
Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021 RESEARCH

DOI: 10.17482/uumfd.747078

253

RULE GENERATION BASED ON MODIFIED CUTTLEFISH

ALGORITHM FOR INTRUSION DETECTION SYSTEM

Adel Sabry EESA *

Sheren Sadiq **

Masoud Muhammed Hassan *

 Zeynep ORMAN ***

Received: 02.06.2020; revised: 25.01.2021; accepted: 25.01.2021

Abstract: Nowadays, with the rapid prevalence of networked machines and Internet technologies, intrusion

detection systems are increasingly in demand. Consequently, numerous illicit activities by external and

internal attackers need to be detected. Thus, earlier detection of such activities is necessary for protecting

data and information. In this paper, we investigated the use of the Cuttlefish optimization algorithm as a

new rule generation method for the classification task to deal with the intrusion detection problem. The

effectiveness of the proposed method was tested using KDD Cup 99 dataset based on different evaluation

methods. The obtained results were also compared with the results obtained by some classical well-known

algorithms namely Decision Tree (DT), Naïve Bayes (NB), Support Vector Machine (SVM), and K-Nearest

Neighborhood (K-NN). Our experimental results showed that the proposed method demonstrates a good

classification performance and provides significantly preferable results when compared with the

performance of other traditional algorithms. The proposed method produced 93.9%, 92.2%, and 94.7% in

terms of precision, recall, and area under curve, respectively.

Keywords: Intrusion Detection System, Data Mining, Cuttlefish Algorithm, Classification, Rule Discovery

Saldırı Tespit Sistemi için Değiştirilmiş Mürekkep Balığı Algoritması Tabanlı Kural Üretimi

Oz: Günümüzde, ağa bağlı makinelerin ve Internet teknolojilerinin hızla yaygınlaşmasıyla, saldırı tespit

sistemleri giderek daha fazla talep görmektedir. Buna bağlı olarak, dış ve iç saldırganların çok sayıda

yasadışı faaliyetinin tespit edilmesi gerekmektedir. Bu nedenle, veri ve bilgilerin korunması için bu tür

yasadışı faaliyetlerin erken tespiti gerekli ve önemlidir. Bu makalede, veri madenciliğinde saldırı tespit

problemiyle başa çıkmak amacıyla Mürekkepbalığı Optimizasyon Algoritmasının yeni bir kural oluşturma

yöntemi olarak kullanımı araştırılmıştır. Önerilen yöntemin etkinliği, farklı değerlendirme yöntemlerine

dayalı olarak KDD Cup 99 veri seti kullanılarak test edilmiştir. Ayrıca, elde edilen sonuçlar Karar Ağacı,

Naïve Bayes, Destek Vektör Makinesi ve K-En Yakın Komşu gibi bazı klasik iyi bilinen algoritmalar ile

alınan sonuçlarla karşılaştırılmıştır. Deneysel sonuçlarımız, önerilen yöntemin iyi bir sınıflandırma

performansı sergilediğini ve diğer geleneksel algoritmaların performansıyla karşılaştırıldığında önemli

ölçüde tercih edilebilir sonuçlar verdiğini göstermektedir. Önerilen yöntem, hassasiyet, geri çağırma ve eğri

altındaki alan açısından sırasıyla %93.9, %92.2 ve %94.7 değerlerini elde etmiştir.

Anahtar Kelimeler: Saldırı Tespit Sistemi, Veri Madenciliği, Mürekkepbalığı Algoritması, Sınıflandırma,

Kural Keşfi

* University of Zakho, Department of Computer Science, P.O. Box 12, Duhok, Kurdistan, Iraq

** Duhok Polytechnic University, Department of Information Technology Management, 1006, Duhok, Kurdistan, Iraq

*** Istanbul University-Cerrahpasa, Department of Computer Engineering, 34320, Avcilar, Istanbul, Turkey

Corresponding Author: Zeynep Orman (ormanz@istanbul.edu.tr)

https://orcid.org/0000-0001-7106-7999
https://orcid.org/0000-0002-5682-301X
https://orcid.org/0000-0003-3461-0942
https://orcid.org/0000-0002-0205-4198

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

254

1. INTRODUCTION

Extensive use of the Internet and data sharing on the web led the security of the networks to

become a challenging issue (Duric, 2014; Zhang, 2020). An intrusion detection system (IDS) is

one of the most important methods used to strengthen the security of the web and help the

computer systems on how to deal with attacks (Khraisat, 2019). Intrusion is defined as an illicit

attempt to access the computer systems, and IDS is a critical technology in terms of software and

hardware that automates the procedure of monitoring and analyzing of illegal events. It is known

as one of the best suitable methods to prevent and reveal such attacks (Jose, 2018; Vancea, 2014).

Knowledge Discovery in Databases (KDD) is defined as the operation of extracting patterns

and models from large databases. Data mining is often used as a synonym for the KDD process,

and it refers to the process of applying the discovery algorithm to the data (Schuh, 2019). One of

the most important data mining techniques for IDSs is the rule discovery which tries to locate a

collection of rules that can recognize the specific class from various groups of classes. Such a rule

discovery tool is an essential phase for the classification tasks (Kiziloluk & Alatas, 2015; Patel &

Buddhadev, 2015).

