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Abstract 

The present study aims to give critical buckling loads of rectangular functionally graded (FG) plates for various 
types of boundary conditions. The finite element formulation of stability of plates is introduced and the procedure 
is applied to obtain critical buckling loads of a plate for two types of boundary conditions: (a) CFFC: two parallel 
edges are clamped and free along the other two; (b) FFFC: the plate is clamped along one edge and free along 
all the others. Variation of mechanical properties of the FG plate along the length and the variation along the 
thickness have been both considered. According to the function of elasticity modulus variation, results have been 
obtained for various power indices of the varying function. Results compare well with those obtained using shell 
elements in ANSYS. 

Keywords: FGM, buckling of plates, finite element method, ANSYS. 

1. Introduction 

Typical composite structures with a mixture of two or more different material phases can be 
referred to as functionally graded plates (FG plates) and the performance of the plates is 
achieved by adjusting the component formula that forms the structure. Such plates completely 
inherit the properties of their components and have some special properties such as high 
hardness, high fatigue resistance, wear resistance. For example, ceramic and metal mixed FG 
plates have thermal properties of ceramics while also having ductility of metals. Therefore, FG 
plates, aircraft, vehicles, ships and so on. It is widely used in engineering applications including. 
Generally, FG plates are subjected to different types of mechanical loads depending on the 
environment in which they operate and are located. In particular, the behavior of the structure 
under mechanical loads causing static bending and buckling is very important for the design of 
the structure. Therefore, it is important to examine the static bending and buckling behavior of 
FG plates. 
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Levy [1] proposed a method to demonstrate the buckling behavior of rectangular plates 
subjected to lateral pressure and edge compression. Javaheri and Eslami [2] investigated the 
buckling analysis of functionally graded plates under in-plane compression loads based on 
classical plate theory. Chen and Liew [3] presented buckling analysis using a net method to 
determine the critical buckling loads of functionally graded rectangular plates exposed to 
nonlinear loads at plane edge loads. Vel and Batrab [4] developed a three-dimensional precise 
solution for simply supported free and forced vibrations of functionally graded rectangular 
plates. Chi and Yen [5], a functionally classified rectangular material plate with simple 
constrained conditions subjected to transverse loading. Shariah and Eslami [6] obtained a 
closed-form solution to the buckling of the FG plate, based on the theory that the plate was 
loaded with mechanical, thermal loads and bending loads for third order shear deformation. 
Modeling and analysis of functionally classified material plates was performed by Birman and 
Larry [7]. An analysis of the classical plate theory and the expansion of the Fourier series was 
achieved by Using the second-order shear deformation theory, the natural frequency of the 
functional-grade rectangular plate was estimated by Shahrjerdi et al. [8]. Theoretical analysis 
of FGM plates based on the physical boundary surface was discussed by Zhangand Zhou [9]. 
Prakashetal [10] examined the effect of neutral surface position on the nonlinear stability 
behavior of functionally graded plates using the finite element method. Mohammadi et al. [11] 
have analytically solved the buckling analysis of simply supported, moderately thick, 
functionally graded rectangular plates with two opposite sides. Talha and Singh [12] researched 
the static and free vibration analysis of functionally classified material plates by using finite 
element model and high-grade shear deformation theory. Pendhari et al. [13] established 
analytical and mixed semi-analytical static solutions for a simple supported plate that is 
functionally rated in a rectangular form. Singha et al. [14] utilized the finite element method in 
the analysis of nonlinear behavior of functionally graded plates under transverse load based on 
the first order shear deformation theory. Hashemi et al. [15] done the new fully closed form 
method for free vibration analysis of functionally graded rectangular thick plates, based on 
Reddy's theory of the third-order shear deformation plate. Bousahla et al. [16] offered a plate 
theory for the buckling analysis of functionally graded plates subjected to uniform, linear and 
nonlinear temperature increases throughout the thickness. Demirhan and Taskin [17] submitted 
Levy's solution, which is based on four variable plate theory, for bending analysis of 
functionally graded sandwich plates. By Mohseni et al. [18], higher grade shear and normal 
deformable plate theory was employed for analytical solution of static analysis of functionally 
graded thick micro-plates. Although there have been many studies on the analysis of isotropic 
and laminated composite beams (i.e., [19-22]), however, the research effort dedicated to 
stability analysis of rectangular of FG plates has been very limited. 

