, the processes of the six cases of the CFA are applied as follows. 

 

3.2 Application of case 1 and 2 on S1  

 

In cases 1 and 2, the light reflection process occurs because of the association between the 

chromatophores layer and the iridophores layer, and they are used for the global search. In the 

original CFA, R simulates the stretching process of saccule while V simulates the last view of the 

matched pattern. In order to use the CFA as a rule generator for the IDS classification problem, 

(2) and (3) which have been used to find the reflection and the visibility in each element in S1 are 

modified as given below: 

 

𝑟𝑒𝑓1 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛]      (12) 

𝑣𝑖𝑠1 = 𝑉 ∗ (𝑀𝑎𝑥[𝑛] − 𝑀𝑖𝑛[𝑛])     (13) 

𝑟𝑒𝑓2 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛]      (14) 

𝑣𝑖𝑠2 = −𝑉 ∗ (𝑀𝑎𝑥[𝑛] − 𝑀𝑖𝑛[𝑛])     (15) 

 

where Max[n] and Min[n] are defined for feature n, record[n] is any random value of feature 

n selected randomly from the training dataset. R is 1 and V is generated randomly between the 
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interval (0, 1), with 0.2 probability newUpper and newLower values of new solutions are 

calculated using (1) as follows:  

 

𝑆1[𝑖]. 𝑛𝑒𝑤𝑈𝑝𝑝𝑒𝑟[𝑛] = 𝑟𝑒𝑓1 + 𝑣𝑖𝑠1                                  (16) 

𝑆1 [𝑖]. 𝑛𝑒𝑤𝐿𝑜𝑤𝑒𝑟[𝑛] = 𝑟𝑒𝑓2 + 𝑣𝑖𝑠2                                        (17) 

 

where i = 1, 2, …, S1. Size. 

 

While, with the probability of 0.8, the other cases are used to produce the new solution. 

Sometimes, the value of the newly generated rule (newUpper[n] or newLower[n]) is out of range. 

In this case, any selected random value from feature[n] can be satisfied. 

  

3.3 Application of case 3 and 4 on S2 

 

The iridophores are the reflective cells. They reflect light for the concealment the organs, 

which means that the outgoing light must be close to the environment. Therefore, the incoming 

light is displayed as a feature value and is revised with a small difference. The simulation of this 

process is reformulated in (18)-(21) as follows: 

 

𝑟𝑒𝑓_1 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛]      (18) 

𝑣𝑖𝑠_1 = 𝑉 ∗ (𝑀𝑎𝑥[𝑛] − 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛])    (19) 

𝑟𝑒𝑓_2 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛]      (20) 

𝑣𝑖𝑠2 = −𝑉 ∗ (𝑟𝑒𝑐𝑜𝑟𝑑[𝑛] − 𝑀𝑖𝑛[𝑛])    (21) 

 

where Max[n] and Min[n] are the respectively the max and the min values of feature n, record 

is an instance that is selected randomly from the training dataset. The R value is equal to 1, but 

the V is generated randomly from the interval (0, 1). Then the new newUpper and newLower are 

calculated using (1) as follows: 

 

𝑆2 [𝑖]. 𝑛𝑒𝑤𝑈𝑝𝑝𝑒𝑟[𝑛] = 𝑟𝑒𝑓1 + 𝑣𝑖𝑠1                                       (22) 

𝑆2 [𝑖]. 𝑛𝑒𝑤𝐿𝑜𝑤𝑒𝑟[𝑛] = 𝑟𝑒𝑓2 + 𝑣𝑖𝑠2                                       (23) 

 

where i = 1, 2, …, S2.  

3.4 Application of case 6 on S3 

 

In the original CFA, case 5 is used before case 6. In this study, case 5 is used for the rule 

pruning process, which is described in section 3.5. CFA uses case 6 as the global search; hence 

any random solution is satisfactory. In this study, the same Equations (9), (10), and (11) that are 

used in the initialization process are reused here for S3. 

 

3.5 Application of case 5 for rule pruning 

 

Rule pruning is an important task to increase the accuracy of the model and enhancing the 

quality of the produced rule itself. It can be used to remove irrelevant information from the rule. 

