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Abstract 

In this paper, numerical solutions of second order initial value problems of Bratu-type equation using predictor-
corrector method is considered. The stability and convergence analysis are investigated. To validate the 
applicability of the scheme, two model problems are considered for numerical experimentation. In a nutshell, the 
present method improves the findings of some existing numerical methods reported in the literature. 
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1. Introduction 

 

In this paper we presented a problem of the form 
 

  

                                 
( )''( ) 0, 0u xu x e x lλ+ = ≤ ≤                                          (1) 

 

subject to the initial conditions 
 
 

(0) , '(0)u uα γ= =                                    (2) 
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where , andλ α γ  are constant numbers  for ( )u x is unknown function. 
In numerical analysis, predictor-corrector methods belong to a class of algorithms designed to 
integrate ordinary differential equations to find an unknown function that satisfies a given 
differential equation. When considering the numerical solution of ordinary differential 
equations (ODEs), a predictor-corrector method typically uses an explicit method for the 
predictor step and an implicit method for the corrector step. Bratu-Type equation is widely 
used in science and engineering to describe complicated physical and chemical models [1]. As 
author [2] stated, recently much attention has been given to develop several iterative methods 
for solving nonlinear equations of Bratu-type of equations. The nonlinear models of real-life 
problems are still difficult to solve analytically. Authors [3], [4] said that there has been 
recently  much attention devoted to the search for better and more efficient numerical  
methods for determining a solution  to nonlinear models. Recently, authors [5-9] solves Bratu 
type equation using different numerical method but still there is a room for accuracy of the 
governing problem under consideration. Therefore, it is important to develop more accurate 
and convergent numerical method for solving second order Bratu-type equation. Thus, the 
purpose of this study is to develop stable, convergent and more accurate numerical method for 
solving initial value problems of Bratu-Type equations. We first linearize the given equation 
using quasi-linearization formula and then used fourth order Adams-Bash forth method as a 
predictor and Adams-Moulton fourth order method as a corrector. The starting values    
1 2 3( , , )u u u  were calculated using Runge-Kutta fourth order method. 

 

2. Formulation of the method 
 

Bratu-type of Eq. (1) can be transformed to a linear differential problem using the quasi 
linearization method and we get the iterative scheme as 
 
                

( ) ( )
1 1( ) ( ) ( ( ) 1)k ku x u x

k k ku x e u x e u xλ λ+ +ʹ́ ʹ+ + = −                                   (3) 
 

with initial condition  
 

                                          1(0)ku β+ =  and 1(0)ku γ+ʹ =                                                            (4) 
 
where 1, 2, 3, ....k =   
Eq. (3) can be used to compute 1( )ku x+  provided ( )ku x is known. In particular, the initial 
approximation 0( )u x  must be specified so that we compute 1( )u x . Once 1( )u x is known, we 
compute 2( )u x  using Eq. (3) and so on.  
Eqs. (3) and (4) can be reduced to the equations 
 
 

  ( ) ( ) ( ) ( ),   0 ,Lu u x a x u x b x x lʹ́≡ + = ≤ ≤                                                (5) 
 

where, ( ) ( )( ) ( ) ( ( ) 1)u x u xa x e and b x e u xλ λ= = −  
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with initial condition  
 
                                         (0)u α=  and (0)u γʹ =                                (6) 
 
Therefore, the given second order IVP of Bratu equation is linearized to Eq. (5) with initial 
condition (6) can be solved by explicit-implicit Adams-Bashforth-Moulton predictor-corrector 
method. Eq. (5) can be reduced to first order system of equations using the 
substitutions ( ) ( ) and ( ) ( )v x u x v x u xʹ ʹ ʹ́= = . Then Eq. (5) and Eq. (6) can be re-written as: 
 

                       

( ) ( ) ( , , ),   (0)
( ) ( ) ( ) ( ) ( , , ), (0)
u x v x F x u v u
v x b x a x u x G x u v v

α

γ

ʹ = = =⎧
⎨ ʹ = − = =⎩      

                              (7) 

