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Abstract

In this paper, first we obtain several necessary and sufficient conditions for a contact
metric manifold to be a K-contact manifold and then it is shown that if the Ricci operator
of a complete K-contact manifold satisfies a condition like a Codazzi tensor, then it is
necessarily a Sasakian manifold.
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1. Introduction

A contact form 1 on a (2n + 1)-dimensional smooth manifold M is a smooth 1-form
that satisfies
nA (dn)" #0
at each point of M. The pair (M, n) is called a contact manifold. On a contact manifold
(M, n), there exists a smooth vector field £ called Reeb vector field which satisfies

(&) =1, {Jdn =0.
Also, the contact manifold (M,n) admits a Riemannian metric g and a skew-symmetric
(1,1)-tensor field ¢ satisfying

n(X):g(Xv‘E)v dU(X7Y):29(X>SOY);

9(pX,0Y) = g(X,Y) —=n(X)n(Y), »(§) =0,

nop=0, ¢*=-I+n®E¢, X, Y € X(M), (1.1)
where X(M) is the Lie algebra of smooth vector fields on M (cf. [3]). We call the
structure (¢, &, 7, g) a contact metric structure and the contact manifold with this structure
is denoted by M(p,&,n,g) and we call it the contact metric manifold (cf. [3]). If in
addition, the Reeb vector field £ of the contact metric manifold is a Killing vector field,
then M(p,&,n,g) is called a K-contact manifold. Note that the Reeb vector field £ on
a K-contact manifold being Killing vector field has its impact on the topology of the K-
contact manifold (cf. [1]). The geometry and topology of a K-contact manifold is studied
by several authors (cf. [5-17]). In [12] and [13], the author has used surgery on K-contact
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manifolds to classify 5-dimensional compact simply connected K-contact manifolds and
also provided several examples of compact K-contact manifolds. In [8], the author studied
the stability of the Reeb vector field of a K-contact manifold with respect to the energy
and volume functions treating the Reeb vector field as an embedding of the K-contact
manifold into its unit tangent bundle. In [14], it is shown that a necessary and sufficient
condition for a contact metric manifold to be a K-contact manifold is that the Reeb vector
field is an eigenvector of the Laplacian operator.

A contact metric manifold M(p,&,n, g) is said to be a Sasakian manifold if it satisfies

(Vo) (X,Y) =g(X, Y)E—n(Y)X, XY eX(M), (1.2)

where V is the Riemannian connection on M and the covariant derivative (Vo)(X,Y) =
Vx(pY)—p(VxY) (cf. [3]). It follows that a Sasakian manifold is a K-contact manifold
and the converse is not true (cf. [11]). It is one of the interesting questions in contact
geometry to find conditions under which a contact metric manifold is a K-contact manifold
and also to find conditions under which a K-contact manifold is a Sasakian manifold.
Recently in [5], authors have found one such condition, where they proved that under that
condition a compact K-contact Einstein manifold is a Sasakian manifold (cf. Theorem A).
Also, in [13] sufficient conditions are found for a contact metric manifold to be a Sasakian
manifold.

Let Ric be the Ricci tensor of a Riemannian manifold (M, g). Then the Ricci operator
@ is a symmetric (1,1) tensor field defined by (cf. [2])

Ric(X,Y) = g(Q(X),Y)
and recall that the Ricci operator @) is said to be Codazzi-type operator if it satisfies
(VQ)(X,Y) = (VQ)(V,X),  X,Y € X(M). (13)

If the Riemannian manifold is an Einstein manifold, then its Ricci operator satisfies the
above condition, however the converse is not true, for instance the Ricci operator of the
Riemannian product S™(c) x S™(c1), with constants ¢ # ¢; satisfies the above condition
and is not an Einstein manifold.

A smooth vector field u on a Riemannian manifold (M, g) is said to be a Jacobi-type
vector field if it satisfies

VxVxu—Vy,xu+ R(u, X)X =0, X ex(M), (1.4)

where R is the curvature tensor field (cf. [7]). A Killing vector field on a Riemannian
manifold (M, g) is a Jacobi-type vector field and the converse is not true as there are
several examples of Jacobi-type vector fields, which are not Killing (cf. [7]). Jacobi-type
vector fields are also used in studying real hypersurfaces of a complex space form (cf.
[6], [9]). It is known that a Jacobi-type vector field u on a Riemannian manifold (M, g)
satisfies the differential equation

Au+ Q(u) =0, (1.5)

where A : X(M) — X(M) is the Laplacian operator acting on smooth vector fields (cf.
(7], Eqn. (2.9)).

