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Abstract

In the present paper, generalized Rayleigh-quotient formulas for the real parts, imaginary
parts, and moduli of the eigenvalues of general (not necessarily diagonalizable) matrices
are derived by using quotients of the form (Au,v)/(u,v) instead of (Au,u)/(u,u). These
formulas are new and correspond to similar formulas for diagonalizable matrices obtained
recently. Numerical examples underpin the theoretical findings. We point out that, in the
case of general matrices, the principal vectors of largest stage of matrix A∗ take over the
role of the eigenvectors in the case of diagonalizable matrices. So, even though the formulas
in both cases look very similar, the result is somehow unexpected and surprising.

1. Introduction

For self-adjoint matrices, there are formulas for the eigenvalues in the form of generalized Rayleigh quotients; more precisely, max-, min-,
min-max-, and max-min-formulas have been derived by the author in [8].
Recently, corresponding formulas could be carried over to formulas for the real parts, imaginary parts, and moduli of diagonalizable matrices
in [10].
The aim of the present paper is to extend these results to general matrices.
We mention also that the presentation of this paper parallels that of [8] and [10]. So, similarities in the formulation do not happen by accident,
but are intended in order to underline the similarities. As a consequence, many verbatim passages in the formulations are taken from there.
As has already been said in [9], first, the obtained formulas are of interest on their own in Linear Algebra. Second, these are also of potential
interest, for example, in the theory of linear dynamical systems. The reason for this is as follows. The real parts of the eigenvalues multiplied
by the time are equal to the arguments of the exponential functions that describe the decay behavior of the solution (see, e.g., [7, Section 7.1,
p.2011, Formulas (89), (90)]). Further, the system is asymptotically stable if the real parts of all eigenvalues are negative. Moreover, when
the eigenvalues are pairwise conjugate-complex, then the moduli of the imaginary parts are the circular damped eigenfrequencies of the
system (see, e.g., [7, Section 7.1, p. 2011, (89)]).
The paper is structured as follows.
In Sections 2 - 4, the new generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli for general matrices are
stated, as the case may be. In Section 5, the special case of general matrices with real eigenvalues is treated. Section 6 contains an application
and Section 7 the definitions of new generalized numerical ranges. In Sections 8 and 9, numerical examples are presented that underpin the
obtained findings. In the first example, matrix A is taken as the non-diagonalizable system matrix of a linear dynamical problem. In the
second example, we choose a non-diagonalizable matrix with real eigenvalues. Finally, Section 10 contains the conclusion. The References
are restricted to those that are cited in this paper augmented by those used in [8] and [10], the latter being [2], [3], [12], [13], and [14].
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2. Generalized Rayleigh-Quotient Formulas for the Real Parts of the Eigenvalues of a General
Matrix

In this section, we want to derive formulas for the representation of the real parts of the eigenvalues of a general matrix A ∈Cn×n by Rayleigh
quotients that generalize existing ones. More precisely, max-, min-, min-max-, and max-min-representations are obtained in the form of
more general Rayleigh quotients corresponding to associated formulas for the eigenvalues of diagonalizable matrices assembled in [10]. The
difference to the results obtained in [9] is that here we use the scalar product (·, ·) in Cn instead of a weighted scalar product (·, ·)R.

First, we formulate the following conditions (C1′) - (C4′):

(C1′) A ∈ Cn×n

(C2′) λi, i = 1, · · · ,r are the eigenvalues of A corresponding to the Jordan blocks Ji(λi) ∈ Cmi×mi , i = 1, · · · ,r with the chains of principal
vectors p(i)1 , · · · , p(i)mi , i = 1, · · · ,r

(C3′) u(i)1
∗
, · · · ,u(i)mi

∗
, i = 1, · · · ,r are the principal vectors of A∗ corresponding to the eigenvalues λi, i = 1, · · · ,r of the Jordan blocks

Ji(λi) ∈ Cmi×mi , i = 1, · · · ,r
(C4′) λi 6= λ j, i 6= j, i, j = 1, · · · ,r

We mention that, even though condition (C4′) may be omitted (see [6, Theorem 4]), it is nevertheless useful here since it will turn out to be
fulfilled in the numerical examples in Sections 8 and 9 and since the biorthogonal system in Theorem 2.1 can be constructed more easily
than without this condition. One has the following theorem.