The objective of rule pruning is to evacuate redundant or unnecessary features from the dataset, 

which may negatively affect the results and the performance of the model. The study of (Eesa, 

2015) is based on using CFA for feature selection. The authors have successfully used case 5 of 

CFA to remove one feature at a time and evaluate the remaining features. If the remaining features 

produce some better results, they are kept, and another feature is removed. This procedure is 

repeated until all features are examined; hence the most relevant features are selected. In this 

study, we have used the same method. At each time a sub-rule is removed from the current rules, 
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then the remaining sub-rules will be tested using the training dataset. If the remaining rules are 

produced a better result, then another sub-rule is removed and so on until all sub-rules are 

examined. For more description, consider a vector called Flag with the size of N is selected, and 

N represents all features considered in the training dataset, and let x to be a rule that belongs to 

class c. At each time the rule of feature n which is represented by x.Upper[n] and x.Lower[n] is 

removed from x.Upper and x.Lower. If x produces some better results, Flag[n] is set to be 0; 

otherwise, Flag[n] is 1. This indicates that any feature with Flag[n]=1, their values of x.Upper[n] 

and x.Lower[n] are considered. To assess the quality of the produced rules, the following fitness 

method is used: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) ∗ 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)       (24) 

 

where TP and TN indicate the quantity of true positive and true negative instances which are 

classified effectively, whereas FP and FN indicate the number of instances that are incorrectly 

classified as a false positive and false negative, respectively (Khraisat, 2019; Sumaiya Thaseen & 

Aswani Kumar, 2017). The classification process will be described next in Section 3.6. The 

general steps of the rule pruning process are described in the procedure shown in Figure 3.  

 

3.6 Classification using the generated rules 

 

After applying the rule pruning process and removing the unnecessary sub-rules, the pruned 

rules are used to classify each instance in the testing data to one of the five class labels in the 

KDD-Cup-99-dataset: Normal, Dos, Probing, U2R, and R2L. The classification process works as 

follows: If all features’ values of record r are covered by the rule x of class c so that all values are 

between the x.Upper and x.Lower, then r is classified as class c. However, this is not always the 

case, as sometimes one instance in the testing data may be involved by more than one rule for 

various classes. In such a case, the bias-value is calculated for all the covered rules. Then these 

values are accumulated according to different possible classes. The class with the greatest bias-

value is chosen to be the true predicted class. The calculation of bias-value is formulated in (25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  

Rule pruning process using case 5. 

For each class c in C do 

Begin 

          For each rule x belonging to class c do 

          Begin  

                    For each Upper and Lower of feature n do 

                    Begin 

                             Remove x.Upper[n] from x.Upper 

                             Remove x.Lower[n]from x.Lower 

                             Evaluate x using the Fitness function 

                             IF x is produced better result Then  

                                     x.Flag[n] =0 

                             Else 

                                     x.Flag[n] = 1 

                    End 

          End 

End 
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𝑏𝑖𝑎𝑠_𝑣𝑎𝑙𝑢𝑒 = 𝑎 ∗ 𝑅𝑢𝑙𝑒. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑏 ∗ 𝑅𝑢𝑙𝑒. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  (25) 

 

where a and b are two weighted values to be determined by the user. The value of a is between 

(0, 1), while the value of b is equal to (1-a). In this study, the values of a and b are set to 0.5. The 

value of the fitness metric is calculated using (24), and for each covering rule belonging to class 

c, accuracy is calculated using equation (26), 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠(𝑐)

𝑁𝑜.𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 (𝑐)
     (26) 

 

4. EXPERIMENTAL SETUP 

To assess the efficiency of the proposed method, we have compared its performance with 

four traditional classifiers: DT, SVM, K-NN, and NB. The proposed method is 

experimentally assessed using the KDD-Cup-1999 dataset, which is obtained from the UCI 

machine learning repository (UCI Machine Learning Repository, 2015). The experiments 

are performed in order to present that our proposed method is generally feasible to be used 

for rule generation and hence it can be used as a new classifier for IDS.  