In this study, stability analysis of rectangular FG plates was carried out using thin plate theory 
under various boundary conditions. The ceramic-metal (Alumina-Aluminum) composition of 
the FGM was chosen for numerical results. Using the finite element method, critical buckling 
loads for two types of boundary conditions were found. These boundary conditions are as 
follows: 1- The plate is held along the edges to which the load is applied and free at the other 
edges. 2- The plate was applied to be held along one edge and free along the other three edges. 
The change in the characteristics of the FG plate was considered in two ways. The model was 
formed by assuming that the elastic properties of the plate changed along the length of the plate, 
and that the elastic properties of the plate changed along the thickness of the plate. 
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2. FGM Structures 

In order to analyze FGM structures as shown in Fig. 1, two types of FG variation have been 
considered. In the first, the elasticity modulus varies according to the function given in the 

equation 1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − + .  The other variation function is given as E(x)=E1e-λx. 

 

                z  
Fig. 1. A Rectangular Plate and Coordinate System 

 

3. Provision of Solution Method 

The efficiency and reality of numerical methods is first checked with the analytical results 
obtained for the square plate homogeneous. In the equations given in 

1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − + and E(x)=E1e-λx, the cases are related to a functionally graded 

plate with λ and n factors. If these are chosen to be zero, the plate will be homogenous. Also, 
when the inclination angle is zero with the λ=0 and n=0 the plate is a square homogenous plate 

which has the analytical solution given in the literature [23] as
2

210.07x
DN
a
π

= ; where D is the 

plate stiffness. To compare the results obtained from FEM and ANSYS a plate with varying 
thicknesses is used. For a plate with the dimensions a=0.5, h from 0.0005 to 0.005 and E= 
380.E+09 GPa. The subscripted terms in Table 1 that is ()b (plate base) and ()t (plate tip) are the 
material properties of FG rectangular plate. Table 2. shows results from analytical method and 
finite element method to observe the difference. Note the results are close to each other for the 
homogenous case.  
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Table 1.  Material properties of the FGM plate. 
Properties Unit Aluminum; ()b Alumina; ()t 

E Pa 70 x109 380x109 
υ --- 0,3 0,3 

 

 

Table 2.  Critical buckling loads obtained analytically and by FEM, ANSYS for the 
homogenous square plate. 

h ) xNCritical Buckling Load ( 
(FEM) 

) xNCritical Buckling Load ( 
(ANALYTICALL) 

) xNCritical Buckling Load ( 
(ANSYS) 

0.0005 1734.4789 1729.264 1733.4698 
0.001 13875.8309 13834.1123 13874.8219 

0.0015 46830.9239 46690.1235 46829.8392 
0.002 111006.6472 110672.8982 111005.7647 

0.0025 216809.8125 216157.959 216808.7185 
0.003 374647.3908 373520.9879 374646.4009 

0.0035 594926.2204 593137.5341 594927.4202 
0.004 888053.178 885383.1855 888052.872 

0.0045 1264434.748 1260633.139 1264433.848 
0.005 1734478.5 1729263.672 1734477.6 

4. Formulation with FEM and Solution Procedure 
 
Equation of total tensile energy of a rectangular plate:  
 

( )
2 22 2 2 2

2
2 2 2

2
2 1

2

a b
FGM

a b

D w w w w wU dxdy
x x yy x y

ν
− −

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥= + − − −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫  

                  
221 2

2

a b

x xy y
a b

w w w wN N N dxdy
x x y y

− −

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎪ ⎪
− + +⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫         (1) 

 
where the stiffness matrix of FGM plate [DFGM] is 
 

[ ]
3

2

1 0
E( ) 1 0
12(1 ) 10 0

2

FGM
x hD

ν

ν
ν

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− ⎢ ⎥−

⎢ ⎥
⎣ ⎦

     (2) 

 
The Elasticity Module, which changes along the X axis, is defined as displacements in a plate: 

w= off-plane deviation, x
w
y

θ
∂

=
∂

; slope of the plate in the y direction, y
w
x

θ
∂

=
∂

; slope of the 

plate in the x direction, 
2

xy
w
x y

θ
∂

=
∂ ∂

;  



 N. Can, N. Kurgan, A. Hassan 

47 

Deformation equivalents are in matrix form: 
 

{ }

2

2

2

2

2
2

w
x
w
y

w
x y

ε

⎧ ⎫∂
−⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎪ ⎪
= −⎨ ⎬

∂⎪ ⎪
⎪ ⎪∂⎪ ⎪− −
⎪ ⎪∂ ∂⎩ ⎭

     (3) 

and the stresses are: 
 

{ }
x

y

xy

M
M

M

σ

⎧ ⎫
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

      (4) 

 
where  
 

3 2 2

2 2 2
( )

12(1 )x
E x h w wM

x y
ν

ν

⎛ ⎞∂ ∂
= − −⎜ ⎟⎜ ⎟− ∂ ∂⎝ ⎠

  
3 2 2

2 2 2
( )