Many classification techniques are applied in the literature for the IDS problem, such as

Support Vector Machine (Yinhui Li, 2012; Sumaiya Thaseen & Aswani Kumar, 2017; Zhao,

2010), Decision Tree (Eesa, 2015; Issa & Brifcani, 2011; Khraisat, 2018; Panigrahi & Borah,

2018), Naïve Bayes (Koc, 2012; Mukherjee & Sharma, 2012; Swarnkar & Hubballi, 2016), K-

Nearest Neighborhood (Aburomman & Ibne Reaz, 2016; Li, 2014; Yang Li & Guo, 2007) and

many more. In addition, evolutionary algorithms are widely used in IDS domain, including

biology-inspired algorithms, such as genetic algorithm (Gauthama Raman, 2017; Hamamoto,

2018), swarm optimization(Ali & Jantan, 2011; Chung & Wahid, 2012; Kanaka Vardhini &

Sitamahalakshmi, 2017), and ant colony optimization (Aghdam & Kabiri, 2016; Varma, 2016).

CFA was also successfully applied to generate and select features in the study of (Eesa, 2015;

Eesa, 2017), the CFA were used in these studies as a feature selection while the DT algorithm

was used as a classifier to measure the quality of the selected features. The results showed that

the feature subset obtained by the CFA gave higher detection and higher accuracy rates with lower

false alarm rates when compared with the obtained results using all features. The same method of

the CFA was also considered by (Balasaraswathi, 2018) as a feature selection, but this time instead

of using the random numbers, six different chaotic maps were used to acclimatize the CFA

parameters. The randomness of the CFA was improved by using the chaotic random sequences

Chaotic CFA, which improved the performance of CFA in terms of accuracy, detection rate,

computation time and false alarm rate. In the above-mentioned studies, the operator in case 5 of

the CFA was used to reduce the number of features by removing one feature at a time and the

remaining features were evaluated by the DT classifier. Consequently, if the DT produced better

results, this feature will be removed, and this process was repeated for each feature until all the

features were tested. This feature selection strategy exists in the CFA was the main motivation

behind using this algorithm for rule generation instead of features selection. In the proposed

method, the CFA was used to generate several rules for each class, and in the rule pruning process,

the case 5 was used to remove one rule with its corresponding feature at a time. In other words,

if Rule (i) with its corresponding feature (i) is removed and better results obtained, then the Rule

(i) will be removed and the next rule Rule(i+1) will be tested. This process is repeated until all

rules are examined. To the best of our knowledge, this is the first attempt to use the CFA as a rule

generation tool in this area of research. In this study, we aim to use the CFA as a rule generator

for IDS problem. The generated rules are represented by several sets of Max and Min vectors for

each feature. These rules will then be used to classify the test data to one of the five target classes

exist in KDD Cup 99 dataset.

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

255

2. CUTTLEFISH OPTIMIZATION ALGORITHM (CFA)

Cuttlefish algorithm (CFA) is a new bio-inspired optimization method, which was proposed

in 2013 by (Eesa, 2013) and was successfully used as a possible alternative tool for global

optimization problems (Eesa, 2014), dimensionality reduction (Arshak & Eesa, 2018) and

clustering problems (Eesa & Orman, 2019). This algorithm simulates the process of light

reflection through the three skin layers of a cuttlefish, including iridophores, chromatophores, and

leucophores. The interaction between these three layers through the six cases are shown in Figure

1 that allows the cuttlefish to produce complex patterns and colors.

There are two main processes considered for this algorithm. The first process is called the

reflection, which mimics the light reflection, and the second process is called the visibility that

simulates the matching patterns. These two processes are formulated in (1) to calculate the new

solution.

𝑛𝑒𝑤𝑝 = 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (1)

The formulas for the interaction between the three layers of cells in six cases are described

as follows:

For case 1 and 2:

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑗] = 𝑅 ∗ 𝑆1 [𝑖]. 𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] (2)

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦[𝑗] = 𝑉 ∗ (𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] − 𝑆1[𝑖]. 𝑝𝑜𝑖𝑛𝑡𝑠[𝑗]) (3)

Figure 1:
Six cases of cells interaction used by the cuttlefish

where R and V are random variables with the values varying between (-1, 1), S1 is a subset

of the solutions, i is the ith element in S1, j is the jth point in the element i, and Best_points denotes

the best solution points. For these two cases, the value of R is generated when V is set to 1.

For case 3 and 4:

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑗] = 𝑅 ∗ 𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] (4)

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦[𝑗] = 𝑉 ∗ (𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] − 𝑆2 [𝑖]. 𝑝𝑜𝑖𝑛𝑡𝑠[𝑗]) (5)

where R is equal to 1, and V is generated randomly.

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

256

For case 5:

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑗] = 𝑅 ∗ 𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] (6)

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦[𝑗] = 𝑉 ∗ (𝐵𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝑠[𝑗] − 𝐴𝑉_𝑏𝑒𝑠𝑡) (7)

where Best_points is the optimal solution, and AV_best is the average of all optimal solutions.

In this case, the value of R is generated, and V is set to 1.

For case 6:

𝑛𝑒𝑤𝑃 = 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑈 − 𝐿) + 𝐿 (8)

where random is a random value between 0 and 1, U and L are the upper and lower limits of

the problem domain. The algorithm divides the population into four subsets as S1, S2, S3, and S4.