Theorem 2.1. (Biorthogonality relations for principal vectors)

Let the conditions (C1′)-(C4′) be fulfilled. Then, the systems {p(1)1 , · · · , p(1)m1 ; · · · ; p(r)1 , · · · , p(r)mr } and {u(1)1
∗
, · · · ,u(1)m1

∗
; · · · ;u(r)1

∗
, · · · ,u(r)mr

∗
}

can be constructed such that the following biorthogonality relations hold:

(p(i)k ,u(i)l

∗
) =

{
1, l = mi− k+1
0, l 6= mi− k+1 (2.1)

k = 1, · · · ,mi, i = 1, · · · ,r and

(p(i)k ,u( j)
l

∗
) = 0, i 6= j, (2.2)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.
So, with

v(i)l

∗
:= u(i)mi−l+1

∗
, (2.3)

l = 1, · · · ,mi, i = 1, · · · ,r one has the biorthogonality relations

(p(i)k ,v(i)l

∗
) = δkl , (2.4)

k, l = 1, · · · ,mi, i = 1, · · · ,r, and

(p(i)k ,v( j)
l

∗
) = 0, i 6= j, (2.5)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

Proof. See proof of [5, Theorem 2] or [6, Theorem 4].

Next, we want to derive a relation corresponding to that of [10, Formula (12)]. This is done in the following Formula (2.19).
First, with the identity matrix E, we introduce the abbreviation

Nλ j(A) := {u ∈ Cn |(A−λ j(A)E)u = 0}, j = 1, . . . ,r (2.6)

for the geometric eigenspaces so that

Nλ j(A) := [p( j)
1 ] = [p j], j = 1, . . . ,r.

Herewith, we define

Nσ(A) :=
r⊕

j=1
Nλ j(A). (2.7)

Further, we define the following subspaces of Cn. For every k = 1, · · · ,r, let

Np,k :=

{
u ∈ Cn |u =

k

∑
j=1

α j p j with α j ∈ C, j = 1, · · · ,k

}
=: [p1, · · · , pk] (2.8)

and

Np,k,R :=

{
u ∈ Cn |u =

k

∑
j=1

β j p j with β j ∈ R, j = 1, · · · ,k

}
=: [p1, · · · , pk]R (2.9)
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as well as

Np := Np,r :=

{
u ∈ Cn |u =

r

∑
j=1

α j p j with α j ∈ C, j = 1, · · · ,r

}
=: [p1, · · · , pr] (2.10)

and

Np,R := Np,r,R :=

{
u ∈ Cn |u =

r

∑
j=1

β j p j with β j ∈ R, j = 1, · · · ,r

}
=: [p1, · · · , pr]R (2.11)

where Np,R is apparently isomorphic to Rr and Np is isomorphic to Cr.
We mention that all these spaces (2.8) - (2.11) are subspaces of the geometric eigenspace Nσ(A).
In [10], we have defined the further spaces Nu∗,k, Nu∗,k,R, Nu∗ , and Nu∗,R which are subspaces of the geometric eigenspace Nσ(A∗). Here,
however, we need different spaces. For this, we begin with the abbreviations

v∗j := v( j)
1
∗
= u( j)

m j−1+1
∗
= u( j)

m j

∗
, (2.12)

j = 1, · · · ,r that are principal vectors of stage m j pertinent to the eigenvalue λ j(A∗) = λ j(A), j = 1, · · · ,r. Herewith, for every k = 1, · · · ,r,
we define