 

4.1 Data preparation  

The “10%KDD-Cup-99”  is a very popular dataset commonly used for benchmarking 

intrusion detection problems (Tavallaee et al., 2009). The dataset contains 494,020 training 

and 311,028 testing connection records (Eesa, 2015). Each record contains 41 independent 

features, and it is labelled as one of the five classes considered in the “KDD-Cup-99” dataset: 

Normal, Dos, Probing, R2L and U2R. Where Dos (denial of service) is a type of attack that 

causes some computing or memory resource to be busy or too full to handle legitimate requests. 

Probing is a class of attacks where an attacker scans a network to gather information or find known 

vulnerabilities. R2L (Remote to Local) is a class of attacks where an attacker sends packets to a 

machine over a network, then exploits the machine vulnerability to illegally gain local access as 

a user. While with the U2R (User to Root) attack, a normal account is used by an attacker to login 

into the system of a victim and tries to gain administrator privileges by exploiting someone 

vulnerability in the victim. 

 

Table 1. Different types of attacks and their corresponding occurrence number, 

respectively in the training and testing subsets chosen from KDD Cup 99 dataset  

Normal (937; 606)  

Probing (41; 42) 
psweep(12;3), Mscan(0;11), Nmap(2;1), Portsweep(11;4 ), 

Saint(0;7), Satan(16;16). 

DoS(3915 ; 2299) 

apache2(0;8), back(22;11), land(0; 0), mailbomb(0;50), 

Neptune(1072;580), processtable(0;8), Pod(3;1), 

udpstorm(0;0), Smurf(2808;1641), Teardrop(10;0), 

U2R(5 ; 10) 
buffer_overflow(3;1), httptunnel( 0;3), loadmodule(0;0), 

perl(0;0), rootkit(2;2), xterm(0;2), Ps(0;2), Sqlattack(0;0), 

R2L(13; 160) 

ftp_write(0;0), imap(0;0), guesspasswd(2;44), named(0;0), 

multihop(0;0), phf(0;0), sendmail(0;0), snmpgetattack(0;77), 

snmpguess(0;24), spy(0;0,), warezclient(10;0), worm(0;0), 

warezmaster(1;15), xsnoop(0;0), xlock(0;0), 

 

 However, this dataset is too big to be used in such experiments. Therefore, the tra ining 

and the testing data are chosen randomly from the 10%KDD-Cup-99 dataset to be utilized 
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for our experiment. Table 1 describes the amount of each attack class in the chosen training 

and testing subsets. In order to keep the same proportion of data, each attack is divided by 

100 (Eesa, 2015) in the training and testing datasets. In Table 1, Psweep (12, 3) means that 

this attack has 12 attacks in the training set and 3 attacks in the testing set. In our study, all 

categorical values in the datasets are converted to numerical values. For example, the 

protocol_type attribute consists of three categorical values (tcp, udp, icmp), and these values 

are converted to (10, 20, and 30), respectively. For instance, if an attribute consists of 100 

categorical values, these values are converted to (10, 20, 30, …, 1000), respectively.  

 

4.2 Evaluation 

In order to assess the effectiveness of the proposed method using CFA classification 

model, five well-known metrics are used in our evaluation process; namely “True Positive 

Rate” (TPR), “False Positive Rate” (FPR), Precision, Recall, and Area Under the Curve 

(AUC) (Jiao & Du, 2016). Then, the efficiency of the proposed CFA method is compared 

with four well-known techniques in Weka (Hall et al., 2009), namely DT, K-NN, SVM, and 

NB. The formulas of the five-evaluation metrics are stated below: 

𝑇𝑃𝑅𝑖 = 𝑇𝑃𝑖 ⁄ (𝑇𝑃𝑖 + 𝐹𝑁𝑖) 

𝐹𝑃𝑅𝑖 = 𝐹𝑃𝑖 ⁄ (𝐹𝑃𝑖 + 𝑇𝑁𝑖) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝑇𝑃𝑖 ⁄ (𝑇𝑃𝑖 + 𝐹𝑃𝑖) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 = 𝑇𝑃𝑖 ⁄ (𝑇𝑃𝑖 + 𝐹𝑁𝑖) 

𝐴𝑈𝐶𝑖 = (1 + 𝑇𝑃𝑅𝑖 − 𝐹𝑃𝑅𝑖) ⁄ 2 

where i = 1, 2, …, C, and C is the number of classes. 