(2) and (3) in cases 1 and 2 are formulated to be used for the first subset of cells S1 whereas (4)

and (5) in cases 3 and 4, (6) and (7) in case 5 and (8) in case 6 are considered for S2, S3, and S4,

respectively. The main steps of CFA are expressed in Figure 2 as follows.

Figure 2:
The main steps of the CFA

Initialize the population P with random solutions using Equation (8).

Compute and keep both: the best solution and the average of the best solutions.

While (error > ɛ and the number of iteration is not meet) do

Begin

 For each s in S1 do

 Begin

 Compute a new solution by applying case 1 and 2 using Equations (2) and (3).

 If (the new solution is better than the current solutin (s))

 Then, s = new solution.

 End

 For each s in S2 do

 Begin

 Compute a new solution by applying case 3 and 4 using Equations (4) and (5).

 If (the new solution is better than the current solutin (s))

 Then, s = new solution.

 End

 For each s in S3 do

 Begin

 Compute a new solution by applying case 5 using Equations (6) and (7).

 If (the new solution is better than the current solutin (s))

 Then, s = new solution.

 End

 For each s in S4 do

 Begin

 Generate a new random solution by applying case 6 using Equations (8).

 If (the new solution is better than the current solutin (s))

 Then, s = new solution.

 End

 If (any produced solution in (S1, S2, S3, or S4) is superior to the best solution)

 Then, best solution = new solution.

 Update the average of the best solution.

End

Return the best solution.

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

257

3. THE PROPOSED CFA FOR RULE GENERATOR

This paper aims to use the CFA as a rule generator for IDS problem. The generated rules are then

used to classify the instances to one of the five class labels in the KDD-Cup-99 dataset: Normal,

Dos, Probing, R2L, and U2R (Tavallaee, 2009). First, the training dataset is divided into five

groups according to the number of class labels in the KDD-Cup-99. Then, for each feature in each

group, the maximum and the minimum values are calculated to produce the two vectors Maxc[N]

and Minc[N], where c = 1, 2, …, C and C is the number of classes, and N presents the number of

features in each sample. In the training stage, each newly generated rule (Upper and Lower) for

each group of training data at each step of the CFA including the initialization process, the newly

generated rule is tested using the training data set as follows. If any sample belonging to the group

(i) is satisfied by the newly generated rule, then remove this sample from the group (i) and

recalculate the Max and Min vectors. This process is repeated for all groups until all samples are

removed. The initialization process and the work of the CFA are described in the following

sections.

3.1 Initialization

The population P[M] is initialized with M solutions, where P = {p1, p2, …, pM) and M is the

size of the population P. Each pi contains a class name and two vectors, Upper[N] and Lower[N],

and N is the number of features in each instance. Upper[N] presents the upper boundary of this

rule, while Lower[N] presents the lower boundary. The initialization process of Upper and Lower

vectors for each pi are calculated using (9), (10) and (11) as follows:

𝑚𝑖𝑑[𝑛] = (𝑀𝑎𝑥[𝑛] + 𝑀𝑖𝑛[𝑛])/2 (9)

𝑈𝑝𝑝𝑒𝑟[𝑛] = 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑀𝑎𝑥[𝑛] − 𝑚𝑖𝑑[𝑛]) + 𝑚𝑖𝑑[𝑛] (10)

𝐿𝑜𝑤𝑒𝑟[𝑛] = 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑚𝑖𝑑[𝑛] − 𝑀𝑖𝑛[𝑛]) + 𝑀𝑖𝑛[𝑛] 𝑛 = 1,2, ⋯ , 𝑁 (11)

where Max[n] is the maximum, and Min[n] is the minimum values of feature n, random is a

random number to be generated between (0, 1). In the original CFA, the population is divided

into four subsets; however, in this study, the population is divided into three subsets S1, S2, and

S3, because case 5 is used for the pruning rule, thus we only need three subsets in our modified

CFA. After the initialization step, the processes of the six cases of the CFA are applied as follows.

3.2 Application of case 1 and 2 on S1

In cases 1 and 2, the light reflection process occurs because of the association between the

chromatophores layer and the iridophores layer, and they are used for the global search. In the

original CFA, R simulates the stretching process of saccule while V simulates the last view of the

matched pattern. In order to use the CFA as a rule generator for the IDS classification problem,

(2) and (3) which have been used to find the reflection and the visibility in each element in S1 are

modified as given below:

𝑟𝑒𝑓1 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛] (12)

𝑣𝑖𝑠1 = 𝑉 ∗ (𝑀𝑎𝑥[𝑛] − 𝑀𝑖𝑛[𝑛]) (13)

𝑟𝑒𝑓2 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛] (14)

𝑣𝑖𝑠2 = −𝑉 ∗ (𝑀𝑎𝑥[𝑛] − 𝑀𝑖𝑛[𝑛]) (15)

where Max[n] and Min[n] are defined for feature n, record[n] is any random value of feature

n selected randomly from the training dataset. R is 1 and V is generated randomly between the

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

258

interval (0, 1), with 0.2 probability newUpper and newLower values of new solutions are

calculated using (1) as follows:

𝑆1[𝑖]. 𝑛𝑒𝑤𝑈𝑝𝑝𝑒𝑟[𝑛] = 𝑟𝑒𝑓1 + 𝑣𝑖𝑠1 (16)

𝑆1 [𝑖]. 𝑛𝑒𝑤𝐿𝑜𝑤𝑒𝑟[𝑛] = 𝑟𝑒𝑓2 + 𝑣𝑖𝑠2 (17)

where i = 1, 2, …, S1. Size.