Nv∗,k :=

{
u ∈ Cn |u =

k

∑
j=1

α jv∗j with α j ∈ C, j = 1, · · · ,k

}
=: [v∗1, · · · ,v∗k ] (2.13)

and

Nv∗,k,R :=

{
u ∈ Cn |u =

k

∑
j=1

β jv∗j with β j ∈ R, j = 1, · · · ,k

}
=: [v∗1, · · · ,v∗k ]R (2.14)

as well as

Nv∗ := Nv∗,r :=

{
u ∈ Cn |u =

r

∑
j=1

α jv∗j with α j ∈ C, j = 1, · · · ,n

}
=: [v∗1, · · · ,v∗r ] (2.15)

and

Nv∗,R := Nv∗,r,R :=

{
u ∈ Cn |u =

r

∑
j=1

β jv∗j with β j ∈ R, j = 1, · · · ,r

}
=: [v∗1, · · · ,v∗r ]R (2.16)

where Nv∗,R is apparently isomorphic to Rr and Nv∗ is isomorphic to Cr.
After these preparations, we are able to prove the following lemma.

Lemma 2.2. Let the conditions (C1′)-(C4′) be fulfilled.
Then, with the denotations of Theorem 2.1 and (2.12),

(Au,v) =
r

∑
j=1

λ j(A)
m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,v)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(p( j)

k−1,v), u,v ∈ Cn (2.17)

leading to

(Au,v) =
r

∑
j=1

λ j(A)(u,v∗j)(p j,v), u ∈ Nσ(A), v ∈ Cn (2.18)

and thus to

Re(Au,v) =
r

∑
j=1

Reλ j(A)(u,v∗j)(p j,v), u ∈ Np,R, v ∈ Nv∗,R. (2.19)

Proof. First, we prove (2.17). For this, let u ∈ Cn. Then, with the denotations of Theorem 2.1,

u =
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
) p( j)

k (2.20)

leading to

Au =
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
)Ap( j)

k

=
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
) [λ j p( j)

k + p( j)
k−1]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
) p( j)

k +
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
) p( j)

k−1

(2.21)
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since p( j)
0 = 0, j = 1, . . . ,r.

Further, for every v ∈ Cn,

v =
r

∑
l=1

ml

∑
s=1

(v, p(l)s )v(l)s
∗
. (2.22)

This leads to

(Au,v) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,v)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(p( j)

k−1,v)

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(v, p(l)s ) (p( j)
k ,v(l)s

∗
)︸ ︷︷ ︸

δl jδsk

+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(v, p(l)s ) (p( j)
k−1,v

(l)
s
∗
)︸ ︷︷ ︸

δs,k−1δl j

implying

(Au,v) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,v)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(p( j)

k−1,v)

so that (2.17) follows.
Now, for u ∈ Nσ(A), we have

(u,v( j)
k

∗
) = 0, k = 2, · · · ,m j

since (ps,v
( j)
k

∗
) = (p(s)1 ,v( j)

k

∗
) = 0 if k 6= 1, ;s, j = 1, · · · ,r. Thus, from (17), we deduce that

(Au,v) =
r

∑
j=1

λ j(u,v
( j)
1
∗
)(p( j)

1 ,v). (2.23)

With the abbreviation (2.12), we obtain (2.18).
Relation (2.19) is a direct consequence of equation (2.18) since (u,v∗j) ∈ R, u ∈ Np,R and (p j,v) ∈ R, v ∈ Nv∗,R.
Next, as in [10], we define the vector spaces Mp,k,R, namely:

Mp,1,R := Np,R = [p1, · · · , pr]R,

Mp,k,R := {u ∈ Np,R |(u,u∗j) = 0, j = 1,2, · · · ,k−1}, k = 2, · · · ,r.
(2.24)

Instead of the spaces Mu∗,k,R in [10], we need the spaces Mv∗,k,R, i.e.,

Mv∗,1,R := Nv∗,R = [v∗1, · · · ,v∗r ]R,

Mv∗,k,R := {u ∈ Nv∗,R |(u, p j) = 0, j = 1,2, · · · ,k−1}, k = 2, · · · ,r.
(2.25)

The next lemma characterizes these spaces.

Lemma 2.3. Let the conditions (C1′)-(C4′) be fulfilled as well as {p1, · · · , pr} be the eigenvectors of A and {v∗1, · · · ,v∗r} be principal vectors
of A∗ defined by (2.12) with the property

(pi,v∗j) = δi j, i, j = 1, · · · ,r.