 
Dividing the interval [0, ]l  into  N equal subinterval of mesh length h and the mesh point is 
given by 0 , for 1,2,..., 1.nx x nh n N= + = −  For the sake of simplicity let use the notation: 
( )n nu x u= , ( )n nv x v= , etc. Thus, at the nodal point nx  Eq. (7), written as: 

 

                              

( , , ), (0)
( , , ), (0)

n n n n

n n n n

u F x u v u
v G x u v v

α

γ

ʹ = =⎧
⎨ ʹ = =⎩

                                         (8) 

 

where   ( , , ) ( ) ( ) ( )n n n n n nG x u v a x u x b x= − +       

To solve the system of equations given in Eq. (8), we use explicit-implicit multi step methods 
that require information about the solution at nx  to calculate at 1nx +  from the solution at a 
number of previous solutions using Runge-Kutta method as self-starter. 

For the general case let’s consider the first order nonlinear equal spaced initial value problem 
(IVP) of the form  

 

																																																																	 0( ) ( , ( )),    ( )u x f x u x u x αʹ = =                                            (9) 

 

The IVP of the form of Eq. (9) can be solved by using fourth order Runge-Kutta method. The 
general fourth order Runge-Kutta method of Eq. (9) is given by [10]. 

 

                                            

4

1
1

n n n n
n

u u h w k+
=

= + ∑

                                                               

(10) 
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where 
4

,
1

( ,  )n n n n n j j
j

k f x c h u a k
=

= + +∑  

For particular fourth order classical Runge-Kutta method we have: 

 

  

1 1 2 3 4
1 ( 2 2 )
6n nu u h k k k k+ = + + + +                                       (11) 

 

where       1 2 1 3 2

4 3

1 1 1 1( , ),   ( , ),    ( , )
2 2 2 2

( , )

n n n n n n

n n

k f x u k f x h u k k f x h u k

k f x h u k

= = + + = + +

= + +
 

For the fourth order Runge-Kutta method of the system of equations of the form of Eq. (8) 
can also be expressed as: 

 

            

1
1

1

4

4

1

n n n

n n n

n
n

n
n

u w k

v w

u

v k

+
=

+
=

= +⎧
⎪⎪
⎨

+⎪
⎪

=
⎩

∑

∑
                                                   (12) 

 

where  
1 1

1 1

4 4

4 4

( ,  , ) 

( , ,  ) 

n n nj j nj j
j j

nj j nj j
j j

n n n

n n n n n

hF x c h u a k v a

hG x

k m

m mc h u a k v a

= =

= =

= + + +

= + + +

⎧
⎪
⎪
⎨
⎪
⎪⎩

∑ ∑

∑ ∑
 

 Eq. (12) can also be simplified to the fourth order of classical Runge-Kutta method as: 

 

1 1 2 3 4

1 1 2 3 4

1 ( 2 2 )
6
1 ( 2 2 )
6

n n

n n

u u h k k k k

v v h m m m m

+

+

⎧ = + + + +⎪⎪
⎨
⎪ = + + + +
⎪⎩

                                    (13) 

 

where  
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1 1

2 1 1 2 1 1

3 2 2 3 2 2

4

( , ,  )                                    ( , ,  )
1 1 1 1 1 1( , , )        ( , , )
2 2 2 2 2 2
1 1 1 1 1 1( , , )        ( , , )
2 2 2 2 2 2

(

n n n n n n

n n n n n n

n n n n n n

k F x u v m G x u v

k F x h u k v m m G x h u k v m

k F x h u k v m m G x h u k v m

k F x

= =

= + + + = + + +

= + + + = + + +

= 3 3 4 3 3, , )                 ( , , )n n n n n nh u k v m m G x h u k v m+ + + = + + +

 

Using Eq. (13) we can derive the general formula of the linearized Bratu equation of Eq. (8). 
Let calculate the values of ik  and im  for 1, 2, 3i =  and 4  as follow: 

'
1

1

( , , )
( , , ) -
n n n n

n n n n n n

k F x u v u
m G x u v a u b
= =

= = +

 

2 1 1 2 1 1
1 1 1 1 1 1( , , )                 ( , , )
2 2 2 2 2 2

1 1                                                           - ( )
2 2

n n n n n n

n n n n n n

k F x h u k v m m G x h u k v m

u u a u u b

= + + + = + + +

ʹ ʹ́ ʹ= + = + +

 