12(1 )y
E x h w wM

y x
ν

ν

⎛ ⎞∂ ∂
= − −⎜ ⎟⎜ ⎟− ∂ ∂⎝ ⎠

 

3 2

2
( )(1 )

12(1 )xy
E x h wM

x y
ν

ν

⎛ ⎞∂
= − −⎜ ⎟⎜ ⎟∂ ∂− ⎝ ⎠

     (5) 

 
since modulus of elasticity varies along the x-axis. 
Therefore, stresses are in matrix form: 
 

{ }
x

y

xy

M
M

M

σ

⎧ ⎫
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=[D]FGM { }ε  =[D]FGM 

2

2

2

2

2

2

w
x
w
y
w
x y

⎧ ⎫∂
−⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎪ ⎪
−⎨ ⎬
∂⎪ ⎪

⎪ ⎪∂
⎪ ⎪− −

∂ ∂⎪ ⎪⎩ ⎭

         (6) 

 
On the other hand, the total tensile energy equation of a rectangular plate at loads thought to be 
applied only to Nx's:  
 

2 2 2 2

2 2 22x xy y x
R R

w w w wU M M M dxdy N dxdy
x yx y x

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= ⎜ + + ⎟ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫∫ ∫∫   (7) 

 
Taking the first variation of the energy equation above, writing equal to zero and in matrix 
form: 
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2

2

2

2

2

    0

2

x y xy x
R R

w
x
w w wU M M M dxdy N dxdy

x xy

w
x y

δ δ

⎛ ⎞⎧ ⎫∂⎜ ⎟−⎪ ⎪
⎜ ⎟∂⎪ ⎪
⎜ ⎟⎪ ⎪∂ ∂ ∂⎛ ⎞⎪ ⎪⎜ ⎟⎡ ⎤= − + =⎨ ⎬ ⎜ ⎟⎣ ⎦⎜ ⎟ ∂ ∂∂ ⎝ ⎠⎪ ⎪⎜ ⎟⎪ ⎪∂⎜ ⎟⎪ ⎪− −⎜ ⎟⎪ ⎪∂ ∂⎩ ⎭⎝ ⎠

∫∫ ∫∫   (8) 

 
by using Equations (5) and (6) and (8) this statement can be written as: 
 

{ } { }
3

1
2

1 0
E

1 0 0
12(1 ) 10 0

2

xT
x

R R

e h w wU dxdy N dxdy
x x

λ ν

δε ν ε δ
ν

ν

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ ∂ ∂⎛ ⎞

= + =⎢ ⎥ ⎜ ⎟∂ ∂− ⎝ ⎠⎢ ⎥−
⎢ ⎥
⎣ ⎦

∫∫ ∫∫                  (9) 

Hereinafter, the standard Finite Element procedure using Hermitian polynomials will be used. 
The following definitions are used to represent the Eq. (9) in nodal displacements, including 
the shape functions N! ’s generated from the Hermitian polynomials: 
 

{ } { } { }
TTw N a a N⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

% %      (10) 
 
and  
 

{ }
TTw a Nδ δ ⎡ ⎤= ⎣ ⎦

%      (11) 
 

where T means the transpose of a matrix and { }a is the nodal displacement vector. 
So, the node displacement vector for an element would be: 
 

{ }
.
.
.

x
i

y
e j

xy
k

l

w

a
a

a
a
a

θ

θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪

= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪

⎪ ⎪
⎪ ⎪⎩ ⎭

                  (12) 

 
Crucial ε as in the form  { } [ ]{ }L wε =  and [ ] [ ]B L N⎡ ⎤= ⎣ ⎦

%  . Hence { } [ ]{ }B aε =  
 
Substituting the above equation in Eq. (12) gives 
 

{ } [ ] [ ] { } { } { }
1 0
1 0 0,
10 0
2

TTT Ta B D B dxdy a a N N dxdy aR RFGM x

ν

δ ν δ

ν

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥− =⎜ ⎟⎜ ⎟∫∫ ∫∫⎢ ⎥ ⎣ ⎦⎢ ⎥⎜ ⎟⎣ ⎦⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦−⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

% %       (13) 

 



