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ABSTRACT

In this paper, we consider a second-order tangent bundle equipped with Sasaki metric over a
Riemannian manifold. All forms of curvature tensor fields are computed. We obtained the relation
between the scalar curvature of the base manifold and the scalar curvature of the second-order
tangent bundle and presented some geometric results concerning with kinds of curvature tensor
fields. Also, we search the weakly symmetry property of the second-order tangent bundle. Finally,
we end our paper with statistical structures on the second-order tangent bundle.
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1. Introduction

The second-order tangent bundle T 2M over an n−dimensional manifold M was constructed in [15] by Yano
and Ishihara. Also, they defined the lifts of tensor fields and connections given on M to T 2M . Later, in [7],
Dodson and Radivoiovici proved that a second-order tangent bundle T 2M becomes a vector bundle over
M if and only if M has a linear connection. The Sasaki metric g̃ on the second-order tangent bundle T 2M
over a Riemannian manifold (M, g) was firstly considered by Ishikawa and studied some properties by local
coordinate in [10]. This metric also studied by some authors. We refer to [5, 7, 8, 9, 3]. In [8], the first and
second authors constructed certain Riemannian almost product structures on T 2M with Sasaki metric g̃ and
also presented some results concerning these structures. They locally calculated all forms of the curvature
tensors on T 2M and gave some local results. Also, they presented some geometrical properties of two metric
connections with non-vanishing torsion on (T 2M, g̃). In this paper, we study some problems concerning with
the second-order tangent bundle T 2M with the Sasaki metric g̃ and obtain the global results.

We point out here and once that all geometric objects considered in this paper are supposed to be of class
C∞.

2. Basic notations and definitions

Let (M, g) be an n−dimensional Riemannian manifold with the Levi-Civita connection ∇ and T 2M be its
second-order tangent bundle. T 2M is the set of all of 2−jets at 0 ∈ R of differentiable mappings f : R −→M
and is topologized. Then T 2M is also an 3n−dimensional manifold. The tangent bundle TM of M is the set of
all 1−jets ofM and is a 2n−dimensional manifold. The canonical projection π2 : T 2M −→M defines the natural
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bundle structure of T 2M over M . If we introduce the canonical projection π12 : T 2M −→ TM , then T 2M has a
bundle structure over the tangent bundle TM with projection π12.

Let U be a coordinate neighbourhood of M with (xi) as coordinates. The indices i, j, k, ... take values
{1, 2, ..., n}. Hence, the system of local coordinates

(
π−12 (U), xi, ui, zi

)
is induced from a system of local

coordinates (U, xi) in M . The coordinates (xi, ui, zi) in π−12 (U) are called the induced coordinates. By putting

ξi = xi, ξi = ui, ξi = zi,

we write the induced coordinates (xi, ui, zi) as {ξA}. The indices A,B,C, ... run over the range {1, 2, ..., n;n+
1, n+ 2, ..., 2n; 2n+ 1, 2n+ 2, ..., 3n}.

Let X = Xi ∂
∂xi be the local expression in U of a vector field X on M . Then the vector fields XH0 , XH1 and

XH2 on T 2M are given, with respect to the induced coordinates {ξA}, by [3]

XH0 = Xj∂j − usΓj
shX

h∂j − C
j
hX

h∂
j
,

XH1 = Xj∂j − 2usΓj
shX

h∂
j

and
XH2 = Xj∂

j

with respect to the natural frame {∂A} = {∂i, ∂i, ∂i} in T 2M , where Cj
h = zmΓj

hm + usur(∂hΓj
sr + Γj

hmΓm
sr −

2Γj
smΓm

hr), Γj
sr are the coefficients of the Levi-Civita connection ∇ on M and ∂i = ∂

∂xi , ∂i = ∂
∂ui , ∂i = ∂

∂zi . For
the Lie brackets of the vector fields XH0 , XH1 and XH2 on T 2M , we have the following formulas:

[
XH0 , Y H0

]
= [X,Y ]

H0− (R(X,Y )u)H1 − (R(X,Y )ω)H2 ,[
XH0 , Y H1

]
= (∇XY )

H1
,
[
XH0 , Y H2

]
= (∇XY )

H2
,[

XHa , Y Hb
]

= 0, a, b = 1, 2

(2.1)

where R is the Riemannian curvature tensor field of ∇ on M defined by R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] and
where ω is locally expressed by ωi = zi + usurΓi

sr (for details, see [6]).