While, with the probability of 0.8, the other cases are used to produce the new solution.

Sometimes, the value of the newly generated rule (newUpper[n] or newLower[n]) is out of range.

In this case, any selected random value from feature[n] can be satisfied.

3.3 Application of case 3 and 4 on S2

The iridophores are the reflective cells. They reflect light for the concealment the organs,

which means that the outgoing light must be close to the environment. Therefore, the incoming

light is displayed as a feature value and is revised with a small difference. The simulation of this

process is reformulated in (18)-(21) as follows:

𝑟𝑒𝑓_1 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛] (18)

𝑣𝑖𝑠_1 = 𝑉 ∗ (𝑀𝑎𝑥[𝑛] − 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛]) (19)

𝑟𝑒𝑓_2 = 𝑅 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑[𝑛] (20)

𝑣𝑖𝑠2 = −𝑉 ∗ (𝑟𝑒𝑐𝑜𝑟𝑑[𝑛] − 𝑀𝑖𝑛[𝑛]) (21)

where Max[n] and Min[n] are the respectively the max and the min values of feature n, record

is an instance that is selected randomly from the training dataset. The R value is equal to 1, but

the V is generated randomly from the interval (0, 1). Then the new newUpper and newLower are

calculated using (1) as follows:

𝑆2 [𝑖]. 𝑛𝑒𝑤𝑈𝑝𝑝𝑒𝑟[𝑛] = 𝑟𝑒𝑓1 + 𝑣𝑖𝑠1 (22)

𝑆2 [𝑖]. 𝑛𝑒𝑤𝐿𝑜𝑤𝑒𝑟[𝑛] = 𝑟𝑒𝑓2 + 𝑣𝑖𝑠2 (23)

where i = 1, 2, …, S2.

3.4 Application of case 6 on S3

In the original CFA, case 5 is used before case 6. In this study, case 5 is used for the rule

pruning process, which is described in section 3.5. CFA uses case 6 as the global search; hence

any random solution is satisfactory. In this study, the same Equations (9), (10), and (11) that are

used in the initialization process are reused here for S3.

3.5 Application of case 5 for rule pruning

Rule pruning is an important task to increase the accuracy of the model and enhancing the

quality of the produced rule itself. It can be used to remove irrelevant information from the rule.

The objective of rule pruning is to evacuate redundant or unnecessary features from the dataset,

which may negatively affect the results and the performance of the model. The study of (Eesa,

2015) is based on using CFA for feature selection. The authors have successfully used case 5 of

CFA to remove one feature at a time and evaluate the remaining features. If the remaining features

produce some better results, they are kept, and another feature is removed. This procedure is

repeated until all features are examined; hence the most relevant features are selected. In this

study, we have used the same method. At each time a sub-rule is removed from the current rules,

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

259

then the remaining sub-rules will be tested using the training dataset. If the remaining rules are

produced a better result, then another sub-rule is removed and so on until all sub-rules are

examined. For more description, consider a vector called Flag with the size of N is selected, and

N represents all features considered in the training dataset, and let x to be a rule that belongs to

class c. At each time the rule of feature n which is represented by x.Upper[n] and x.Lower[n] is

removed from x.Upper and x.Lower. If x produces some better results, Flag[n] is set to be 0;

otherwise, Flag[n] is 1. This indicates that any feature with Flag[n]=1, their values of x.Upper[n]

and x.Lower[n] are considered. To assess the quality of the produced rules, the following fitness

method is used:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) ∗ 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (24)

where TP and TN indicate the quantity of true positive and true negative instances which are

classified effectively, whereas FP and FN indicate the number of instances that are incorrectly

classified as a false positive and false negative, respectively (Khraisat, 2019; Sumaiya Thaseen &

Aswani Kumar, 2017). The classification process will be described next in Section 3.6. The

general steps of the rule pruning process are described in the procedure shown in Figure 3.

3.6 Classification using the generated rules

After applying the rule pruning process and removing the unnecessary sub-rules, the pruned

rules are used to classify each instance in the testing data to one of the five class labels in the

KDD-Cup-99-dataset: Normal, Dos, Probing, U2R, and R2L. The classification process works as

follows: If all features’ values of record r are covered by the rule x of class c so that all values are

between the x.Upper and x.Lower, then r is classified as class c. However, this is not always the

case, as sometimes one instance in the testing data may be involved by more than one rule for

various classes. In such a case, the bias-value is calculated for all the covered rules. Then these

values are accumulated according to different possible classes. The class with the greatest bias-

value is chosen to be the true predicted class. The calculation of bias-value is formulated in (25).

Figure 3:

Rule pruning process using case 5.