3 2 2 3 2 2
1 1 1 1 1 1( , , )     ( , , )
2 2 2 2 2 2

1 1 1 1                                 ( )
2 4 2 4

n n n n n n

n n n n n n n

k F x h u k v m m G x h u k v m

u u u a u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́= + + = − + + +

 

4 3 3 4 3 3

(4)

( , , )          ( , , )
1 1 1 1            ( )
2 4 2 4

n n n n n n

n n n n n n n n

k F x h u k v m m G x h u k v m

u u u u a u u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́ ʹ́ʹ= + + + = − + + + +

 

Using Eq. (13) we can derive the general formula of the linearized Bratu equation of Eq. (8). 
Let calculate the values of ik  and im  for 1, 2, 3i =  and 4  as follow: 

'
1

1

( , , )
( , , ) -
n n n n

n n n n n n

k F x u v u
m G x u v a u b
= =

= = +

 

2 1 1 2 1 1
1 1 1 1 1 1( , , )                 ( , , )
2 2 2 2 2 2

1 1                                                           - ( )
2 2

n n n n n n

n n n n n n

k F x h u k v m m G x h u k v m

u u a u u b

= + + + = + + +

ʹ ʹ́ ʹ= + = + +
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3 2 2 3 2 2
1 1 1 1 1 1( , , )     ( , , )
2 2 2 2 2 2

1 1 1 1                                 ( )
2 4 2 4

n n n n n n

n n n n n n n

k F x h u k v m m G x h u k v m

u u u a u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́= + + = − + + +

 

4 3 3 4 3 3

(4)

( , , )          ( , , )
1 1 1 1            ( )
2 4 2 4

n n n n n n

n n n n n n n n

k F x h u k v m m G x h u k v m

u u u u a u u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́ ʹ́ʹ= + + + = − + + + +

 

Then substituting these values of 'sik  and 'sim  ( )i 1,  2,  3,  4=  in Eq. (13) and simplifying the 
equations separately for 1 1and n nu v+ + we get: 

 

                     

1 1 2 3 4

(4)

1 ( 2 2 )
6

1 1 1( )
2 6 24n n

nn

n nu u u

u u h k k k k

u h u

+

ʹ ʹ́ ʹ́ʹ

= + + + +

= + + + +

                                      

(14) 

 

and the values of 1nv + can also be calculated as follows: 

    

1 1 2 3 4
1 ( 2 2 )
6

1 1 1 ( )
2 6 24 n

nn

n n n n n n n n n

v v h m m m m

v h a u a u a u a u b

+ = + + + +

ʹ ʹ́ ʹ́ʹ= − + + + +
                             (15) 

 

Therefore the system of equation (13) simplified to: 

 
(4)

1

1

1 1 1( )
2 6 24
1 1 1( )
2 6 24

n

n

n n n nn

n n n n n n n n nn

u u h u u u u

v v h a u a u a u a u b

+

+

⎧
⎪⎪
⎨
⎪
⎪⎩

ʹ ʹ́ ʹ́ʹ= + + + +

ʹ ʹ́ ʹ́ʹ= − + + + +
                        (16) 

 

This equation is Runge-Kutta fourth order formula used to approximate the values of 
 and n nu v  for n 1,  2,  3=  since the Adams-Bashforth-Moulton predictor-corrector method 

requires these values. 
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To solve Eq. (9), we can apply the explicit-implicit multistep method that requires 
information about the solution at 1nx +  from the solution at a number of previous solutions. 

To begin the derivation of the multi-step methods, if we integrate the initial-value problem 
over the interval 1[ , ],n nx x +  then the following property exists:     

 

                                   

1

1( ) ( ) ( , ( ))
n

n

x

n n
x

u x u x f x u x dx
+

+ = + ∫                                          (17) 

 

where ( , ( ))f x u x  is the first derivative of ( ).u x  To derive an Adams-Bashforth method, 
Newton backward difference formula with a set of equal spacing points, 1 1, ..., , ,n k n nx x x+ − −  is 
used to approximate the integral and the fourth order Adams-Bashforth method is given by 
[2]. 