3. Curvature properties of the Sasaki metric

The Sasaki metric on the second-order tangent bundle T 2M over a Riemannian manifold (M, g) is defined
by the identities: {

g̃(XHa , Y Hb) = g(X,Y ), a = b
g̃(XHa , Y Hb) = 0, a 6= b

(3.1)

for all vector fields X, Y on M , where a, b = 0, 1, 2.
For the Levi-Civita connection ∇̃ of g̃ on T 2M , we have the following proposition.

Proposition 3.1. Let (M, g) be an n−dimensional Riemannian manifold and T 2M be its second-order tangent bundle.
The Levi-Civita connection ∇̃ of g̃ on T 2M is given by the following conditions

∇̃XH0Y
H0 = (∇XY )H0 + 1

2 (R(Y,X)u)H1 + 1
2 (R(Y,X)ω)H2 ,

∇̃XH1Y
H0 = 1

2 (R(u,X)Y )H0 , ∇̃XH0Y
H1 = 1

2 (R(u, Y )X)H0 + (∇XY )H1 ,

∇̃XH2Y
H0 = 1

2 (R(ω,X)Y )H0 , ∇̃XH0Y
H2 = 1

2 (R(ω, Y )X)H0 + (∇XY )H2 ,

∇̃XH1Y
H1 = 0, ∇̃XH2Y

H1 = 0, ∇̃XH2Y
H2 = 0, ∇̃XH1Y

H2 = 0

for all vector fields X,Y on M (see also [5]).

Let F : T 2M → T 2M be a smooth bundle endomorphism. Then we define the lifts of F :

FH0 (u) =
∑

uiF (∂i)
H0 , FH1 (u) =

∑
uiF (∂i)

H1 , FH2 (u) =
∑

uiF (∂i)
H2 ,

FH0 (ω) =
∑

ωiF (∂i)
H0 , FH1 (ω) =

∑
ωiF (∂i)

H1 , FH2 (ω) =
∑

ωiF (∂i)
H2 .
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Also, we obtain with the direct standard calculations

∇̃XH0u
i = XH0

(
ui
)

= −usΓi
shX

h,

∇̃XH1u
i = Xi, ∇̃XH2u

i = 0, ∇̃XH2ω
i = Xi,

∇̃XH0ω
i = −Ci

hX
h, ∇̃XH1ω

i = −2usΓi
shX

h.

We shall now turn our attention to the Riemannian curvature tensor R̃ of the Levi-Civita connection ∇̃ of g̃
on T 2M . Firstly we give the following useful Lemma:

Lemma 3.2. Let (M, g) be a Riemannian manifold and ∇̃ be the Levi-Civita connection of (T 2M, g̃). Let F : T 2M →
T 2M be a smooth bundle endomorphism, then

∇̃XH0F
H0 (u) = (∇XF (u))

H0 +
1

2
(R (F (u) , X)u)

H1 +
1

2
(R (F (u) , X)ω)

H2 ,

∇̃XH0F
H1 (u) =

1

2
(R (u, F (u))X)

H0 + (∇XF (u))
H1 ,

∇̃XH0F
H2 (u) =

1

2
(R (ω, F (u))X)

H0 + (∇XF (u))
H2 ,

∇̃XH1F
H0 (u) = (F (X))

H0 +
1

2
(R (u,X)F (u)),

∇̃XH1F
H1 (u) = (F (X))

H1 , ∇̃XH1F
H2 (u) = (F (X))

H2 ,

∇̃XH2F
H0 (u) = 0, ∇̃XH2F

H0 (u) = 0, ∇̃XH2F
H1 (u) = 0, ∇̃XH2F

H2 (u) = 0,

∇̃XH0F
H0 (ω) = (∇XF (ω))

H0 +
1

2
(R (F (ω) , X)u)

H1 +
1

2
(R (F (ω) , X)ω)

H2 ,

∇̃XH0F
H1 (ω) =

1

2
(R (u, F (ω)X)

H0 + (∇XF (ω))
H1 ,

∇̃XH0F
H2 (ω) =

1

2
(R (ω, F (ω)X)

H0 + (∇XF (ω))
H2 ,

∇̃XH1F
H0 (ω) =

1

2
(R (u,X)F (ω))

H0 , ∇̃XH0F
H1 (ω) = 0, ∇̃XH0F

H2 (ω) = 0,

∇̃XH2F
H0 (ω) = (F (X))

H0 +
1

2
(R (ω,X)F (ω))

H0 ,

∇̃XH2F
H1 (ω) = (F (X))

H1 , ∇̃XH2F
H2 (ω) = (F (X))

H2

for any vector field X on M and u, ω ∈ T 2M .