5. EXPERIMENTAL RESULTS 

The proposed method is implemented using C# language within the Microsoft Visual 

Studio environment. The population size is set to 10. First, the validation of the proposed 

model is tested for 10 independent runs. Table 2 describes the obtained results in terms of 

TPR metric for each run. It can be noticed that our proposed CFA classification method has 

successfully classified the KDD-Cup-99 data, and it obtains a good result where TPR is 

varied between 91.24 and 92.71, and the average overall 10 independent runs is equal to 

92.203.  

Table 2. Experimental results for 10 independent runs using the proposed method 

Runs TPR 

Run#1 92.651 

Run#2 91.239 

Run#3 92.581 

Run#4 91.302 

Run#5 92.489 

Run#6 92.460 

Run#7 92.548 

Run#8 92.591 

Run#9 92.711 

Run#10 91.462 

Best 

Worst 

Average 

92.711 

91.239 

92.203 

Table 3 illustrates the comparison results of the proposed method with the other four 

techniques DT, K-NN, SVM, and NB. The comparison results based on the for metrics (FPR, 



Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS 

262 

Precision, Recall, AUC) are detailed in Table 3 and graphically shown in Figures 4 and 5. 

All the reported performance results of the proposed method in Table 3 are averaged over 

10 independent runs. From Table 3 and Figures 4 and 5, it can be seen clearly that the new 

CFA method has provided better results than all other classification methods in terms of 

Precision, Recall, and AUC with a lower FPR. Since the AUC metric is commonly used to 

distinguish the performance of more than one model (Tharwat, 2018), we can conclude that 

our proposed method was successful in terms of this evaluation metric, as illustrated 

obviously in Figure 5. 

 

Table 3. The comparison of classification results for the proposed method with 

different methods 

Techniques TPR FPR Precision Recall AUC 

DT 0.918 0.028 0.931 0.918 0.936 

SVM 0.746 0.024 0.911 0.746 0.790 

K-NN 0.740 0.022 0.878 0.740 0.874 

NB 0.703 0.186 0.855 0.703 0.803 

Proposed method 0.922 0.027 0.939 0.922 0.947 

 

Besides, in order to further investigate the efficiency and performance of the newly 

proposed CFA method, we compared the obtained results with our previews work (Eesa, 

2015). Table 4 illustrates the comparative results in terms of TPR evaluation metric. 

Table 4. The comparison of the proposed method with (Eesa, 2015) 

Method Number of features TPR 

method in (Eesa, 2015) 

41 71.087 

35 69.526 

30 69.538 

25 78.212 

20 91.362 

15 91.500 

10 92.051 

5 91.000 

Proposed method 

 
41 92.203 

 

Results in Table 4 present that the newly proposed method has performed better than our 

previous study [12] in terms of TPR, even when using different numbers of features. For 

instance, although the previous method has provided the highest TPR of 92.051, our new 

method can provide higher TPR than that without using feature selection. These results 

suggest that even without using any feature selection technique, the newly proposed method 

performs better.  

 From the obtained results, we believe that CFA can be used as an alternative tool for 

data mining in the IDS domain. The proposed CFA method has been tested many times in 

many different experiments, and it has provided the same results with (±0.2) errors which 

present the robustness and the stability of the proposed model.  
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Figure 4:  

Bar chart of different methods with different evaluation metrics 

 

 
Figure 5:  

The AUC results for all different methods 

 

6. CONCLUSION AND FUTURE WORK 

In this paper, we investigated the use of the modified CFA for IDS as a rule generation tool. 

The CFA was modified to generate a set of rules for each class considered in the dataset. One of 

the fundamental features of the CFA method is its simplicity as the generated rules are only 

represented by two vectors Upper and Lower, and they can easily be used for the classification 

task. In order to check the efficiency of the proposed method, we used the “KDD-Cup-99” dataset. 