Then,

Mp,k,R = [pk, pk+1, · · · , pn]R, k = 1, · · · ,r (2.26)

and

Mv∗,k,R = [v∗k ,v
∗
k+1, · · · ,v

∗
r ]R, k = 1, · · · ,r. (2.27)

Proof. The proof is similar to that of [10, Lemma 3].

Similarly to [10, (21)], we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Reλ1(A)≥ Reλ2(A)≥ ·· · ≥ Reλr(A). (2.28)

Further, let u ∈ Np,R with u = ∑
r
k=1 αk pk and v ∈ Nv∗,R with v = ∑

r
k=1 βkv∗k . Then, due to Theorem 2.1, as in [10],

(u,v) =
r

∑
k=1

αkβk. (2.29)

In order to facilitate the manner of speaking, we say that the scalar product (u,v) of u and v is strongly positive if αkβk ≥ 0, k = 1, · · · ,r and
∑

r
k=1 αkβk > 0. For short, we write (u,v)� 0.
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Remark 2.4. One has αk = (u,v∗k), u ∈ Np,R and βk = (pk,v), v ∈ Nv∗,R for k = 1, · · · ,r. Therefore, (u,v)� 0 means (u,v∗k)(pk,v) ≥
0, k = 1, · · · ,r and (u,v) = ∑

r
k=1(u,v

∗
k)(pk,v) > 0.

Remark 2.5. More generally, in the sequel, one could admit linear combinations u = ∑
r
k=1 αk pk and v = ∑

r
k=1 βkv∗k with αk, βk ∈ C

such that αk βk = |αk βk| and ∑
r
k=1 |αk βk|> 0. For example, all elements αk, βk ∈ C with αk = |αk|eiϕk and βk = |βk|eiϕk where ϕk is in

0≤ ϕk < 2π for k = 1, · · · ,r would be acceptable. But, we do not want to pursue this aspect in more detail.

Comparing relation (2.19) with [10, (12)], it is clear that one can obtain similar generalized max-, min-, min-max-, and max-min-
representations for the real parts, imaginary parts, and moduli as in the case of diagonalizable matrices. Therefore, we state them without
proofs.

Theorem 2.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28). Moreover, let the
vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,n be defined by (2.24), (2.25) or (2.26),(2.27).
Then,

Reλk(A) = max
(u,v)�0

u∈Mp,k,R ,v∈Mv∗ ,k,R

Re(Au,v)
(u,v)

, k = 1,2, · · · ,r. (2.30)

The maximum is attained for u = pk, v = v∗k .

Theorem 2.7. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28).
Then, for every j = 1, · · · ,r and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = r + 1− j, the following
inequalities are valid:

Reλ j(A)≤ max
(u,v)�0

u∈Mp ,v∈Mv∗

Re(Au,v)
(u,v)

≤ Reλ1(A), (2.31)

and the following representation formulas hold:

Reλ j(A) = min
dimMp=m
dimMv∗=m

max
(u,v)�0

u∈Mp ,v∈Mv∗

Re(Au,v)
(u,v)

. (2.32)

Remark 2.8. From (2.31), it follows

Re(Au,v)
(u,v)

≤ ν [A] = max
j=1,··· ,r

Reλ j(A), (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.

Theorem 2.9. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28). Moreover, let the
vector spaces Np,k,R and Nv∗,k,R for k = 1, · · · ,r be defined by (2.9) and (2.14).
Then,

Reλk(A) = min
(u,v)�0

u∈Np,k,R ,v∈Nv∗ ,k,R

Re(Au,v)
(u,v)

, k = 1,2, · · · ,r. (2.33)

The minimum is attained for u = pk, v = v∗k .