In [5], Dida, Hathout and Djaa studied the geometry of the Sasaki metric g̃ on T 2M . Their results are partially
contained in Proposition 3.1 and Lemma 3.2. In their paper authors attempt to calculate the Riemannian
curvature tensor field R̃, the sectional curvature tensor field K̃ and the scalar curvature S̃ but unfortunately
their calculations are wrong. They missed some parts of the Riemannian curvature tensor R̃. In the rest of this
section we shall correct the error and obtain valid expressions for R̃, K̃ and S̃. Also note that local results for
T 2M with g̃ were given in [8].

For Riemannian curvature tensor field R̃ of the Levi-Civita connection ∇̃ of g̃ on T 2M , we have

Proposition 3.3. Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent bundle equipped with the
Sasaki metric g̃. The curvature tensor field R̃ of the Levi-Civita connection ∇̃ of g̃ on T 2M is given by the following
formulas:

i)R̃
(
XH0 , Y H0

)
ZH0

=


R (X,Y )Z + 1

4 [R (u,R (Z, Y )u)X −R (u,R (Z,X)u)Y − 2R (u,R (Y,X)u)Z]

+ 1
4 [R (ω,R (Z, Y )ω)X −R (ω,R (Z,X)ω)Y − 2R (ω,R (Y,X)ω)Z]

H0

+ 1
2{∇XR (Z, Y )u−∇YR (Z,X)u}H1 + 1

2{∇XR (Z, Y )ω −∇YR (Z,X)ω}H2

 ,
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ii)R̃
(
XH1 , Y H0

)
ZH0

=

{
−1

2
(∇YR) (u,X,Z)

}H0

+

{
1

2
R (Z, Y )X − 1

4
R (R (u,X)Z, Y )u

}H1

+

{
−1

4
R (R (u,X)Z, Y )ω

}H2

iii)R̃
(
XH0 , Y H0

)
ZH1

=
1

2
{(∇XR) (u, Z)Y − (∇YR) (u, Z)X}H0

+

{
R (X,Y )Z +

1

4
[R (R (u, Z)Y,X)u−R (R (u, Z)X,Y )u]

}H1

+
1

4
{R (R (u, Z)Y,X)ω −R (R (u, Z)X,Y )ω}H2 ,

iv) R̃
(
XH1 , Y H1

)
ZH0

=

{
R (X,Y )Z +

1

4
[R (u,X)R (u, Y )Z −R (u, Y )R (u,X)Z]

}H0

,

v)R̃
(
XH1 , Y H0

)
ZH1

=

{
1

2
R (X,Z)Y +

1

4
R (u,X)R (u, Z)Y

}H0

,

vi) R̃
(
XH2 , Y H0

)
ZH0

=

{
−1

2
(∇YR) (ω,X,Z)

}H0

+

{
−1

4
R (R (ω,X)Z, Y )u

}H1

+

{
1

2
R (Z, Y )X − 1

4
R(R (ω,X)Z, Y )ω

}H2

,

vii) R̃
(
XH0 , Y H0

)
ZH2

=
1

2
{∇XR (ω,Z)Y −∇YR (ω,Z)X}H0

+
1

4
{R (R (ω,Z)Y,X)u−R (R (ω,Z)X,Y )u}H1

+

{
R (X,Y )Z +

1

4
[R (R (ω,Z)Y,X)ω −R (R (ω,Z)X,Y )ω]

}H2

,

viii) R̃
(
XH2 , Y H2

)
ZH0

=

{
R (X,Y )Z +

1

4
[R (ω,X)R (ω, Y )Z −R (ω, Y )R (ω,X)Z]

}H0

ix) R̃
(
XH2 , Y H0

)
ZH2

=

{
1

2
R (X,Z)Y +

1

4
R (ω,X)R (ω,Z)Y

}H0
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x) R̃
(
XH1 , Y H0

)
ZH2 =

{
1

4
R (u,X)R (ω,Z)Y

}H0

,

xi) R̃
(
XH1 , Y H2

)
ZH0 =

1

4
{R (u,X)R (ω, Y )Z −R (ω, Y )R (u,X)Z}H0 ,

xii) R̃
(
XH0 , Y H2

)
ZH1 =

{
−1

4
R (ω, Y )R (u, Z)X

}H0

,

xiii) R̃
(
XH2 , Y H0

)
ZH1 =

{
1

4
R (ω,X)R (u, Z)Y

}H0

,

xiv) R̃
(
XH1 , Y H1

)
ZH1 = 0, R̃

(
XH1 , Y H1

)
ZH2 = 0 , R̃

(
XH1 , Y H2

)
ZH2 = 0,

xv) R̃
(
XH1 , Y H2

)
ZH1 = 0, R̃

(
XH2 , Y H2

)
ZH1 = 0, R̃

(
XH2 , Y H2

)
ZH2 = 0

for all vector fields X,Y on M .