The obtained results were promising and showed the robustness and effectiveness of the proposed 

method. The achieved results were assessed utilizing the five-performance metrics TPR, FPR, 

Precision, Recall, and AUC. Experimental results also demonstrated that the new CFA offers a 

very competitive method in comparison with many traditional classification methods. During the 

experiments, we observed that the proposed method was time-consuming to find rules. The 

execution time for training and testing processes for each run took about 20 seconds while the 

running times for DT, SVM, K-NN and NB were 0.3, 1, 6, 0.4 seconds, respectively. This 

limitation can be considered as future work to be further investigated. In addition, the proposed 

CFA data mining method can be utilized to address the classification problems in different 

domains. Based on the above analysis, excluding the execution time, we conclude that CFA is a 

considerable potential rule-generation tool. 

0

0,2

0,4

0,6

0,8

1

DT

SVM

KNN

Naïve Bayes

CFA

0,936

0,79

0,874

0,803

0,947

0,7

0,75

0,8

0,85

0,9

0,95

1

DT SVM KNN Naïve
Bayes

CFA

AUC

AUC



Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS 

264 

CONFLICT OF INTEREST 

The authors acknowledge that there is no conflict of interest or common interest with any 

institution/organization or person.  
 

AUTHOR CONTRIBUTION 

Adel Sabry Eesa contributed to the determination and management of the conceptual and 

design processes of the study, data collection, data analysis and interpretation, creation of the 

draft paper, critical analysis of the intellectual content and final approval with full responsibility. 

 Sheren Sadiq, contributed to the determination and management of the conceptual and 

design processes of the study, data collection, data analysis and interpretation, creation of the 

draft paper, critical analysis of the intellectual content and final approval with full responsibility. 

Masoud Muhammed contributed to the determination and management of the conceptual and 

design processes of the study, data collection, data analysis and interpretation, creation of the 

draft paper, critical analysis of the intellectual content and final approval with full responsibility. 

Zeynep Orman contributed to the determination and management of the conceptual and 

design processes of the study, data analysis and interpretation, creation of the draft paper, critical 

analysis of the intellectual content and final approval with full responsibility. 

 

REFERENCES 

 

1. Aburomman, A.A. and Reaz, M.B.I. (2016) A novel SVM-kNN-PSO ensemble method for 

intrusion detection system, Applied Soft Computing Journal, 38, 360–372. 

doi:10.1016/j.asoc.2015.10.011 

2. Aghdam, M. H. and Kabiri, P. (2016) Feature Selection for Intrusion Detection System Using 

Ant Colony Optimization, International Journal of Network Security, 18(3), 420-432. 

https://pdfs.semanticscholar.org/022d/50ecb37eb6c78be9728ed7bc198a29cc6915.pdf 

3. Ali, G.A. and Jantan, A. (2011) A New Approach Based on Honeybee to Improve Intrusion 

Detection System Using Neural Network and Bees Algorithm, International Conference on 

Software Engineering and Computer Systems, Springer, Berlin, Heidelberg, 777–792. 

doi:10.1007/978-3-642-22203-0_65 

4. Arshak, Y., and Eesa, A. (2018) A New Dimensional Reduction Based on Cuttlefish 

Algorithm for Human Cancer Gene Expression, International Conference on Advanced 

Science and Engineering, IEEE, Duhok, Iraq, 48-53. doi: 10.1109/ICOASE.2018.8548908 

5. Balasaraswathi, V.R., Sugumaran, M. and Hamid, Y. (2018) Chaotic Cuttle Fish Algorithm 

for Feature Selection of Intrusion Detection System. International Journal of Pure and 

Applied Mathematics, 119(10), 921–935. https://acadpubl.eu/jsi/2018-119-

10/articles/10a/81.pdf 

6. Chung, Y.Y. and Wahid, N. (2012) A hybrid network intrusion detection system using 

simplified swarm optimization (SSO), Applied Soft Computing, 12(9), 3014–3022. 

doi:10.1016/J.ASOC.2012.04.020 

7. Duric, Z. (2014) WAPTT - Web Application Penetration Testing Tool, Advances in Electrical 

and Computer Engineering, 14(1), 93–102. doi:10.4316/AECE.2014.01015 

8. Eesa, A.S., Abdulazeez, A.M.A., and Orman, Z. (2017) A DIDS Based on The Combination 

of Cuttlefish Algorithm and Decision Tree, Science Journal of University of Zakho. 