One of the interesting questions in contact geometry is to find conditions on a contact
metric manifold that makes it a K-contact manifold. There are two ways to answer this
question, one using topological restrictions and the other using geometric restrictions. In
this paper, we adopt the second option and it has been observed that the Ricci curvature
in the direction of the Reeb vector field on a contact metric manifold plays a vital role in
tackling this question (cf. Theorem 1). In this paper, we also use the Laplacian operator
A acting on smooth vector fields and Jacobi-type vector fields to obtain two necessary
and sufficient conditions for a contact metric manifold to be a K-contact manifold (cf.
Theorems 2, 3) and it has been observed that the characterization in [14] is a particular
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case of Theorem 2. Also, we show that if the Ricci operator of a complete K-contact
manifold is Codazzi-type, then it is an Einstein Sasakian manifold and the converse holds
(cf. Theorem 4). Finally, we show that the Reeb vector field & of a contact metric manifold
defines a Ricci soliton on M if and only if it is an Einstein Sasakian manifold. Finally, we
consider an ellipsoid in the Euclidean space R* and show that it admits a contact metric
structure.

2. Preliminaries

Let M(p,&,7n,9) be a (2n 4 1)-dimensional contact metric manifold. We define a sym-
metric tensor field A of type (1,1) by setting

1
5 (£c0) (X,Y) = g(AXY), XY € X(M), (2.1)
where £¢ is the Lie derivative with respect to the vector field . Since on a contact metric
manifold the contact form 7 satisfies

%dn(Xa Y) =g(X,¢Y), X, Y € X(M), (2.2)

the above two equations together with Koszul’s formula (cf. [2]), give
Vxé=AX — X, X € X(M). (2.3)
Then above equation immediately gives the following expression for the curvature tensor
field
R(X,Y)¢ = (VA) (X,Y) = (VA) (Y, X) = (V) (X,Y) + (Vi) (Y, X).
Define a smooth function h = T'r A, then using skew symmetry of the tensor field ¢, above
equation gives

2n+1

Ric(Y,6) = Y [9((VA) (e1,Y ), ei) — g((V)(ei, Y), e5)] = Y (h),
i=1

where {e1, .., e2,+1} is a local orthonormal frame. Using the symmetry of the operator A
and the skew-symmetry of the operator ¢, the above equation gives
2n+1

Q&)+ Vh =Y [(VA) (ei,ei) + (Vo) (ei, )],

i=1
where Vh is gradient of the smooth function h. Now, using
2n+1

> (Vo) (e, e) = 2ng

i=1
(cf. equation (3.4)(a) of Lemma 3.1 in [13]), in above equation, we conclude that

2n+1
Q) +Vh—2nE =Y (VA) (e, ). (2.4)
i=1
Now, using equation (2.1) and definition of the Laplacian

2n+1

Ag - Z [veiveig - VVEieig)] )

=1

we get
2n+1

Ag =D [(VA) (e, e1) = (V) (es, )],

i=1
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which in view of equation (3.4)(a) in [13], gives

2n+1

A&+ 2n€ = Z (VA) (e, €;). (2.5)

i=1
Then equations (2.4) and (2.5) imply
Q(E) + Vh — A& = 4ng. (2.6)

Moreover, in [14], it is shown that on a contact metric manifold M (¢, &, n, g), Q(§) — A& =
4n€ holds (cf. Theorem 3.2), here we would caution that our Laplacian operator A is
negative of the Laplacian operator used in [14]. Thus, equation (2.6) implies that Vh =0
and hence, we conclude that on a connected contact metric manifold M (p, &, n, g), h = trA
is a constant.

3. Characterizations of K-contact manifolds

The geometry of contact metric manifolds, K-contact manifolds, and Sasakian mani-
folds, though quite classical, yet it is quite important from geometric point of view as well
as due to their applications in physics. The geometry of these manifolds is significantly
important and in that specially the questions of characterizing K-contact manifolds using
a contact metric manifold is very interesting and fascinating. In this section, we prove the
first result of this paper, which characterizes K-contact manifolds using a lower bound on
the Ricci curvature in the direction of the Reeb vector field.

Theorem 3.1. A (2n+ 1)-dimensional connected contact metric manifold M (p,&,n, g) is
a K-contact manifold if and only if its Ricci curvature in the direction of the Reeb vector
field & satisfies

Ric(§,€) > 2n.