Proof. Here we only prove ii). The rest either come immediately from the direct standard calculations or can be
proven by following the same method in the proof of ii). In here, we omit standard calculations and repetation.

Let F1, F2, F3 : T 2M −→ T 2M be the bundle endomorphisms given by

F1 : u −→ 1

2
R (Z, Y )u,

F2 : ω −→ 1

2
R (Z, Y )ω,

F3 : u −→ 1

2
R (u,X)Z.

By using Proposition 3.1, Lemma 3.2 and above equalities, we find

R̃
(
XH1 , Y H0

)
ZH0

= ∇̃XH1 ∇̃Y H0Z
H0−∇̃Y H0 ∇̃XH1Z

H0−∇̃[XH1 ,Y H0 ]Z
H0

= ∇̃XH1

[
(∇Y Z)

H0 +
1

2
(R(Z, Y )u)H1 +

1

2
(R(Z, Y )ω)

H2

]
−∇̃Y H0

[
1

2
R (u,X)Z

]H0

+ ∇̃(∇Y X)H1Z
H0

=
1

2
(R (u,X)∇Y Z)

H0 + (F1 (X))
H1 − (∇Y F3 (u))

H0

−1

2
(R (F3 (u) , Y )u)

H1 − 1

2
(R (F3 (u) , Y )ω)

H2

+
1

2
(R (u,∇YX)Z)

H0

=
1

2
{R (u,X)∇Y Z +R (u,∇YX)Z −∇YR (u,X)Z}H0

+

{
1

2
R (Z, Y )X − 1

4
R (R (u,X)Z, Y )u

}H1

+

{
−1

4
R (R (u,X)Z) , Y )ω

}H2

=

{
−1

2
(∇YR)(u,X,Z)

}H0

+

{
1
2R (Z, Y )X

− 1
4R (R (u,X)Z, Y )u

}H1

+

{
−1

4
R (R (u,X)Z) , Y )ω

}H2

.
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For the sectional curvature tensor field K̃ of (T 2M, g̃), we have the following.

Proposition 3.4. Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent bundle equipped with the
Sasaki metric g̃. The sectional curvature tensor field K̃ on T 2M satisfies the following:

i) K̃
(
XH0 , Y H0

)
= K (X,Y )− 3

4

(
|R (X,Y )u|2 + |R (X,Y )ω|2

)
,

ii) K̃
(
XH1 , Y H0

)
=

1

4
|R (u,X)Y |2 ,

iii) K̃
(
XH2 , Y H0

)
=

1

4
|R (ω,X)Y |2 ,

iv) K̃
(
XH1 , Y H1

)
= 0, K̃

(
XH1 , Y H2

)
= 0, K̃

(
XH2 , Y H2

)
= 0

for any orthonormal vector fields X and Y on (M, g), where |.| denotes the norm with respect to the Riemannian metric
g.

Proof. Let K̃(X̃, Ỹ ) be the sectional curvature tensor field of the 2−dimensional section generated by
orthonormal vectors X̃, Ỹ , that is:

K̃(X̃, Ỹ ) = g̃(
(
R̃
(
X̃, Ỹ

)
Ỹ , X̃

)
.

i) If X̃ = XH0 , Ỹ = Y H0 , then

K̃
(
XH0 , Y H0

)
= g̃

(
R̃
(
XH0 , Y H0

)
Y H0 , XH0

)
= g̃

([
R (X,Y )Y +

−3

4
R (u,R (Y,X)u)Y +

−3

4
R (ω,R (Y,X)ω)Y

]H0

, XH0

)

= g

(
R (X,Y )Y +

−3

4
R (u,R (Y,X)u)Y +

−3

4
R (ω,R (Y,X)ω)Y,X

)
= g (R (X,Y )Y,X)− 3

4
g (R (u,R (Y,X)u)Y,X)− 3

4
g (R (ω,R (Y,X)ω)Y,X)