 

																									 [ ]1 1 2 355 59 37 9
24n n n n n n k
hu u f f f f T+ − − −= + − + − +                                  (18) 

 

where, kT  is the truncation error of the fourth order Adams-Bashforth method and is given by:    

             

                              ( ) ( )55 5251 ( )
720kT h u O hξ= =                                                  (19)   

  

To use Eq. (18), we require the starting values 1 2, ,n n nu u u− −  and 3nu −  which are calculated by 
self-starting single step method, Runge-Kutta fourth order method for our case. The fourth 
order Adams-Bashforth method for the system of Eq.  (8), can be solved using Eq. (18) and it 
becomes 

 

                                    
[ ]

[ ]

1 1 2 3

1 1 2 3

55 59 37 9
24

55 59 37 9
24

n n n n n n

n n n n n n

hu u F F F F

hv v G G G G

+ − − −

+ − − −

⎧ = + − + −⎪⎪
⎨
⎪ = + − + −
⎪⎩

                                   (20) 

 

Using Eq. (20) we can formulate the general form of the systems of Eq. (8) for 4n ≥ . 
Therefore, Eq. (20) can be derived as follow: 
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1 1 2 3(55 59 37 9 )
24n n n n n n
hu u F F F F+ − − −= + − + −                                         (21) 

But, since the values of 1 2, ,n n nF F F− − and 3nF − , for 4n ≥ , can be calculated using the linearized 
system of Eq. (8), we have 

 

1 1 2 2 3 3, , ,  ,n n n n n n n nF u F u F u F u− − − − − −ʹ ʹ ʹ ʹ= = = =                           
            

(22) 

 

Then 

 

1 1 2 3(55 59 37 9 )
24n n n n n n
hu u u u u u+ − − −ʹ ʹ ʹ ʹ= + − + −                                 (23) 

 

For  

 

1 1 2 3(55 59 37 9 )
24n n n n n n
hv v G G G G+ − − −= + − + −                        (24) 

 

where the values of 1 2 3 ,  , ,n n n nG G G G− − −   are given by: 

 

                          
1 1 1 1

2 2 2 2 3 3 3 3

,   ,
,   

n n n n n n n n

n n n n n n n n

G a u b G a u b
G a u b G a u b

− − − −

− − − − − − − −

= − + = − +⎧
⎨

= − + = − +⎩
                     (25) 

 

So, Eq. (24) becomes 

 

1 1 1 1 2 2 2

3 3 3

(55( ) 59( ) 37( )
24

9( ))

n n n n n n n n n n n

n n n

hv v a u b a u b a u b

a u b

+ − − − − − −

− − −

= + − + − − + + − +

− − +   

  (26) 

 

Then summarizing Eq. (23) and (26), we have  
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1 1 2 3

1 1 1 1 2 2 2

3 3 3

(55 59 37 9 )
24

(55( ) 59( ) 37( )
24

9( ))

n n n n n n

n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ − − −

+ − − − − − −

− − −

⎧ ʹ ʹ ʹ ʹ= + − + −⎪
⎪
⎪

= + − + − − + + − +⎨
⎪

− − +⎪
⎪⎩             

(27) 

 

Therefore,  Eq. (27) is the fourth order Adams-Bashforth predictor method for the given 
system of Eq. (8). 

Similarly,  to solve the given nonlinear differential equation using fourth order Adams-
Moulton method, first let’s consider the first order nonlinear IVP of the form Eq. (9) and the 
method is derived by using the set of equal spacing points, 2 1, ..., ,n k n nx x x+ − + . 
Integrating both sides of Eq. (9) with respect to x  from 1ton nx x + we have, 

 

            

1

1( ) ( ) ( , ( ))
n

n

x

n n
x

u x u x f x u x dx
+

+ = + ∫
                                 

(28) 

 

Replace ( , )f x u of Eq. (27) by the polynomial ( )kp x of degree ,k  which interpolates 
( , )f x u at 1k +  points and Newton backward interpolation formula, gives polynomial of 

degree  k and the fourth order Adams-Moulton method is given by: 

 

            
[ ]1 1 1 29 19 5

24n n n n n n l
hu u f f f f T+ + − −= + + − + +

                                 (29) 