Proof. Suppose M (¢,&,1,9) is a (2n+1)-dimensional contact metric manifold with Ricci
curvature Ric(§, €) satisfying the given inequality. Since, the symmetric operator A obeys
equations (2.1) and that trA = h, we have

1 £egl® = 411 Al (3.1)
and the condition in the statement is

Ric(&,€) > 2n. (3.2)
Note that the Reeb vector field £ is a unit vector field and therefore for any smooth vector
field X on M, we have X <||§||2> = 0, which in view of equation (2.3), gives

g(AX — pX,6) =0
and consequently, using € = 0 in above equation, we conclude
A€ = 0. (3.3)

Next, we use equation (2.3), to compute the divergence of the vector field A¢, which leads
to

2n+1

0= div (A¢) = [|A|* +¢ (f, > (VA) (e, ei)> : (3-4)
i=1

where {e1,..,e,11} is a local orthonormal frame and we also have used the fact that

2n+1

> g(Aei, pe;) = 0.
i-1
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Now, we take the inner product in equation (2.4) with ¢ and use equation (3.4) and the
fact that h is a constant, to conclude that

Ric(€,€) = — || A" + 2n,
that is,

Ric(¢,€) — 2n = — || A|*,
Comparing above equation and the inequality (3.2), we reach to the conclusion A =
0. Hence, by equation (3.1), we conclude that the Reeb vector field £ is Killing and
consequently, M (p,&,n,g) is a K-contact manifold.

The converse is trivial, as for a K-contact manifold the Ricci curvature Ric(€,€) = 2n
(cf. [3], p.67-68). O

Recall that the Laplace operator A : X(M) — X(M) acting on smooth vector fields on
a Riemannian manifold (M, g) is defined by

n
AX =) (Ve,Ve, X = Vy, o, X),

i=1
where {e1,..ep,} is a local orthonormal frame on M, n = dim M. Note that the sign
convention used here for the Laplacian operator A is negative of the one used in [14].
Recall that in [14] it is shown that a contact metric manifold M (¢, &, n, g) is a K-contact
manifold if and only if the Reeb vector field £ satisfies A = —2n&. Our next result
generalizes this result.

Theorem 3.2. A (2n+1)-dimensional connected contact metric manifold M (p,&,n, g) is
a K-contact manifold if and only if the Reeb vector field & satisfies

Proof. Suppose M(p,&,1m,g) is a (2n + 1)-dimensional contact metric manifold with the
Reeb vector field satisfying g(A&, &) > —2n. Then taking the inner product in equation
(2.5) with &, leads to

2n+1

g(AL ) +2n= > g(&(VA) (ei,e)).

=1

Using equation (3.4) in above equation, gives
(A&, ) +2n = — | A]”

and consequently, we conclude that A = 0. This proves that £¢g = 0, that is, M (¢,&,n, g)
is a K-contact manifold.
Conversely, on K-contact manifold M (p,&,n,g) as A = 0, the equation (2.5) takes the
form
A& +2n& =0,
which proves g(A&, &) = —2n and thus the required condition holds. O

As a consequence of above theorem, we have the following, which is essentially proved
in [14].

Corollary 3.3. A (2n + 1)-dimensional connected contact metric manifold M (p,&,1,9)
1s a K-contact manifold if and only if A& = —2n& holds.



2012 S. Deshmukh, A.A. Ishan

Note that the Reeb vector field ¢ of a K-contact manifold being Killing is a Jacobi-type
of vector field (cf. [7]). Finally, in this section we put a restriction on the Reeb vector field
¢ of a contact metric manifold to be a Jacobi-type vector field to find a characterization
of a K-contact manifold. Indeed, we prove the following theorem.

Theorem 3.4. A (2n + 1)-dimensional connected contact metric manifold M(p,&,n, g)
is a K-contact manifold if and only the Reeb vector field £ a Jacobi-type vector field.

Proof. Suppose M(p,&,1m,9) is a (2n + 1)-dimensional contact metric manifold with the
Reeb vector field £ a Jacobi-type vector field. Since, the Jacobi-type vector field £ satisfies
equation (1.5), we have

Q) +AL=0. (3.5)
Now, adding equations (2.4) and (2.5) and noting that h is a constant, we get
2n+1
Q)+ A =2 (VA) (e, i),
i=1
which in view of equation (3.5), gives
2n+1
Z (VA) (61', ei) =0.
i=1

Taking the inner product with £ in above equation and using equation (3.4), gives
2
[A]" =0,

which proves that M(p,&,n,g) is a K-contact manifold.
The converse is trivial as the Reeb vector field £ on a K-contact manifold is Killing and
is therefore a Jacobi-type vector field. O

4. Characterizations of Einstein Sasakian manifolds

In this section, we find characterizations of an Einstein Sasakian manifold using a K-
contact manifold as well as contact metric manifold as Ricci soliton. Here in the first
characterization the Ricci operator ) plays an important role.