= K (X,Y )− 3

4

(
|R (X,Y )u|2 + |R (X,Y )ω|2

)
,

where K (X,Y ) is the sectional curvature tensor field on M .
ii) If X̃ = XH1 , Ỹ = Y H0 , then

K̃
(
XH1 , Y H0

)
= g̃

(
R̃
(
XH1 , Y H0

)
Y H0 , XH1

)
= g̃

([
−1

4
R (R (u,X)Y, Y )u

]H1

, XH1

)
= −1

4
g (R (R (u,X)Y, Y )u,X) =

1

4
|R (u,X)Y |2 .

iii) If X̃ = XH2 , Ỹ = Y H0 , then

K̃
(
XH2 , Y H0

)
= g̃

(
R̃
(
XH2 , Y H0

)
Y H0 , XH2

)
= g̃

([
−1

4
R (R (ω,X)Y, Y )ω

]H2

, XH2

)
= −1

4
g (R (R (ω,X)Y, Y )ω,X) =

1

4
|R (ω,X)Y |2 .

Other cases being zero. In here we used the definition of the Sasaki metric g̃ and Proposition 3.3.
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Proposition 3.5. Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent bundle equipped with the
Sasaki metric g̃. Let S be scalar curvarture of g and S̃ be scalar curvature of g̃. Then the following equation holds

S̃ = S − 1

4

m∑
i,j=1

(
|R (Xi, Xj)u|2 + |R (Xi, Xj)ω|2

)
,

where {X1, . . . , Xm} is a local orthonormal frame for M .

Proof. Let {X1, . . . , Xm} be an orthonormal basis for the tangent space TpM at the point p. Then we can define
lifts byXi

H0 = Yi, Xi
H1 = Ym+i, andXi

H2 = Y2m+i. In the case, the set {Y1, Y2, . . . , Y3m} is an orthonormal basis
for the tangent space T(p,u,ω)T

2M with respect to the Sasaki metric g̃. Proposition 3.4 immediately gives

S̃ =

3m∑
i,j=1

K̃(Yi, Yj)

=

3m∑
i,j=1

K̃
(
Xi

H0 , Xj
H0
)

+ K̃
(
Xi

H1 , Xj
H1
)

+K̃
(
Xi

H2 , Xj
H2
)

+ 2K̃
(
Xi

H0 , Xj
H1
)

+ 2K̃
(
Xi

H0 , Xj
H2
)

+2K̃
(
Xi

H1 , Xj
H2
)

=

3m∑
i,j=1

(
K (Xi, Xj)−

3

4
|R (Xi, Xj)u|2 −

3

4
|R (Xi, Xj)ω|2

)
+2

(
1

4
|R (u,Xj)Xi|2

)
+ 2

(
1

4
|R (ω,Xj)Xi|2

)
from which we get, using |R (u,Xj)Xi|2 = |R (Xi, Xj)u|2,

S̃ = S − 1

4

3m∑
i,j=1

(
|R (Xi, Xj)u|2 + |R (Xi, Xj)ω|2

)
.

Let us assume that (M, g) be an m−dimensional Riemannian manifold of constant sectional curvature κ, that
is:

R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y )

and the scalar curvature S is given by S = κm(m− 1).

Corollary 3.6. Let (M, g) be a Riemannian manifold of constant sectional curvature κ and T 2M be its second-order
tangent bundle equipped with the Sasaki metric g̃. Then

K̃
(
XH0 , Y H0

)
= κ− 3

4
κ2
(
g(u, Y )

2
+ g(X,u)

2
)

−3

4
κ2
(
g(ω, Y )

2
+ g(X,ω)

2
)
,

K̃
(
XH1 , Y H0

)
=

1

4
κ2g(u, Y )

2
,

K̃
(
XH2 , Y H0

)
=

1

4
κ2g (ω, Y )

2

for any orthonormal vector fields X,Y on T 2M .

Corollary 3.7. Let (M, g) be a Riemannian manifold of constant sectional curvature κ and T 2M be its second-order
tangent bundle equipped with the Sasaki metric g̃. Then, the scalar curvature S̃ is given by

S̃ = κm(m− 1)− 1

2
κ2(m− 1) |u|2 − 1

2
κ2(m− 1) |ω|2 .
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4. Weakly symmetry properties of the Sasaki metric

A Riemannian manifold (M, g) is called weakly symmetric if there exist two 1−forms α1, α2 and a vector
field A on M , such that: [4]

(∇WR) (X,Y, Z) (4.1)
= α1 (W )R (X,Y )Z + α2 (X)R (W,Y )Z + α2 (Y )R (X,W )Z

+α2 (Z)R (X,Y )W + g (R (X,Y )Z,W )A,

where A = (α2)
# and αig

ij = αj = α#, that is, A is the g−dual vector field of the 1−form α2. In [1], Bejan
and Crasmarenu proved that the weakly symmetry property of the Sasaki metric on the tangent bundle is
equivalent to the flatness of the base manifold, generalizing the result obtained in [2] by Binh and Tamassy. In
this section we consider the result to extend for (T 2M, g̃).