https://link.springer.com/conference/icsecs
https://link.springer.com/conference/icsecs


Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021                            

265 

doi:10.25271/2017.5.4.382 

9. Eesa, A.S., Brifcani, A.M.A and Orman, Z. (2014) A New Tool for Global Optimization 

Problems-Cuttlefish Algorithm, International Journal of Computer and Information 

Engineering, World Academy of Science, Engineering and Technology, 8(9), 1235–1239. 

https://waset.org/publications/9999515/a-new-tool-for-global-optimization-problems-

cuttlefish-algorithm 

10. Eesa, A.S. and Orman, Z. (2020), A new clustering method based on the bio‐inspired 

cuttlefish optimization algorithm, Expert Systems, 37, 1-13. doi:10.1111/exsy.12478 

11. Eesa, A.S., Orman, Z. and Brifcani, A.M.A. (2015) A novel feature-selection approach based 

on the cuttlefish optimization algorithm for intrusion detection systems, Expert Systems with 

Applications, 42(5), 2670–2679. doi:10.1016/J.ESWA.2014.11.009 

12. Gauthama, R.M.R., Somu, N., Kirthivasan, K., Liscano, R. and Shankar S.V.S. (2017) An 

efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter 

optimization and feature selection in support vector machine, Knowledge-Based Systems, 

134, 1–12. doi:10.1016/j.knosys.2017.07.005 

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009). The 

WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10. 

doi:10.1145/1656274.1656278 

14. Hamamoto, A.H., Carvalho, L.F., Sampaio, L.D.H., Abrão, T. and Proença, M.L. (2018) 

Network Anomaly Detection System using Genetic Algorithm and Fuzzy Logic, Expert 

Systems with Applications, 92, 390–402. doi:10.1016/J.ESWA.2017.09.013 

15. Issa, A.S. and Brifcani, A.M. (2011) Intrusion Detection and Attack Classifier Based on Three 

Techniques: A Comparative Study, Engineering and Technology Journal, 29(2), 386–412. 

https://www.iasj.net/iasj?func=article&aId=26174 

16. Jiao, Y. and Du, P. (2016) Performance measures in evaluating machine learning based 

bioinformatics predictors for classifications, Quantitative Biology, 4(4), 320–330. 

doi:10.1007/s40484-016-0081-2 

17. Jose, S., Malathi, D., Reddy, B. and Jayaseeli, D. (2018) A Survey on Anomaly Based Host 

Intrusion Detection System, Journal of Physics: Conference Series, 1000(1), 012049. 

doi:10.1088/1742-6596/1000/1/012049 

18. Kanaka, V.K. and Sitamahalakshmi, T. (2017) Implementation of Intrusion Detection System 

Using Artificial Bee Colony with Correlation-Based Feature Selection, Advances in 

Intelligent Systems and Computing, Springer, Singapor, 507, 107–115. doi:10.1007/978-981-

10-2471-9_11 

19. Khraisat, A., Gondal, I. and Vamplew, P. (2018) An Anomaly Intrusion Detection System 

Using C5 Decision Tree Classifier, Pacific-Asia Conference on Knowledge Discovery and 

Data Mining,  Springer, Cham, 149–155. doi:10.1007/978-3-030-04503-6_14 

20. Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J. (2019) Survey of intrusion 

detection systems: techniques, datasets and challenges, Cybersecurity, 2(1), 20. 

doi:10.1186/s42400-019-0038-7 

21. Kiziloluk, S. and Alatas, B. (2015) Automatic mining of numerical classification rules with 

parliamentary optimization algorithm, Advances in Electrical and Computer Engineering, 

15(4), 17–24. doi:10.4316/AECE.2015.04003 

22. Koc, L., Mazzuchi, T.A. and Sarkani, S. (2012) A network intrusion detection system based 

on a Hidden Naïve Bayes multiclass classifier, Expert Systems with Applications, 39(18), 



Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS 

266 

13492–13500. doi:10.1016/J.ESWA.2012.07.009 

23. Li, W., Yi, P., Wu, Y., Pan, L. and Li, J. (2014) A new intrusion detection system based on 

KNN classification algorithm in wireless sensor network, Journal of Electrical and Computer 