Theorem 4.1. The Ricci operator of a complete K-contact manifold M (p,&,n, g) satisfies
(VQ)(X,8) =(VQ)(§, X), X eX(M),

if and only if M is an Einstein Sasakian manifold.
Proof. Let M(¢,&,n,g) be a complete K-contact manifold that satisfies the given condi-

tion. Since the Reeb vector field ¢ is Killing, its flow {¢;} consists of local isometries and
therefore

dipy o Q = Q o diy
holds. Thus we have
£eQ =0, (4.1)

where £¢ is the Lie derivative with respect to the Reeb vector field. On a K-contact
manifold M (¢, &,n,9), as A =0, equation (2.3), takes the form

Vx§=—pX, X € X(M). (4.2)
Using equations (4.1) and (4.2), we get
(VQ)(&X) = QX —pQX, X e X(M). (4.3)
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Now, using the condition on the Ricci operator ) together with equations (4.2) and (4.3),
we conclude

VxQ(€) = —¢QX, X eX(M). (4.4)
Recall that on a K-contact manifold M(p,&,n,g), we have Q(§) = 2n§, where dim M =
2n + 1 and consequently, equations (4.2) and (4.4) give

eQ(X) = 2npX, X € X(M).

On operating ¢ on the above equation and using Q(§) = 2n¢, we get Q(X) = 2nX,
X € X(M), that is, the K-contact manifold is an Einstein manifold. Observe that the Ricci
curvature is strictly positive and therefore by Myers’ theorem the K-contact manifold is
compact. This proves the K-contact manifold is a compact Einstein manifold and therefore
an Einstein Sasakian manifold by Theorem A in [4].

The converse is trivial. g

Suppose the Reeb vector field £ of a contact metric manifold M (¢, &, 7, g) is the potential
vector field that defines a Ricci soliton [5]. Then the Ricci tensor satisfies

1
Ric + §£§g = \g, (4.5)

where A is a constant. We get the following characterization of Einstein Sasakaian mani-
folds.

Theorem 4.2. A (2n + 1)-dimensional complete and connected contact metric manifold
M(p,&,m,g) is an Einstein Sasakian manifold if and only if the Reeb vector field & defines
a Ricci soliton on M.

Proof. Let M(p,&,1n,9) be a complete and connected contact metric manifold and £ be
the potential field of the Ricci soliton structure on M. Then by equations (2.1) and (4.5),
we get

AX =)0X —QX, X eX(M), (4.6)
which gives A(2n+1) —S = h, where h = trA is a constant. Using equation (4.6), we have
2n+1 2n+1 1
VA €;,€;) = — \V4 €;,€;) = —*VSZO,
Z; (VA)(ei, ei) ; (VQ)(ei ei) = —5

which in view of equation (2.5), gives A{ = —2n¢ and this proves that M (¢, &, n, g) is
a K-contact manifold, that is the Reeb vector field ¢ is Killing and that Ric(, &) = 2n.
Also, as ¢ is Killing, equation (4.5) gives Ric = \g, that is, the K-contact manifold is an
Einstein manifold with A = 2n. Moreover, as the Ricci curvature is strictly positive by
Myers’ theorem the K-contact manifold is compact. This proves the K-contact manifold
is a compact Einstein manifold and therefore an Einstein Sasakian manifold by Theorem
A in [4].

The converse is trivial as the Reeb vector field of an Einstein Sasakian manifold satisfies
(4.5) with A\ = 2n. O

5. An example

In this section, we give a new example of a contact metric manifold. Indeed, we consider
an ellipsoid M in the Euclidean space R* and show the existence of smooth 1-form 7 on M
that defines a contact structure that does not give a contact metric structure with respect
to the induced metric g on the hypersurface M. Then we find other metric § and find its
expression, which gives a contact metric structure (p,&,n,g) on M.



2014 S. Deshmukh, A.A. Ishan

Consider a smooth function h : R* — R, h(z,y,z,w) = 2% +y? + 422 + 422 — 1. Then
M = h~Y(0) is a compact hypersurface of the Euclidean space (R4, (,)) with induced
metric g and unit normal

1
N = ?(1'72%4274“))3 f: x2+y2—|—16z2—|—16w2 (51)

Note that f # 0 on M as f = 1+ 1222 +w?. Now, consider the unit vector field
¢ = (—y,x,—2w,2z) on the Riemannian manifold (M, g) with dual smooth 1-form

n = —yds + xdy — 2wdz + 2zdw. (5.2)
Then, it follows that &(f) = 0 and
dn =2 (dx A dy + 2dz A dw) , (5.3)

nAdn =4 (—ydx ANdy A dw + xdy AN dz A dw — wdz A dy A dz + zdx A dy A dw) .