 

where, the truncation error lT  is given by: 

 

            
( ) ( )55 519( ) ( )

720
T x h u O hξ

−
= =

                                            (30) 

 

The system of  Eq.  (8), is then given by 
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[ ]

[ ]

1 1 1 2

1 1 1 2

9 19 5
24

9 19 5
24

n n n n n n

n n n n n n

hu u F F F F

hv v G G G G

+ + − −

+ + − −

⎧ = + + − +⎪⎪
⎨
⎪ = + + − +
⎪⎩

                                     
(31)   

 

To apply Eq. (31) on Bratu equation, we simplify this equation using the same procedures as 
we have done for the predictor (Adams-Bashforth method) above. 

That is, the values of 1 1 2, , ,n n n nF F F F+ − − and 1 1 2, ,  ,n n n nG G G G+ − − are as calculated for the 
predictor method. Therefore, the system of Eq. (31) can be written as: 

 

          

1 1 1 2

1 1 1 1 1 1 1

2 2 2

(9 19 5 )
24

(9( ) 19( ) 5( )
24

( ))

n n n n n n

n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ + − −

+ + + + − − −

− − −

⎧ ʹ ʹ ʹ ʹ= + + − +⎪
⎪
⎪

= + − + + − + − − +⎨
⎪

+ − +⎪
⎪⎩                  

(32) 

 

This is the Adams-Moulton corrector formula. We use the fourth order Adams-Bashforth 
method as a predictor and Adams-Moulton method as a corrector and we have the following 
equations. 

 

                                

[ ]

[ ]

1

1

1 2 3

1 2 3

55 59 37 9
24

55 59 37 9
24

n

n

p
n n n n n

p
n n n n n

hu u F F F F

hv v G G G G

+

+

− − −

− − −

⎧ = + − + −⎪⎪
⎨
⎪ = + − + −
⎪⎩

                                         (33)        

  

  1 1 1 1

1 1 1 1

where     ( , , )

               ( , , )

p p
n n n n

p p
n n n n

F F x u v
G G x u v

∗
+ + + +

∗
+ + + +

=

=  

 

                                   
1 1 1 2

1 1 1 2

9 19 5
24

9 19 5
24

c
n n n n n n

c
n n n n n n

hy y F F F F

hz z G G G G

∗
+ + − −

∗
+ + − −

⎧ ⎡ ⎤= + + − +⎣ ⎦⎪⎪
⎨
⎪ ⎡ ⎤= + + − +⎣ ⎦⎪⎩

                                        (34) 
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1 1and  p p
n nu v+ + are calculated from Eq.  (34) and applying these equations on the linearized 

Bratu equations is the same as combining  Eq. (27)  and  Eq. (32), using Eq. (27) as a 
predictor and Eq.(32) as a corrector and it becomes:

 Predictor Formula 

 

    

1 1 2 3

1 1 1 1 2 2 2

3 3 3

(55 59 37 9 )
24

(55( ) 59( ) 37( )
24

9( ))

p
n n n n n n

p
n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ − − −

+ − − − − − −

− − −

⎧ ʹ ʹ ʹ ʹ= + − + −⎪
⎪
⎪

= + − + − − + + − +⎨
⎪

− − +⎪
⎪⎩                 

(35) 

 

and corrector formula 

 

         

' ' ' '
1 1 1 2

1 1 1 1 1 1 1

2 2 2

(9( ) 19 5 )
24

(9( ) 19( ) 5( )
24

( ))

c p
n n n n n n

c p
n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ + − −

+ + + + − − −

− − −

⎧ = + + − +⎪
⎪
⎪

= + − + + − + − − +⎨
⎪

+ − +⎪
⎪⎩                     

(36) 

 

3. Truncation Error, Convergence and Stability Analysis 

 

Let’s consider the more general multistep method of the following  

 

                  

[ ]1 1 2 1 1

0 1 1 1 1 1

( ) ( ) ( ) ... ( )

( , ( )) ( , ( )) ... ( , ( ))

k k k m k m

k k k k m k m k m

U t U t U t U t
h

f t U t f t U t f t U t

α α α

β β β

+ − + −

+ + + − + −

+ + + +

= + + +                  

(37) 

 

where iα  and jβ , (for 1, 2, 3, ...,i m=  and 1, 2, 3, ....,j m= ) are constants.