Theorem 2.10. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28).
Then, for every j = 1, · · · ,r and all subspaces Np ⊂ Np,R and Nv∗ ⊂ Nv∗,R with dimNp = dimNv∗ = j, the following inequalities are valid:

Reλr(A)≤ min
(u,v)�0

u∈Np ,v∈Nv∗

Re(Au,v)
(u,v)

≤ Reλ j(A), (2.34)

and the following representation formulas hold:

Reλ j(A) = max
dimNp= j
dimNv∗= j

min
(u,v)�0

u∈Np ,v∈Nv∗

Re(Au,v)
(u,v)

. (2.35)

Remark 2.11. From (2.34), it follows

Re(Au,v)
(u,v)

≥−ν [−A] = min
j=1,··· ,r

Reλ j(A), (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.
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3. Generalized Rayleigh-Quotient Formulas for the Imaginary Parts of the Eigenvalues of a
General Matrix

In this section, we want to state formulas for the representation of the imaginary parts of the eigenvalues of a general matrix A ∈ Cn×n

by Rayleigh quotients corresponding to those for the real parts. More precisely, max-, min-, min-max-, and max-min-representations are
obtained corresponding to those in Section 2.
First, we want to state a relation corresponding to that of (2.19).

Lemma 3.1. Let the conditions (C1′)-(C4′) be fulfilled. Then, with the denotations of Theorem 2.1 and (2.12),

Im(Au,v) =
r

∑
j=1

Imλ j(A)(u,v∗j)(p j,v), u ∈ Np,R, v ∈ Nv∗,R. (3.1)

Proof. Equation (3.1) follows directly from Lemma 2.2, Formula (2.18).

Similarly to (2.28), we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Imλ1(A)≥ Imλ2(A)≥ ·· · ≥ Imλr(A). (3.2)

Then, we have the following series of theorems.

Theorem 3.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2). Moreover, let the
vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,r be defined by (2.24), (2.25) or (2.26),(2.27).
Then,

Imλk(A) = max
(u,v)�0

u∈Mp,k,R ,v∈Mv∗ ,k,R

Im(Au,v)
(u,v)

, k = 1,2, · · · ,r. (3.3)

The maximum is attained for u = pk, v = v∗k .

Theorem 3.3. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2).
Then, for every j = 1, · · · ,r and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = r + 1− j, the following
inequalities are valid:

Imλ j(A)≤ max
(u,v)�0

u∈Mp ,v∈Mv∗

Im(Au,v)
(u,v)

≤ Imλ1(A), (3.4)

and the following representation formulas hold:

Imλ j(A) = min
dimMp=m
dimMv∗=m

max
(u,v)�0

u∈Mp ,v∈Mv∗

Im(Au,v)
(u,v)

. (3.5)

Remark 3.4. From (3.4), it follows

Im(Au,v)
(u,v)

≤ max
j=1,··· ,r

Imλ j(A), (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.

Theorem 3.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2). Moreover, let the
vector spaces Np,k,R and Nv∗,k,R for k = 1, · · · ,r be defined by (2.9) and (2.14).
Then,

Imλk(A) = min
(u,v)�0

u∈Np,k,R ,v∈Nv∗ ,k,R

Im(Au,v)
(u,v)

, k = 1,2, · · · ,r. (3.6)

The minimum is attained for u = pk, v = v∗k .

Theorem 3.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2).
Then, for every j = 1, · · · ,r and all subspaces Np ⊂ Np,R and Nv∗ ⊂ Nv∗,R with dimNp = dimNv∗ = j, the following inequalities are valid:

Imλr(A)≤ min
(u,v)�0

u∈Np ,v∈Nv∗

Im(Au,v)
(u,v)

≤ Imλ j(A), (3.7)

and the following representation formulas hold:

Imλ j(A) = max
dimNp= j
dimNv∗= j

min
(u,v)�0

u∈Np ,v∈Nv∗

Im(Au,v)
(u,v)

. (3.8)

Remark 3.7. From (3.7), it follows

Im(Au,v)
(u,v)

≥ min
j=1,··· ,r

Imλ j(A), (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.
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4. Generalized Rayleigh-Quotient Formula for the Moduli of the Eigenvalues of a General Matrix

Whereas in Sections 2 and 3 max-, min-, min-max-, and max-min-representations with generalized Rayleigh quotients for general matrices
could be obtained, it seems that, for the moduli of eigenvalues, only a max-representation is possible. Some arguments why this is probably
the case were already given in [10, Section 4].
Now, we want to state the max-representation. For this, we suppose that the eigenvalues λ1(A), · · · ,λr(A) of A ∈ Cn×n are arranged such
that

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λr(A)|. (4.1)

Herewith, one has the following theorem.