If for a point p € M, (n Adn) (p) =0, we get x(p) = y(p) = z(p) = w(p) = 0, which gives
h(p) = —1, a contradiction. Hence, n A dn # 0, that is, n is a contact form on (M, g).
Moreover, for X € X(M) we have

dn(¢,X) = 2(dz ANdy—+2dz Adw) (&, X)
§(2) X (y) — &(y) X () + 26(2) X (w) — 26(w) X (2)
— _%X(xQ +y? + 422 + 4w2) =0.

Define a skew symmetric (1,1) tensor field ¢ required for a contact metric structure by
29(X,9Y) = dn(X,Y) on M. Then the last equation , gives ¢(§) = 0. We claim that
(M, p,&,7n,g) is not a contact metric manifold. To establish the claim, first we show that
¢ is a Killing vector field on (M, g) and thus if (M, ¢,£,n,g) is a contact metric manifold,
it will be a K-contact manifold and as a 3-dimensional K-contact manifold is a Sasakian
manifold and that will force the sectional curvatures of plane sections containing the Reeb
vector field £ to be 1, which does not happen for the hypersurface with the induced metric.

Let D be the Euclidean connection on the Euclidean space (R4, {, >) and V be the
Riemannian connection on the hypersurface (M, g) and A be shape operator of the hyper-
surface. Then we get

Al = —D¢N = ]10 (y, —z, 8w, —8z2), (5.4)

where we used £(f) = 0. Consequently, we compute

Vx§ = Dx{—g(A{, X)N

= - (X(y) + ?;S,—X@) + %,2X(w) + 4?26’_2)((2) + 4fu;5> ,
where 0 = yX (z) — 2 X (y) + 8wX (z) — 82X (w). We get
9(Vx&Y) = —(X@Y(z) - X(@)Y(y) +2X (w)Y (2) - 2X(2)Y (w))
)

— 72 (@Y (@) +9Y (1) +42Y (2) + dw¥ ().

Using zY (z) +yY (y) +42Y (2) +4wY (w) = 1Y (2% +y* +422+422) = 0, in above equation,
we get
9(Vx&Y) = = (X()Y (2) = X(2)Y (y) + 2X (w)Y (2) — 2X(2)Y (w))

and consequently, that
(£e9)(X,Y) =0, X,Y € X(M),
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Hence, ¢ is a Killing vector field, that makes (M, ¢,£,n,g) a 3-dimensional K-contact
manifold and consequently is a Sasakian manifold. Now, we compute sectional curvature
of a plane section containing £. Take a unit vector field £ on M given by

g = }» (_ya z, —411),42') )

then we get g(¢&,&) = % (2% + y? + 82% + 18w?) and £(f) = 0 and

A = flz (y, —, 16w, —162).
Thus, we have
9(466) = —f, 9D =5 (3: + 4% + 642 + 64u?)
9460 = -5 (a: + 1% + 3222 + 32u)

and consequently, the sectional curvature K (&, €) of the hypersurface (M, g) is given by

K68 = —REEGED = —— (9(A6.O9(ALE) — g(AEE)).

fend fend
Using above equations, after some computations, we conclude
— 16
K(£,€) = e (22 +47) (2 +v?), (5.5)
where
’5/\5‘ =1- ﬁ (m2+y2—|—822—|—8w2>2

Now taking a point p = (ﬁ, ﬁ, ﬁ, ﬁ) € M, and above equation, we find that the

sectional curvature K (&,€)(p) = % # 1, that is a contradiction to (M, p,&,n,g) being
a Sasakian manifold. Hence, (M, ¢,&,n,g) is not a contact metric manifold. Finally, we
proceed to find the expression for the metric g, that makes (M, ¢, &,n,g) a contact metric
manifold. Since, (M, p,&,n,g) is a contact metric manifold, using equation (5.3), we have

2 (X,9Y) =dn(X,Y) =2(dx Ndy +2dz N dw) (X,Y), X,Y € X(M).

Note that using expression for 7, we get n(X) = —yX(z) + 2 X (y) — 2wX(z) + 22X (w).
Thus, replacing Y by ¢Y and using equation (1.1) in above equation, we get

JXY) = X@) (ml¥) - 3@V W) + X@) (V) + 5 (V) ()

+X(2) (=2un(Y) — ¢ (Y) (w)) + X (w) 22n(Y) + ¢ (Y) (2)) -
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