 
Theorem 1: If a sequence of numbers ke satisfies  
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1 1 2 1 1...k k k m k m ke e e e hTρ ρ ρ+ − + −+ + + + =                                           (38) 

 

for 1( 1)k m m≥ − ≥ and if all the roots of the corresponding characteristic polynomial 

 

1 2
1 2 ...m m m

mλ ρ λ ρ λ ρ− −+ + + +                                                        (39) 

 

are less than or equal to one  in absolute value, and all multiple roots are strictly less than one  
in absolute value, then 

0 1max{ ,..., } ,where t , max ,and isaconstantdepending

onlyon the .
k m k k j

i

e M e e t T kh T T Mρ ρ

ρ
−≤ ⎡ + ⎤ = =⎣ ⎦

Definition: The region of absolute stability of a multistep method consists of those values of 
ah in the complex plane for which all roots of polynomial  

 

1 2
0 1 1 2 2(1 ) ( ) ( ) ... ( )m m m

m mah ah ah ahβ λ α β λ α β λ α β− −− + − + − + + −                      (40) 

 

are less than or equal to one in absolute value, and all multiple roots are strictly less than one 
in absolute value. 

Theorem 2: The multistep method (29) is stable provided all roots of   

                 

1 2
1 2 ....m m m

mλ α λ α λ α− −+ + + +                                  (41) 

 

are less than or equal to one in absolute value, and all multiple roots are strictly less than one  
in absolute value. 

The error terms for the numerical integration formulas used to obtain both the predictor and 
corrector are of the order 5( ).O h  Therefore, the local truncation errors of predictor and 
corrector are respectively 
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( ) ( )

( ) ( )

55
1 1

55
1 1

251( )
720
19( )
720

n n

n n

u t p h u

u t u h u

ξ

ζ

+ +

+ +

⎧ − =⎪⎪
⎨

−⎪ − =
⎪⎩

      (42) 

 

where 1( )nu t +  is given by Eq. (15) for the predictor and Eq. (20) for corrector and 1np +  and  

1nu + are calculated values for Adams-Bash forth predictor and Adams-Moulton corrector given 
by Eqs. (16) and (29) respectively

  
 

3. Stability Analysis 

 

Some of the most popular higher-order, stable, multistep methods are the Adams methods, 
which ensure stability by choosing 1 2 31 and  ... 0.mα α α α= − = = = = The characteristic 
polynomial corresponding to theorem 1 is 1m mλ λ −−  which has 1 as a simple root and 0 as a 
multiple root. Thus these methods are stable regardless of the values chosen for the 's.iβ   

The values of 'siβ  are determined in order to maximize the order of the truncation error. For 
Adams-Bashforth method we can calculate the value of iβ  as [2]: 

 

( ) ( ) ( )

( ) ( )

01 1 21 1

0 1 20 00 1 20

41 13
3 40 03 4

1 51 1,   1 ,   1 ,   
2 12

3 251 1 ,   1
8 720

s s s

s s

ds ds ds

ds ds

β β β

β β

− − −

− −

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = = − = = − =⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎨
⎛ ⎞ ⎛ ⎞⎪ = − = = − =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

∫ ∫ ∫

∫ ∫
      (43) 

 

And also for Adams-Moulton method we have  

 

0 1 2 3 4
1 1 1 191, , , ,
2 12 24 720

β β β β β= = − = − = − = −
  

(44) 

 

Since for all Adams methods the values of 1 2 31  and   ... 0mα α α α= − = = = = , the fourth 
order Adams-Bashforth method (Eq. 18) and fourth order Adams-Moulton method Eq. (31) 
have the characteristic equation of 
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4 3 3( ) 0 ( 1) 0ρ λ λ λ λ λ= − = ⇒ − =                                   (45) 

                           
 

1λ⇒ = is a simple root and 0 is a multiple root with multiplicity 3. 

Therefore, since the simple root is 1, and multiple roots are 0 which is strictly less than 1, by 
Theorem 1, Adams-Bash forth and Adams-Moulton methods are stable.  