Theorem 4.1. Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent bundle equipped with the
Sasaki metric g̃.

(
T 2M, g̃

)
is weakly symmetric if and only if (M, g) is flat, and hence

(
T 2M, g̃

)
must be flat too.

Proof. In the proof, we follow the method used in [1] using Proposition 3.3. In view of Proposition 3.3,
R = 0 immediately gives R̃ = 0 and so we have (4.1) as null equality. Firstly, consider the condition (4.1) for
WH0 , XH0 , Y H2 and ZH2 and we find

α1

(
WH0

)
R̃
(
XH0 , Y H2

)
ZH2 + α2

(
XH0

)
R̃
(
WH0 , Y H2

)
ZH2 (4.2)

+α2

(
Y H2

)
R̃
(
XH0 ,WH0

)
ZH2 + α2

(
ZH2

)
R̃
(
XH0 , Y H2

)
WH0

+g̃
(
R̃
(
XH0 , Y H2

)
ZH2 ,WH0

)
(a2)

#

= −∇WH0

[
−1

2
R (Y,Z)X − 1

4
R (ω, Y )R (ω,Z)X

]H0

−R̃

(
(∇WX)

H0 +

(
1

2
R (X,W )u

)H1

+

(
1

2
R (X,W )ω

)H2

, Y H2

)
ZH2

−R̃

(
XH0 ,

(
1

2
R (ω, Y )W

)H0

+ (∇WY )
H2

)
ZH2

−R̃
(
XH0 , Y H2

)(1

2
(R (ω,Z)W )

H0

+ (∇WZ)
H2

)

Secondly, consider the H2 part of the two sides of the above equation, we obtain

α2

(
Y H2

)(
R (X,W )Z +

1

4
R (R (ω,Z)W,X)ω − 1

4
R (R (ω,Z)X,W )ω

)
(4.3)

+α2

(
ZH2

)(
−1

2
R (W,X)Y +

1

4
R (R (ω, Y )W,X)ω

)
−g̃
(

1

2
R (Y,Z)X +

1

4
R (ω, Y ) (ω,Z)X,W

)
α2

#

=
1

4
R (R (Y, Z)X,W )ω +

1

8
R (R (ω, Y )R (ω,Z)X,W )ω

−1

2

(
R (X,R (ω, Y )W )Z + 1

4R (R (ω,Z)R (ω, Y )W,X)ω
−R (R (ω,Z)X, R (ω, Y )W )ω

)
−1

2

(
−1

2
R (R (ω,Z)W,X)Y +

1

4
R (R (ω, Y )R (ω,Z)W,X)ω

)
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By setting Y = ω and Z = ω respectively we get

α2

(
ωH2

)(
R (X,W )Z +

1

4
(R (R (ω,Z)W,X)ω −R (R (ω,Z)X,W )ω)

)
(4.4)

+α2

(
ZH2

)(
−1

2
R (W,X)ω

)
− g̃

(
1

2
R (ω,Z)X,W

)
α2

#

=
1

4
R (R (ω,Z)X,W )ω +

1

4
R (R (ω,Z)W,X)ω

and

α2

(
ωH2

)(
−1

2
R (W,X)Y +

1

4
R (R (ω, Y )W,X)ω

)
(4.5)

+α2

(
Y H2

)
(R (X,W )ω)− g̃

(
1

2
R (Y, ω)X,W

)
α2

#

=
1

4
R (R (Y, ω)X,W )ω − 1

2
R (X,R (ω, Y )W )ω.

On replacing Y by Z in (4.5), then

α2

(
ωH2

)(
−1

2
R (W,X)Z +

1

4
R (R (ω,Z)W,X)ω

)
(4.6)

+α2

(
ZH2

)
R (X,W )ω − g̃

(
1

2
R (Z, ω)X,W

)
α2

#

=
1

4
R (R (Z, ω)X,W )ω − 1

2
R (X,R (ω,Z)W )ω

and by summing (4.4) and (4.6) we get

3

2
α2

(
ZH2

)
R (X,W )ω (4.7)