Theorem 4.1. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.1). Moreover, let the
vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,r be defined by (2.24), (2.25) or (2.26),(2.27).
Then,

|λk(A)|= max
(u,v)�0

u∈Mp,k,R ,v∈Mv∗ ,k,R

|(Au,v)|
(u,v)

, k = 1,2, · · · ,r. (4.2)

The maximum is attained for u = pk, v = v∗k .

5. Generalized Rayleigh-Quotient Formulas for a General Matrix with Real Eigenvalues

In Section 4, we have observed that, for the moduli of the eigenvalues of a general matrix, one obtains only a max-representation with
generalized Rayleigh quotients. However, for A ∈ Cn×n with

σ(A)⊂ R,

one gets generalized Rayleigh-quotient formulas for the eigenvalues themselves. And it goes without saying that these imply Rayleigh-
quotient representations for the moduli if all eigenvalues are nonnegative such as λ1(A∗A), · · · ,λr(A∗A) (where r = n).
So, let A ∈ Cn×n with spectrum σ(A)⊂ R. Further, let the eigenvalues be arranged according to

λ1(A)≥ λ2(A)≥ ·· · ≥ λr(A). (5.1)

Then, we obtain the following series of corollaries following from Theorems 2.7 - 2.10, as the case may be.

Corollary 5.1. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to
(5.1). Moreover, let the vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,r be defined by (2.24), (2.25) or (2.26),(2.27).
Then,

λk(A) = max
(u,v)�0

u∈Mp,k,R ,v∈Mv∗ ,k,R

(Au,v)
(u,v)

, k = 1,2, · · · ,r. (5.2)

The maximum is attained for u = pk, v = v∗k .

Corollary 5.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to
(5.1).
Then, for every j = 1, · · · ,r and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = r + 1− j, the following
inequalities are valid:

λ j(A)≤ max
(u,v)�0

u∈Mp ,v∈Mv∗

(Au,v)
(u,v)

≤ λ1(A), (5.3)

and the following representation formulas hold:

λ j(A) = min
dimMp=m
dimMv∗=m

max
(u,v)�0

u∈Mp ,v∈Mv∗

(Au,v)
(u,v)

. (5.4)

Remark 5.3. From (5.3), it follows

(Au,v)
(u,v)

≤ max
j=1,··· ,r

λ j(A), (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.



16 Universal Journal of Mathematics and Applications

Corollary 5.4. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to
(5.1). Moreover, let the vector spaces Np,k,R and Nv∗,k,R for k = 1, · · · ,r be defined by (2.9) and (2.14).
Then,

λk(A) = min
(u,v)�0

u∈Np,k,R ,v∈Nv∗ ,k,R

(Au,v)
(u,v)

, k = 1,2, · · · ,r. (5.5)

The minimum is attained for u = pk, v = u∗k .

Corollary 5.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to
(5.1).
Then, for every j = 1, · · · ,r and all subspaces Np ⊂ Np,R and Nv∗ ⊂ Nv∗,R with dimNp = dimNv∗ = j, the following inequalities are valid:

λr(A)≤ min
(u,v)�0

u∈Np ,v∈Nv∗

(Au,v)
(u,v)

≤ λ j(A), (5.6)

and the following representation formulas hold:

λ j(A) = max
dimNp= j
dimNv∗= j

min
(u,v)�0

u∈Np ,v∈Nv∗

(Au,v)
(u,v)

. (5.7)

Remark 5.6. From (5.6), it follows

(Au,v)
(u,v)

≥ min
j=1,··· ,r

λ j(A), (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.