 N. Can, N. Kurgan, A. Hassan 

49 

Thus, the finite element equation will be in the compact form  
 

 [ ] { } { }F x GxfgmK a N K a− ⎡ ⎤⎣ ⎦      (14) 

 
embodying an eigenvalue problem. [KF] and [KGx] are Bending and geometric hardness 
matrices of FGM plate. Here, the modulus of elasticity of the plate and hence the stiffness 
matrix [D] must be calculated at the nodes due to its dependence on the x values. Thus, when 
finite elements are mounted on spherical matrices, the effect of the diversity of the modulus of 
flexibility is achieved by inserting it into it. But, changing the value λ to zero would be a 
homogeneous plate where the plate is clearly equal to E0 along the elastic modulus. 
For each element [KF] and [KGx] as transmuted into a unit reference element there is  

[ ] [ ] [ ] ( )
1 1

0 0

1 0
1 0 det
10 0
2

e T
F FGMK B D B J d d

η ξ

ν

ν ξ η

ν= =

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

∫ ∫ .     (15) 

 
[B] matrix is described in shape functions and transformation matrices as: 
 

[ ] [ ] [ ]

2 2

2 2

2 2

1 22 2

2 2

N N
x N
N NB T T
y N
N N
x y

ξ

ξ

η

η

ξ η

⎧ ⎫ ⎧ ⎫∂ ∂
⎪ ⎪ ⎪ ⎪

∂ ∂⎧ ⎫∂⎪ ⎪ ⎪ ⎪
⎪ ⎪⎪ ⎪ ⎪ ⎪∂∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪

= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
∂ ∂∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂∂ ∂⎩ ⎭⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

% %
%

% %
%

% %

     (16) 

 
 
where 
 

[ ]

2 2
11 12 11 12
2 2

2 21 22 21 22

11 21 12 22 11 22 12 21

2

2

j j j j

T j j j j
j j j j j j j j

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

    (17) 

 
and 

[ ] [ ] [ ]
11 12

1 2

11 21 12 22
1 1
2 2

J J
T T j

J J J J

ξ ξ

η ξ η ξ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥= −
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

   (18) 

 
In the above equations the Jij and jij are the elements Jacobian and inverse Jacobian matrices of 
the transformation respectively. For two dimensional transformation the elements of Jacobian 
matrix are 11 /J x ξ= ∂ ∂ , 12 /J y ξ= ∂ ∂ , 21 /J x η= ∂ ∂ , 22 /J y η= ∂ ∂ . 
As the flexural stiffness matrix [KF] carries the effect of the elasticity modulus change the 
geometric rigidity matrix [KGx] carries the effect of the plate’s and considering the equilibrium 
of the forces will be in the form: 
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( )
1 1

1
11 12 11 12

10 0
2 tan

e
Gx

bK j N j N j N j N d d
b x ξ η ξ η

η ξ

ξ η
θ

= =

= + +⎡ ⎤⎣ ⎦ +∫ ∫ % % % %   (19) 

 
The coordinate x in the real plane is also transformed into the reference plane in both [KF] and 
[KGx] matrices by ( )( ) ( ) ( )1 2 3 41 1 1 1x x x x xξ η ξ η ξη η ξ= − − − − + − −  attained from the transformation 
polynomials. Here x1,.., x4 are the x coordinates of a real element. In Equation (19) simple taking 
the θ value as zero reach the geometric matrix of a rectangular plate. 
Varying elasticity modulus along z-axis to obtain the effect of the change of elasticity modulus 
along the thickness the same procedure is applied but this time the [D] matrix of the FGM plate 
includes the integral of the elasticity modulus along the z-axis. Thus, Eq. (2) will be in the form 

if an E(z) function as in the Equation 2( )
2

n

t b b
z hE E E E
h
+⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

: 

        

                [ ]
/2

2
1 2 22

/2

1 0
1 21 0 ( )( )

2(1 ) 10 0
2

h
n

fgm
h

z hD E E E z dz
h

ν

ν
ν

ν −

⎡ ⎤
⎢ ⎥
⎢ ⎥ +⎧ ⎫

= − +⎨ ⎬⎢ ⎥
− ⎩ ⎭⎢ ⎥−

⎢ ⎥
⎣ ⎦

∫  (20) 

 
Although the integral along the z-axis can be calculated analytically as 
 

        

             
/2

2
1 2 2

/2

2( )( )
2

h
n

h

z hE E E z dz
h

−

+⎧ ⎫
− +⎨ ⎬

⎩ ⎭∫  

 
 

             
( )( )( ) ( )

3 32
1 2 2

2 2

( ) 2
4 1 2 31 12 1

E E h E hn n
n n nν ν

− + +
= +

+ + +− −
 

(21) 

 
it is convenient to calculate its value by any of the numerical integral methods such as Gaussian 
Quadrature method to provide its applicability to a numerical computation [24]. This time in 
the Equation (20) E1 and E2 denotes the upper and lower surfaces’ elasticity modulus of the 
plate respectively. The effect of the elasticity modulus change in the z-direction is inserted by 
the [D]fgm matrix. Obviously, choosing n=0 the results pertaining to a homogenous case can be 
reached for the plate which has the elasticity modulus E1.  
Thus the flexural stiffness matrix will be as 
 

             [ ] [ ] [ ] [ ] ( )
1 1

0 0

dete T
F fgmK B D B J d d

η ξ

ξ η
= =

= ∫ ∫  (22) 

 
For the geometric stiffness matrix [KGx] of the trapezoidal plate Equation (19) is still valid. 