Engineering, 2014.doi:10.1155/2014/240217 

24. Li, Yang and Guo, L. (2007) An active learning based TCM-KNN algorithm for supervised 

network intrusion detection, Computers and Security, 26(7–8), 459–467. 

doi:10.1016/j.cose.2007.10.002 

25. Li, Yinhui, Xia, J., Zhang, S., Yan, J., Ai, X. and Dai, K. (2012) An efficient intrusion 

detection system based on support vector machines and gradually feature removal method, 

Expert Systems with Applications, 39(1), 424–430. doi:10.1016/j.eswa.2011.07.032 

26. Mukherjee, S. and Sharma, N. (2012) Intrusion Detection using Naive Bayes Classifier with 

Feature Reduction, Procedia Technology, 4, 119–128. doi:10.1016/J.PROTCY.2012.05.017 

27. Panigrahi, R. and Borah, S. (2018) Rank Allocation to J48 Group of Decision Tree Classifiers 

using Binary and Multiclass Intrusion Detection Datasets, Procedia Computer Science, 132, 

323–332. doi:10.1016/j.procs.2018.05.186 

28. Patel, K. and Buddhadev, B. (2015) Predictive rule discovery for network intrusion detection, 

Advances in Intelligent Systems and Computing, 321, 287–298. doi:10.1007/978-3-319-

11227-5_25  

29. Eesa, A.S., Brifcani, A.M.A and Orman, Z. (2013) Cuttlefish Algorithm – A Novel Bio-

Inspired Optimization Algorithm, International Journal of Scientific & Engineering 

Research, 4(9), 1978-1986.  

https://www.ijser.org/onlineResearchPaperViewer.aspx?Cuttlefish-Algorithm-A-Novel-

Bio-Inspired-Optimization-Algorithm.pdf  

30. Schuh, G., Reinhart, G., Prote, J.P., Sauermann, F., Horsthofer, J., Oppolzer, F. and Knoll, D. 

(2019) Data mining definitions and applications for the management of production 

complexity, Procedia CIRP, 81, 874–879. doi:10.1016/j.procir.2019.03.217 

31. Sumaiya, T.I. and Aswani, K.C. (2017) Intrusion detection model using fusion of chi-square 

feature selection and multi class SVM, Journal of King Saud University - Computer and 

Information Sciences, 29(4), 462–472. doi:10.1016/J.JKSUCI.2015.12.004 

32. Swarnkar, M. and Hubballi, N. (2016) OCPAD: One class Naive Bayes classifier for payload 

based anomaly detection, Expert Systems with Applications, 64, 330–339. 

doi:10.1016/j.eswa.2016.07.036 

33. Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A. (2009) A detailed analysis of the KDD 

CUP 99 data set, 2009 IEEE Symposium on Computational Intelligence for Security and 

Defense Applications, 1–6. doi:10.1109/CISDA.2009.5356528 

34. Tharwat, A. (2018) Classification assessment methods, Applied Computing and Informatics. 

https://doi.org/10.1016/j.aci.2018.08.003 

35. UCI Machine Learning Repository (2015) KDD Cup 1999 Data. 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

36. Vancea, F. (2014) Intrusion Detection in NEAR System by Anti-denoising Traffic Data Series 

using Discrete Wavelet Transform, Advances in Electrical and Computer Engineering, 14(4), 

43–48. doi:10.4316/AECE.2014.04007 

37. Varma, P.R.K., Kumari, V.V. and Kumar, S.S. (2016) Feature Selection Using Relative 

Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection 



Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021                            

267 

System, Procedia Computer Science, 85, 503–510. doi:10.1016/J.PROCS.2016.05.203 

38. Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G. and Zhang, R. (2020) Model of the intrusion 

detection system based on the integration of spatial-temporal features, Computers and 

Security, 89, 101681. doi:10.1016/j.cose.2019.101681 

39. Zhao, M., Zhai, J. and He, Z. (2010) Intrusion detection system based on support vector 

machine active learning and data fusion, Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 272–

279. doi:10.1007/978-3-642-16493-4_28 

 



  

268 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