6. Application

In this section, an application of the obtained results is presented. More precisely, a new formula for ρ(A) is stated; its derivation is similar to
that of [8, (79)]. First, known formulas for this quantity are recapitulated.

Known formulas for the spectral radius of A ∈ Cn×n

One formula is given by

ρ(A) = lim
n→∞
‖An‖

1
n , (6.1)

see [4, Chapter I, p.27], where in (6.1) the spectral radius ρ(A) is independent of the used operator norm ‖ · ‖.
Another representation is

ρ(A) = max
j=1,··· ,n

|λ j(A)|, (6.2)

cf. [4, Chapter I,(5.12), p.38].

New formula for the spectral radius of A ∈ Cn×n

Let the conditions (C1′)-(C4′) be fulfilled. Then, from Theorem 4.1, as Application, we deduce the new formula

ρ(A) = max
(u,v)�0

u∈Np,R ,v∈Nv∗ ,R

|(Au,v)|
(u,v)

. (6.3)

7. New Generalized Numerical Ranges

In this section, a series of known numerical ranges are recapitulated and new numerical ranges of a general matrix are defined.

Known numerical range of A ∈ Cn×n with respect to the full space Cn

According to [12, Section 5.4,(5)], the numerical range of A ∈ Cn×n with respect to the full space Cn is defined by

WCn(A) =
{

z ∈ C |z = (Au,u)
(u,u)

, 0 6= u ∈ Cn
}
, (7.1)

which is a convex subset of C. Employing this definition to A∗A instead of A, we obtain

WCn(A∗A) =
{

x ∈ R+
0 |x =

(A∗Au,u)
(u,u)

=
(Au,Au)
(u,u)

, 0 6= u ∈ Cn
}
, (7.2)
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which is a convex subset of R+
0 . One has

WCn(A∗A) =

[
min

j=1,··· ,n
λ j(A∗A), max

j=1,··· ,n
λ j(A∗A)] = [

1
‖A−1‖2

2
,‖A‖2

2

]
(7.3)

where 1
‖A−1‖2

2
has to be interpreted as zero if A is singular.

The following four definitions of generalized numerical ranges are new.

Generalized numerical range of A ∈ Cn×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the generalized numerical range of A with respect to the subspaces Np,R and
Nv∗,R by

WNp,R,Nv∗ ,R,gen.(A) =
{

z ∈ C |z = (Au,v)
(u,v)

, (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R

}
. (7.4)

Real part of the generalized numerical range of A ∈ Cn×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the real part of the generalized numerical range of A with respect to the subspaces
Np,R and Nu∗,R by

Re[WNp,R,Nv∗ ,R,gen.(A)] =
{

x ∈ R |x = Re(Au,v)
(u,v)

, (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R

}
. (7.5)

Imaginary part of the generalized numerical range of A ∈ Cn×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the imaginary part of the generalized numerical range of A with respect to the
subspaces Np,R and Nv∗,R by

Im[WNp,R,Nv∗ ,R,gen.(A)] =
{

x ∈ R |x = Im(Au,v)
(u,v)

, (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R

}
. (7.6)

Modulus of the generalized numerical range of A ∈ Cn×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the modulus of the generalized numerical range of A with respect to the subspaces
Np,R and Nv∗,R by

|[WNp,R,Nv∗ ,R,gen.(A)]|=
{

x ∈ R+
0 |x =

|(Au,v)|
(u,v)

, (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R

}
. (7.7)

8. Numerical example

In this section, we check some of the formulas of Section 2 on an example from the theory of linear dynamical systems.

8.1. A two-mass vibration model

We take up the multi-mass vibration model of [5], shown in Fig.8.1

. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

Fig.8.1: Multi-mass vibration model

and study the case n = 2 as in [11]. For the sake of completeness, we give again the details. The associated initial value problem is given by

M ÿ+Bẏ+K y = 0, y(0) = y0, ẏ(0) = ẏ0,

where y = [y1,y2]
T and

M =

[
m1 0
0 m2

]
,

B =

[
b1 +b2 −b2
−b2 b2 +b3

]
,
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K =

[
k1 + k2 −k2
−k2 k2 + k3

]
,

with the mass, damping, and stiffness matrices M, B, and K, as the case may be, and the displacement vector y. In state-space description,
this problem takes the form

ẋ = Ax, t ≥ 0, x(0) = x0, (8.1)

where x = [yT ,zT ]T , z = ẏ, and where the system matrix A is given by

A =

[
0 E

−M−1K −M−1B

]
.