For each class c in C do

Begin

 For each rule x belonging to class c do

 Begin

 For each Upper and Lower of feature n do

 Begin

 Remove x.Upper[n] from x.Upper

 Remove x.Lower[n]from x.Lower

 Evaluate x using the Fitness function

 IF x is produced better result Then

 x.Flag[n] =0

 Else

 x.Flag[n] = 1

 End

 End

End

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

260

𝑏𝑖𝑎𝑠_𝑣𝑎𝑙𝑢𝑒 = 𝑎 ∗ 𝑅𝑢𝑙𝑒. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑏 ∗ 𝑅𝑢𝑙𝑒. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (25)

where a and b are two weighted values to be determined by the user. The value of a is between

(0, 1), while the value of b is equal to (1-a). In this study, the values of a and b are set to 0.5. The

value of the fitness metric is calculated using (24), and for each covering rule belonging to class

c, accuracy is calculated using equation (26),

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠(𝑐)

𝑁𝑜.𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 (𝑐)
 (26)

4. EXPERIMENTAL SETUP

To assess the efficiency of the proposed method, we have compared its performance with

four traditional classifiers: DT, SVM, K-NN, and NB. The proposed method is

experimentally assessed using the KDD-Cup-1999 dataset, which is obtained from the UCI

machine learning repository (UCI Machine Learning Repository, 2015). The experiments

are performed in order to present that our proposed method is generally feasible to be used

for rule generation and hence it can be used as a new classifier for IDS.

4.1 Data preparation

The “10%KDD-Cup-99” is a very popular dataset commonly used for benchmarking

intrusion detection problems (Tavallaee et al., 2009). The dataset contains 494,020 training

and 311,028 testing connection records (Eesa, 2015). Each record contains 41 independent

features, and it is labelled as one of the five classes considered in the “KDD-Cup-99” dataset:

Normal, Dos, Probing, R2L and U2R. Where Dos (denial of service) is a type of attack that

causes some computing or memory resource to be busy or too full to handle legitimate requests.

Probing is a class of attacks where an attacker scans a network to gather information or find known

vulnerabilities. R2L (Remote to Local) is a class of attacks where an attacker sends packets to a

machine over a network, then exploits the machine vulnerability to illegally gain local access as

a user. While with the U2R (User to Root) attack, a normal account is used by an attacker to login

into the system of a victim and tries to gain administrator privileges by exploiting someone

vulnerability in the victim.

Table 1. Different types of attacks and their corresponding occurrence number,

respectively in the training and testing subsets chosen from KDD Cup 99 dataset

Normal (937; 606)

Probing (41; 42)
psweep(12;3), Mscan(0;11), Nmap(2;1), Portsweep(11;4),

Saint(0;7), Satan(16;16).

DoS(3915 ; 2299)

apache2(0;8), back(22;11), land(0; 0), mailbomb(0;50),

Neptune(1072;580), processtable(0;8), Pod(3;1),

udpstorm(0;0), Smurf(2808;1641), Teardrop(10;0),

U2R(5 ; 10)
buffer_overflow(3;1), httptunnel(0;3), loadmodule(0;0),

perl(0;0), rootkit(2;2), xterm(0;2), Ps(0;2), Sqlattack(0;0),

R2L(13; 160)

ftp_write(0;0), imap(0;0), guesspasswd(2;44), named(0;0),

multihop(0;0), phf(0;0), sendmail(0;0), snmpgetattack(0;77),

snmpguess(0;24), spy(0;0,), warezclient(10;0), worm(0;0),

warezmaster(1;15), xsnoop(0;0), xlock(0;0),

 However, this dataset is too big to be used in such experiments. Therefore, the tra ining

and the testing data are chosen randomly from the 10%KDD-Cup-99 dataset to be utilized

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

261

for our experiment. Table 1 describes the amount of each attack class in the chosen training

and testing subsets. In order to keep the same proportion of data, each attack is divided by

100 (Eesa, 2015) in the training and testing datasets. In Table 1, Psweep (12, 3) means that

this attack has 12 attacks in the training set and 3 attacks in the testing set. In our study, all

categorical values in the datasets are converted to numerical values. For example, the

protocol_type attribute consists of three categorical values (tcp, udp, icmp), and these values

are converted to (10, 20, and 30), respectively. For instance, if an attribute consists of 100

categorical values, these values are converted to (10, 20, 30, …, 1000), respectively.

4.2 Evaluation

In order to assess the effectiveness of the proposed method using CFA classification

model, five well-known metrics are used in our evaluation process; namely “True Positive

Rate” (TPR), “False Positive Rate” (FPR), Precision, Recall, and Area Under the Curve

(AUC) (Jiao & Du, 2016). Then, the efficiency of the proposed CFA method is compared

with four well-known techniques in Weka (Hall et al., 2009), namely DT, K-NN, SVM, and

NB. The formulas of the five-evaluation metrics are stated below:

𝑇𝑃𝑅𝑖 = 𝑇𝑃𝑖 ⁄ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)

𝐹𝑃𝑅𝑖 = 𝐹𝑃𝑖 ⁄ (𝐹𝑃𝑖 + 𝑇𝑁𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝑇𝑃𝑖 ⁄ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 = 𝑇𝑃𝑖 ⁄ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)

𝐴𝑈𝐶𝑖 = (1 + 𝑇𝑃𝑅𝑖 − 𝐹𝑃𝑅𝑖) ⁄ 2

where i = 1, 2, …, C, and C is the number of classes.