+α2

(
ωH2

)(3

2
R (X,W )Z +

1

2
R (R (ω,Z)W,X)ω − 1

4
R (R (ω,Z)X,W )ω

)
= −3

4
R (X,R (ω,Z)W )ω.

The equation (4.7) with Z = ω reduces to

α2

(
ωH2

)
R (X,W )ω = 0. (4.8)

If α2

(
ωH2

)
6= 0, then the result follows. Suppose now that α2

(
ωH2

)
= 0 then

(
(α2)

#
)H2

= 0. Returning to (4.4)
it results

α2

(
ZH2

)(
−1

2
R (W,X)ω

)
=

1

4
R (R (ω,Z)X,W )ω +

1

4
R (R (ω,Z)W,X)ω

from which, by exchanging W and X , we obtain

R (R (ω,Z)X,X)ω = 0

and when we take the inner product with Z, it follows that

g (R (ω,Z)X,R (ω,Z)X) = 0.

Thus,
R (ω,Z)X = 0.

Again the g−product with an arbitrary Y gives:

g (R (X,Y )ω,Z) = 0.

For Z being an arbitrary vector field we have R (X,Y )ω = 0, for every X, Y and ω. So we have R = 0 which
completes proof.
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5. Statistical structures on the second-order tangent bundle

Let∇ be an arbitrary linear connection on a (pseudo-)Riemannian manifold (M, g). Given the pair (∇, g), we
construct the (0, 3)−tensor field F by

F (X,Y, Z) := (∇Zg)(X,Y )

for any vector fields X,Y, Z on M . The tensor field F is sometimes referred to as the cubic form associated to
the pair (∇, g).

For a symmetric bilinear form ρ on a manifold M , we call (∇, ρ) a Codazzi pair, if its covariant derivative
(∇ρ) is totally symmetric in X,Y, Z: [14]

(∇Xρ) (Y, Z) = (∇Y ρ) (X,Z) = (∇Zρ) (X,Y ) . (5.1)

In terms of the cubic form F , this condition is stated

F (X,Y, Z) = F (Z, Y,X) = F (Z,X, Y )

i.e., the condition (∇, g) being Codazzi pair is equivalent to F being totally symmetric in all of its indices. Now,
we search the conditions under which the pair (∇h, g̃) is a Codazzi pair on T 2M . We first define the horizontal
lift of the torsion-free linear connection ∇ on M . The horizontal lift ∇h of ∇ to T 2M is a unique classical linear
connection on T 2M satisfying

∇h
XH0Y

Hb = (∇XY )Hb , ∇h
XHaY

Hb = 0 (5.2)

for all vector fields X,Y on M , where a = 1, 2, b = 0, 1, 2 [6].

Theorem 5.1. Let ∇ be an arbitrary linear connection on a Riemannian manifold (M, g) and T 2M be its second-order
tangent bundle with the Sasaki metric g̃. The pair (∇h, g̃) is a Codazzi pair on T 2M if and only if∇ is a metric connection
with respect to g.

Proof. Firstly we compute the covariant derivative of the Sasaki metric g̃ with respect to the horizontal lift
connection ∇h: for all vector fields X,Y, Z on M , (∇h

XH0
g̃)(Y Ha , ZHb) = (∇Xg)(Y,Z), for a = b = 0, 1, 2

(∇h
XH0

g̃)(Y Ha , ZHb) = 0, for a 6= b
(∇h

XHc g̃)(Y Ha , ZHb) = 0, for a, b = 0, 1, 2 and c = 1, 2.
(5.3)

For all vector fields X̃, Ỹ , Z̃ on T 2M , the Codazzi equation on T 2M with the Sasaki metric with respect to the
horizontal lift connection ∇h is given by

(∇h
X̃
g̃)(Ỹ , Z̃) = (∇h

Ỹ
g̃)(X̃, Z̃) = (∇h

Z̃
g̃)(X̃, Ỹ ).

If X̃ = XH0 , Ỹ = Y H1 , Z̃ = ZH1 , then

(∇h
XH0 g̃)(Y H1 , ZH1) = (∇h

Y H1 g̃)(XH0 , ZH1)

(∇Xg)(Y,Z) = 0.

In the case, from (5.3), we can say that the pair (∇h, g̃) is a Codazzi pair on T 2M if and only if ∇ is a metric
connection with respect to g.