5. Results and Discussions 
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Figures (2,7) show comparison of FEM and ANSYS evolution of critical buckling loads Nx of 
FGM plate power law index n with aspect ratio a/b=0.25;0.5;0.75;1.0 at CFFC and FFFC 
boundary conditions for the elasticity modulus varies according to the function 

1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − +  and E(x)=E1e-λx.   Results pertaining to a rectangular FGM plate have 

been investigated first for various variation of elasticity modulus both along the thickness and 
along the x-axis. Ceramic-metal material composition of FGM plate has been selected due to 
fact that this configuration finds plentiful application in the industry. When ceramic side is 
selected to be alumina the elasticity modulus E=380x109 GPa and Poisson’s ratio υ=0.3 In 
addition to this the metal side has properties E=70x109 GPa and υ=0.3 when the metal is 
aluminum. Various ceramic-metal configurations can be selected for various applications. In 
order to find the effect of these indices on the stability of the FGM plate, buckling of loads 
against power indices λ and n is given. According to the material and geometric properties used 
in numerical method model, commercial (ANSYS) finite element code is produced by 
comparing [25]. Shell models are applied to illustrate how plane mesh size affects the accuracy 
of buckling analysis for plates of various length ratios and thicknesses in ANSYS. In the finite 
element model, the Shell281 element is used with various values of plane mesh size, expressed 
as element per plate edge, and in various thickness values, expressed as the half-thickness ratio 
up to thin to medium FGM plates. The Shell281 model uses the observation size of 80 and 100 
elements per side for each side thickness ratio. The variations of critical buckling loads in FGM) 
plate for different boundary conditions are shows in Fig.2-7. The effect of power law index n 
and λ on the critical buckling loads can be seen for different boundary conditions. Figs.2-7 
shows the critical buckling loads verses power law index value at different boundary conditions. 
As expected, the increasing index value leads to reduce the critical buckling loads. Increasing 
index value reduces the ceramic constituents, it produces the effective material properties 
changes which affect the critical buckling loads. 
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Fig. 2. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at CFFC boundary conditions for the elasticity modulus varies 
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Fig. 3. Critical buckling load of FGM plate verses power law index λ with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at CFFC boundary conditions for the elasticity modulus varies 

according to the function E(x)=E1e-λx 
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Fig. 4. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at FFFC boundary conditions for the elasticity modulus varies 

according to the function 1 2 2( ) ( )( )
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Fig. 5. Critical buckling load of FGM plate verses power law index λ with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at FFFC boundary conditions for the elasticity modulus varies 

according to the function E(x)=E1e-λx 
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Fig. 6. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at CFFC boundary conditions for the elasticity modulus varies 

according to the function 1 2 2( ) ( )( )
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Fig. 7. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at FFFC boundary conditions for the elasticity modulus varies 

according to the function 1 2 2( ) ( )( )
2
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6. Conclusion 

The stability behavior of rectangular FGM plates under various boundary conditions is 
investigated using the finite element method. The ceramic-metal (Alumina-Aluminum) 
composition of FGM has been chosen to obtain numerical results. Two types of boundary 
conditions have been studied CFFC configuration and FFFC configuration. In order to justify 
the proposed model, a homogeneous rectangular plate condition is considered. The results 
obtained for the CFFC configuration were observed to have lower critical buckling loads than 
those obtained for the FFFC configuration. The latter is less stable. This applies to both 
homogeneous and FGM plates. Increasing the power law indices (λ and n) makes the plate less 
stable. At large values of these indices, the plate achieves an unstable behavior as if there were 
no restrictions along the plates and thus buckles easily. This negative impact of the power index 
should be considered during the design of the structures. The effect of the metal-ceramic 
composition (the properties of the components of the FGM plate), the power law indices 
determining the amount of the composition, the dimensions of the plate, the angle of inclination 
and the boundary conditions affect the stability of the plate. Good configuration of these 
parameters will ensure that the structure has the optimum critical buckling load value. Although 
the specified parameters have limitations with respect to each other, optimum configurations 
can be obtained according to use by observing their effects separately. 
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