5. EXPERIMENTAL RESULTS

The proposed method is implemented using C# language within the Microsoft Visual

Studio environment. The population size is set to 10. First, the validation of the proposed

model is tested for 10 independent runs. Table 2 describes the obtained results in terms of

TPR metric for each run. It can be noticed that our proposed CFA classification method has

successfully classified the KDD-Cup-99 data, and it obtains a good result where TPR is

varied between 91.24 and 92.71, and the average overall 10 independent runs is equal to

92.203.

Table 2. Experimental results for 10 independent runs using the proposed method

Runs TPR

Run#1 92.651

Run#2 91.239

Run#3 92.581

Run#4 91.302

Run#5 92.489

Run#6 92.460

Run#7 92.548

Run#8 92.591

Run#9 92.711

Run#10 91.462

Best

Worst

Average

92.711

91.239

92.203

Table 3 illustrates the comparison results of the proposed method with the other four

techniques DT, K-NN, SVM, and NB. The comparison results based on the for metrics (FPR,

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

262

Precision, Recall, AUC) are detailed in Table 3 and graphically shown in Figures 4 and 5.

All the reported performance results of the proposed method in Table 3 are averaged over

10 independent runs. From Table 3 and Figures 4 and 5, it can be seen clearly that the new

CFA method has provided better results than all other classification methods in terms of

Precision, Recall, and AUC with a lower FPR. Since the AUC metric is commonly used to

distinguish the performance of more than one model (Tharwat, 2018), we can conclude that

our proposed method was successful in terms of this evaluation metric, as illustrated

obviously in Figure 5.

Table 3. The comparison of classification results for the proposed method with

different methods

Techniques TPR FPR Precision Recall AUC

DT 0.918 0.028 0.931 0.918 0.936

SVM 0.746 0.024 0.911 0.746 0.790

K-NN 0.740 0.022 0.878 0.740 0.874

NB 0.703 0.186 0.855 0.703 0.803

Proposed method 0.922 0.027 0.939 0.922 0.947

Besides, in order to further investigate the efficiency and performance of the newly

proposed CFA method, we compared the obtained results with our previews work (Eesa,

2015). Table 4 illustrates the comparative results in terms of TPR evaluation metric.

Table 4. The comparison of the proposed method with (Eesa, 2015)

Method Number of features TPR

method in (Eesa, 2015)

41 71.087

35 69.526

30 69.538

25 78.212

20 91.362

15 91.500

10 92.051

5 91.000

Proposed method

41 92.203

Results in Table 4 present that the newly proposed method has performed better than our

previous study [12] in terms of TPR, even when using different numbers of features. For

instance, although the previous method has provided the highest TPR of 92.051, our new

method can provide higher TPR than that without using feature selection. These results

suggest that even without using any feature selection technique, the newly proposed method

performs better.

 From the obtained results, we believe that CFA can be used as an alternative tool for

data mining in the IDS domain. The proposed CFA method has been tested many times in

many different experiments, and it has provided the same results with (±0.2) errors which

present the robustness and the stability of the proposed model.

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

263

Figure 4:

Bar chart of different methods with different evaluation metrics

Figure 5:

The AUC results for all different methods

6. CONCLUSION AND FUTURE WORK

In this paper, we investigated the use of the modified CFA for IDS as a rule generation tool.

The CFA was modified to generate a set of rules for each class considered in the dataset. One of

the fundamental features of the CFA method is its simplicity as the generated rules are only

represented by two vectors Upper and Lower, and they can easily be used for the classification

task. In order to check the efficiency of the proposed method, we used the “KDD-Cup-99” dataset.

The obtained results were promising and showed the robustness and effectiveness of the proposed

method. The achieved results were assessed utilizing the five-performance metrics TPR, FPR,

Precision, Recall, and AUC. Experimental results also demonstrated that the new CFA offers a

very competitive method in comparison with many traditional classification methods. During the

experiments, we observed that the proposed method was time-consuming to find rules. The

execution time for training and testing processes for each run took about 20 seconds while the

running times for DT, SVM, K-NN and NB were 0.3, 1, 6, 0.4 seconds, respectively. This

limitation can be considered as future work to be further investigated. In addition, the proposed

CFA data mining method can be utilized to address the classification problems in different

domains. Based on the above analysis, excluding the execution time, we conclude that CFA is a

considerable potential rule-generation tool.

0

0,2

0,4

0,6

0,8

1

DT

SVM

KNN

Naïve Bayes

CFA

0,936

0,79

0,874

0,803

0,947

0,7

0,75

0,8

0,85

0,9

0,95

1

DT SVM KNN Naïve
Bayes

CFA

AUC

AUC

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

264

CONFLICT OF INTEREST

The authors acknowledge that there is no conflict of interest or common interest with any

institution/organization or person.

AUTHOR CONTRIBUTION

Adel Sabry Eesa contributed to the determination and management of the conceptual and

design processes of the study, data collection, data analysis and interpretation, creation of the

draft paper, critical analysis of the intellectual content and final approval with full responsibility.

 Sheren Sadiq, contributed to the determination and management of the conceptual and

design processes of the study, data collection, data analysis and interpretation, creation of the

draft paper, critical analysis of the intellectual content and final approval with full responsibility.

Masoud Muhammed contributed to the determination and management of the conceptual and

design processes of the study, data collection, data analysis and interpretation, creation of the

draft paper, critical analysis of the intellectual content and final approval with full responsibility.