We know, the horizontal lift connection ∇h of a linear connection ∇ has a torsion. Next we introduce a new
connection without torsion so-called a mean connection. With help of the horizontal lift connection and its
torsion tensor, the mean connection defined by [13]

∇m
X̃
Ỹ = ∇h

X̃
Ỹ − 1

2
Th(X̃, Ỹ )

where Th is the torsion tensor of the horizontal lift connection ∇h. The torsion tensor of ∇h is given by{
Th(XH0 , Y H0) = (T (X,Y ))H0 + (R(X,Y )u)H1 + (R(X,Y )ω)H2

Th(XHa , Y Hb) = 0, for a, b = 1, 2.
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Hence, the mean connection ∇m satisfies

∇m
XH0Y

H0 = (∇XY −
1

2
T (X,Y ))H0 − 1

2
(R(X,Y )u)H1 − 1

2
(R(X,Y )ω)H2 ,

∇h
XH0Y

Hb = (∇XY )Hb , for b = 1, 2

∇m
XHaY

Hb = 0, for a, b = 1, 2.

In the rest of the paper, we consider a torsion-free linear connection ∇ on a pseudo-Riemannian manifold
(M, g). In the case, if (∇, g) is a Codazzi pair which characterizes what is known to information geometers
as statistical structures, then the manifold M together with a statistical structure (∇, g) is called a statistical
manifold. The notion of statistical manifold was originally introduced by Lauritzen [11]. Statistical manifolds
are widely studied in affine differential geometry [11, 12] and plays a central role in information geometry.

As is known, the torsion tensor of the horizontal lift connection ∇h of a linear connection ∇ is zero if and
only if the connection ∇ is flat. Thus, from Theorem 5.1, we immediately give the following result.

Corollary 5.2. Let∇ be the Levi-Civita conection on a Riemannian manifold (M, g) and T 2M be its second-order tangent
bundle with the Sasaki metric g̃. The pair (∇h, g̃) is a statistical structure on T 2M if and only if (M, g) is flat.

Theorem 5.3. Let ∇ be an arbitrary linear connection on a Riemannian manifold (M, g) and T 2M be its second-
order tangent bundle with the Sasaki metric g̃. The pair (∇m, g̃) is a statistical structure on T 2M if and only if
∇ is a metric connection with respect to g, its Riemannian curvature tensor is zero and its torsion tensor satisfies
2g(T (X,Y ), Z) = g(X,T (Y,Z))− g(Y, T (X,Z)).

Proof. Applying the covariant derivation operator ∇m to the Sasaki metric g̃, we find

(∇m
XH0

g̃)(Y H0 , ZH0) = (∇Xg)(Y, Z)
+ 1

2g(T (X,Y ), Z) + 1
2g(Y, T (X,Z)),

∇m
XH0

g̃)(Y Ha , ZHb) = (∇Xg)(Y,Z), for a = b = 1, 2
(∇m

XH0
g̃)(Y H0 , ZH1) = 1

2g(R(X,Y )u, Z),
(∇m

XH0
g̃)(Y H0 , ZH2) = 1

2g(R(X,Y )ω,Z),
(∇m

XH0
g̃)(Y Ha , ZHb) = 0, for a 6= b = 1, 2

(∇m
XHc g̃)(Y Ha , ZHb) = 0, for a, b = 0, 1, 2 and c = 1, 2.

for all vector fields X,Y, Z on M.
If X̃ = XH0 , Ỹ = Y H1 , Z̃ = ZH1 , then

(∇h
XH0 g̃)(Y H1 , ZH1) = (∇h

Y H1 g̃)(XH0 , ZH1) (5.4)
(∇Xg)(Y,Z) = 0.

If X̃ = XH0 , Ỹ = Y H0 , Z̃ = ZH1 , then

(∇h
XH0 g̃)(Y H0 , ZH1) = (∇h

ZH1 g̃)(XH0 , Y H0) (5.5)
g(R(X,Y )u, Z) = 0.

If X̃ = XH0 , Ỹ = Y H0 , Z̃ = ZH0 , using (5.4), we derive

(∇h
XH0 g̃)(Y H0 , ZH0) = (∇h

Y H0 g̃)(XH0 , ZH0) (5.6)
1

2
g(T (X,Y ), Z) +

1

2
g(Y, T (X,Z)) =

1

2
g(T (Y,X), Z) +

1

2
g(X,T (Y, Z))

2g(T (X,Y ), Z) = g(X,T (Y,Z))− g(Y, T (X,Z)).

Therefore, (5.4)- (5.6) give the result.
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