 

4. Numerical Examples and Results 

 

To demonstrate the applicability of the method, we implemented the method on four 
numerical examples To show the applicability and efficiency of the method, we have taken 
two examples of Bratu-type model and compared the numerical solutions with different other 
numerical methods and exact solution as follow. 
 
Example 1: Consider the Bratu-type initial value problem 
 

" 2 0,  0 1
(0) 0, '(0) 0

yy e x
y y

⎧ − = < <
⎨

= =⎩
                                                   (46) 

 
 

whose exact solution is ( ) 2ln(cos( ))y x x= −  

 

Table 1. The comparison of absolute errors for Example 1 at different values of the mesh size 

h with different numerical methods 

    Absolute errors at  0.1h =   
     
x   Method in[7] Method in[8] Method in [10] Present Method  

0.1  6.7100e-6 4.3876e-13  6.4102e-7    2.8436e-9 
0.2  9.5500e-6 4.5402e-10 9.7469e-6    1.2788e-7  
0.3  3.3100e-6 2.6638e-8  4.5299e-5    3.9593e-7 
0.4  8.0400e-6 4.8488e-7 1.2711e-4    3.4141e-6  
0.5  8.4800e-6 4.6664e-6  2.6867e-4    4.4904e-6 
0.6  2.0300e-5 3.0124e-5 4.8365e-4    6.8988e-6 
0.7  7.1500e-5 1.4821e-4  8.3679e-4    1.1741e-5  
0.8  2.9100e-4 6.0039e-4 1.6005e-3    2.1580e-5 
0.9  1.0500e-3 2.1074e-3  3.6497e-3  4.2756e-5  
1.0  3.5300e-3 6.6498e-3 9.3915e-3    9.2517e-5 
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Fig. 1. Plot of exact and approximated solution of Bratu-type equation using predictor-corrector 
method for Example 1 with mesh length 0.1.h =  
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Fig. 2. Point-wise absolute error of Example 1 for different values of number of meshes points. 

 

Example 2: Consider the Bratu-type initial value problem 
 

2
2

2 ,

(0) 0, '(0)

yd y e
dx
y y

π

π

−⎧
= −⎪

⎨
⎪ = =⎩

                                           
(47) 

 
 

whose exact solution is ( ) ln(1 sin( ))y x xπ= +  
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Table 2. The comparison of absolute errors for Example 2 at different values of the mesh size h 

x    Absolute errors at  0.1h =   
    
  Exact value Method in [9] Present Method  

0.1  0.26928  3.20777e-4  3.4129e-5 
0.2       0.46234 2.37600e-5  5.7752e-5  
0.3  0.59278  3.58700e-5  7.9099e-5 
0.4       0.66837 8.01000e-5  2.7368e-4  
0.5  0.69315  1.19500e-4  4.2841e-5 
0.6       0.66837 1.66200e-4  6.8607e-5 
0.7  0.59278  2.20200e-4  1.3754e-4  
0.8       0.46234 2.85100e-4  1.8845e-4 
0.9  0.26928  4.03400e-4  2.2350e-4  
1.0  2.2204e-16 5.37400e-4  2.1737e-4 
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Fig. 3. Plot of exact and approximated solution of Bratu-type equation using predictor-corrector 
method for Example 2 with mesh size 0.1.h =  
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Fig. 4. Point-wise absolute errors of Example 2 for different values of number of mesh points. 
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5. Discussion and Conclusion 
 

This study introduces numerical solutions of second order initial value problems of Bratu-type 
equations using predictor-corrector method. The stability and convergence of the scheme are 
investigated and established well. The numerical solutions are tabulated in terms of point wise 
absolute errors and observed that the present method improves the findings of some existing 
numerical methods reported in the literature (Table 1 and 2). Moreover, behaviors of the 
numerical solution (Figure 1 and 3) and point-wise absolute errors (Figure 2 and 4) were 
shown in figures. According to the plotted figures one can clearly observe that the numerical 
and exact solutions agree very well and as number of mesh point increases or as step size 
decreases, the point-wise absolute error decreases which clearly indicates the convergence of 
the present scheme. Concisely, the present method gives more accurate solution for solving 
second order initial value problems of Bratu-type equations. 
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