Zeynep Orman contributed to the determination and management of the conceptual and

design processes of the study, data analysis and interpretation, creation of the draft paper, critical

analysis of the intellectual content and final approval with full responsibility.

REFERENCES

1. Aburomman, A.A. and Reaz, M.B.I. (2016) A novel SVM-kNN-PSO ensemble method for

intrusion detection system, Applied Soft Computing Journal, 38, 360–372.

doi:10.1016/j.asoc.2015.10.011

2. Aghdam, M. H. and Kabiri, P. (2016) Feature Selection for Intrusion Detection System Using

Ant Colony Optimization, International Journal of Network Security, 18(3), 420-432.

https://pdfs.semanticscholar.org/022d/50ecb37eb6c78be9728ed7bc198a29cc6915.pdf

3. Ali, G.A. and Jantan, A. (2011) A New Approach Based on Honeybee to Improve Intrusion

Detection System Using Neural Network and Bees Algorithm, International Conference on

Software Engineering and Computer Systems, Springer, Berlin, Heidelberg, 777–792.

doi:10.1007/978-3-642-22203-0_65

4. Arshak, Y., and Eesa, A. (2018) A New Dimensional Reduction Based on Cuttlefish

Algorithm for Human Cancer Gene Expression, International Conference on Advanced

Science and Engineering, IEEE, Duhok, Iraq, 48-53. doi: 10.1109/ICOASE.2018.8548908

5. Balasaraswathi, V.R., Sugumaran, M. and Hamid, Y. (2018) Chaotic Cuttle Fish Algorithm

for Feature Selection of Intrusion Detection System. International Journal of Pure and

Applied Mathematics, 119(10), 921–935. https://acadpubl.eu/jsi/2018-119-

10/articles/10a/81.pdf

6. Chung, Y.Y. and Wahid, N. (2012) A hybrid network intrusion detection system using

simplified swarm optimization (SSO), Applied Soft Computing, 12(9), 3014–3022.

doi:10.1016/J.ASOC.2012.04.020

7. Duric, Z. (2014) WAPTT - Web Application Penetration Testing Tool, Advances in Electrical

and Computer Engineering, 14(1), 93–102. doi:10.4316/AECE.2014.01015

8. Eesa, A.S., Abdulazeez, A.M.A., and Orman, Z. (2017) A DIDS Based on The Combination

of Cuttlefish Algorithm and Decision Tree, Science Journal of University of Zakho.

https://link.springer.com/conference/icsecs
https://link.springer.com/conference/icsecs

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

265

doi:10.25271/2017.5.4.382

9. Eesa, A.S., Brifcani, A.M.A and Orman, Z. (2014) A New Tool for Global Optimization

Problems-Cuttlefish Algorithm, International Journal of Computer and Information

Engineering, World Academy of Science, Engineering and Technology, 8(9), 1235–1239.

https://waset.org/publications/9999515/a-new-tool-for-global-optimization-problems-

cuttlefish-algorithm

10. Eesa, A.S. and Orman, Z. (2020), A new clustering method based on the bio‐inspired

cuttlefish optimization algorithm, Expert Systems, 37, 1-13. doi:10.1111/exsy.12478

11. Eesa, A.S., Orman, Z. and Brifcani, A.M.A. (2015) A novel feature-selection approach based

on the cuttlefish optimization algorithm for intrusion detection systems, Expert Systems with

Applications, 42(5), 2670–2679. doi:10.1016/J.ESWA.2014.11.009

12. Gauthama, R.M.R., Somu, N., Kirthivasan, K., Liscano, R. and Shankar S.V.S. (2017) An

efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter

optimization and feature selection in support vector machine, Knowledge-Based Systems,

134, 1–12. doi:10.1016/j.knosys.2017.07.005

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009). The

WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10.

doi:10.1145/1656274.1656278

14. Hamamoto, A.H., Carvalho, L.F., Sampaio, L.D.H., Abrão, T. and Proença, M.L. (2018)

Network Anomaly Detection System using Genetic Algorithm and Fuzzy Logic, Expert

Systems with Applications, 92, 390–402. doi:10.1016/J.ESWA.2017.09.013

15. Issa, A.S. and Brifcani, A.M. (2011) Intrusion Detection and Attack Classifier Based on Three

Techniques: A Comparative Study, Engineering and Technology Journal, 29(2), 386–412.

https://www.iasj.net/iasj?func=article&aId=26174

16. Jiao, Y. and Du, P. (2016) Performance measures in evaluating machine learning based

bioinformatics predictors for classifications, Quantitative Biology, 4(4), 320–330.

doi:10.1007/s40484-016-0081-2

17. Jose, S., Malathi, D., Reddy, B. and Jayaseeli, D. (2018) A Survey on Anomaly Based Host

Intrusion Detection System, Journal of Physics: Conference Series, 1000(1), 012049.

doi:10.1088/1742-6596/1000/1/012049

18. Kanaka, V.K. and Sitamahalakshmi, T. (2017) Implementation of Intrusion Detection System

Using Artificial Bee Colony with Correlation-Based Feature Selection, Advances in

Intelligent Systems and Computing, Springer, Singapor, 507, 107–115. doi:10.1007/978-981-

10-2471-9_11

19. Khraisat, A., Gondal, I. and Vamplew, P. (2018) An Anomaly Intrusion Detection System

Using C5 Decision Tree Classifier, Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Springer, Cham, 149–155. doi:10.1007/978-3-030-04503-6_14

20. Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J. (2019) Survey of intrusion

detection systems: techniques, datasets and challenges, Cybersecurity, 2(1), 20.

doi:10.1186/s42400-019-0038-7

21. Kiziloluk, S. and Alatas, B. (2015) Automatic mining of numerical classification rules with

parliamentary optimization algorithm, Advances in Electrical and Computer Engineering,

15(4), 17–24. doi:10.4316/AECE.2015.04003

22. Koc, L., Mazzuchi, T.A. and Sarkani, S. (2012) A network intrusion detection system based

on a Hidden Naïve Bayes multiclass classifier, Expert Systems with Applications, 39(18),

Eesa A. S.,Sadiq Sh.,Hassan M. M., Orman Z.:Rule Gen. Based on Modified Cuttlefish Algm. for IDS

266

13492–13500. doi:10.1016/J.ESWA.2012.07.009

23. Li, W., Yi, P., Wu, Y., Pan, L. and Li, J. (2014) A new intrusion detection system based on

KNN classification algorithm in wireless sensor network, Journal of Electrical and Computer

Engineering, 2014.doi:10.1155/2014/240217

24. Li, Yang and Guo, L. (2007) An active learning based TCM-KNN algorithm for supervised

network intrusion detection, Computers and Security, 26(7–8), 459–467.

doi:10.1016/j.cose.2007.10.002

25. Li, Yinhui, Xia, J., Zhang, S., Yan, J., Ai, X. and Dai, K. (2012) An efficient intrusion

detection system based on support vector machines and gradually feature removal method,

Expert Systems with Applications, 39(1), 424–430. doi:10.1016/j.eswa.2011.07.032

26. Mukherjee, S. and Sharma, N. (2012) Intrusion Detection using Naive Bayes Classifier with

Feature Reduction, Procedia Technology, 4, 119–128. doi:10.1016/J.PROTCY.2012.05.017

27. Panigrahi, R. and Borah, S. (2018) Rank Allocation to J48 Group of Decision Tree Classifiers

using Binary and Multiclass Intrusion Detection Datasets, Procedia Computer Science, 132,

323–332. doi:10.1016/j.procs.2018.05.186

28. Patel, K. and Buddhadev, B. (2015) Predictive rule discovery for network intrusion detection,

Advances in Intelligent Systems and Computing, 321, 287–298. doi:10.1007/978-3-319-

11227-5_25

29. Eesa, A.S., Brifcani, A.M.A and Orman, Z. (2013) Cuttlefish Algorithm – A Novel Bio-

Inspired Optimization Algorithm, International Journal of Scientific & Engineering

Research, 4(9), 1978-1986.

https://www.ijser.org/onlineResearchPaperViewer.aspx?Cuttlefish-Algorithm-A-Novel-

Bio-Inspired-Optimization-Algorithm.pdf

30. Schuh, G., Reinhart, G., Prote, J.P., Sauermann, F., Horsthofer, J., Oppolzer, F. and Knoll, D.

(2019) Data mining definitions and applications for the management of production

complexity, Procedia CIRP, 81, 874–879. doi:10.1016/j.procir.2019.03.217

31. Sumaiya, T.I. and Aswani, K.C. (2017) Intrusion detection model using fusion of chi-square

feature selection and multi class SVM, Journal of King Saud University - Computer and

Information Sciences, 29(4), 462–472. doi:10.1016/J.JKSUCI.2015.12.004

32. Swarnkar, M. and Hubballi, N. (2016) OCPAD: One class Naive Bayes classifier for payload

based anomaly detection, Expert Systems with Applications, 64, 330–339.

doi:10.1016/j.eswa.2016.07.036

33. Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A. (2009) A detailed analysis of the KDD

CUP 99 data set, 2009 IEEE Symposium on Computational Intelligence for Security and

Defense Applications, 1–6. doi:10.1109/CISDA.2009.5356528

34. Tharwat, A. (2018) Classification assessment methods, Applied Computing and Informatics.

https://doi.org/10.1016/j.aci.2018.08.003

35. UCI Machine Learning Repository (2015) KDD Cup 1999 Data.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

36. Vancea, F. (2014) Intrusion Detection in NEAR System by Anti-denoising Traffic Data Series

using Discrete Wavelet Transform, Advances in Electrical and Computer Engineering, 14(4),

43–48. doi:10.4316/AECE.2014.04007

37. Varma, P.R.K., Kumari, V.V. and Kumar, S.S. (2016) Feature Selection Using Relative

Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection

Uludağ University Journal of The Faculty of Engineering, Vol. 26, No. 1, 2021

267

System, Procedia Computer Science, 85, 503–510. doi:10.1016/J.PROCS.2016.05.203

38. Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G. and Zhang, R. (2020) Model of the intrusion

detection system based on the integration of spatial-temporal features, Computers and

Security, 89, 101681. doi:10.1016/j.cose.2019.101681

39. Zhao, M., Zhai, J. and He, Z. (2010) Intrusion detection system based on support vector

machine active learning and data fusion, Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 272–

279. doi:10.1007/978-3-642-16493-4_28

268