Like in [11], as numerical values for the quantities not yet specified, we choose b1 = 1/4, k2 = 23 = 8. On the whole, this delivers the
following data:

m1 = m2 = 1; b1 = 1/4, b2 = 0, b3 = 1/4; k1 = 1/64 = 1/24, k2 = 8, k3 = 1/64 = 1/24,

which leads to

M =

[
m1 0
0 m2

]
=

[
1 0
0 1

]
,

B =

[
b1 +b2 −b2
−b2 b2 +b3

]
=

[
0.25 0

0 0.25

]
,

K =

[
k1 + k2 −k2
−k2 k2 + k3

]
=

[
1/64+8 −1/2
−1/2 8+1/64

]
=

[
8.015625 −0.5
−0.5 8.015625

]
.

Further, we choose

t0 = 0

as well as

y0 = [−1,1]T

and

ẏ0 = [−1,−1]T ,

but y0 and ẏ0 are not needed here.

8.2. Computation of important quantities

Using the Matlab routine jordan, one obtains

λ1(A) = −0.1250+4.0000i,
λ2(A) = −0.1250−4.0000i,
λ3(A) = −0.1250,
λ4(A) = λ3(A).

(8.2)

The pertinent eigenvectors and principal vectors are[
p(1)1 , p(2)1 , p(3)1 , p(3)2

]
= [p1, p2, p3, p4.]

They are unnormed. The algebraic multiplicities are thus m1 = m2 = 1 and m3 = 2. So, here, r = 3.
For the adjoint matrix A∗, we obtain

λ1(A∗) = −0.1250−4.0000i,
λ2(A∗) = −0.1250+4.0000i,
λ3(A∗) = −0.1250,
λ4(A∗) = λ3(A∗).

(8.3)

The associated eigenvectors and principal vectors are[
u(1)1
∗
,u(2)1

∗
,u(3)1

∗
,u(3)2

∗]
= [u∗1,u

∗
2,u
∗
3,u
∗
4.]

They are also unnormed.
In [11], we biorthogonalized these vectors based on Theorem 1 such that the relations

(p(i)k ,u(i)l

∗
) =


1, l = mi− k+1

0, l 6= mi− k+1
(8.4)
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and

(p(i)k ,u( j)
l

∗
) = 0, i 6= j. (8.5)

So, with

v(i)l

∗
= u(i)mi−l+1

∗
, (8.6)

one has then the biorthogonality relations

(p(i)k ,v( j)
l

∗
) = δklδi j. (8.7)

The details of the biorthogonalization can be found in [11]. Define

v∗1 = v(1)1
∗
= u(1)1

∗
= u∗1,

v∗2 = v(2)1
∗
= u(2)1

∗
= u∗2,

v∗3 = v(3)1
∗
= u(3)2

∗
= u∗4,

v∗4 = v(3)2
∗
= u(3)1

∗
= u∗3.

Herewith,

(pi,v∗j) = δi j, i, j = 1, · · · ,4 (8.8)

where

p1 =


0.364602
−0.364602

−0.045575+1.458408i
0.045575−1.458408i

 , v∗1 =


0.685679+0.021427i
−0.685679−0.021427i

0+0.171420i
0−0.171420i

 ,

p2 =


0.364602
−0.364602

−0.045575−1.458408i
0.045575+1.458408i

 , v∗2 =


0.685679−0.021427i
−0.685679+0.021427i

0−0.171420i
0+0.171420i

 ,

p3 =


0.707107
0.707107
−0.088388
−0.088388

 , v∗3 =


0.707107
0.707107

0
0

 ,

p4 =


0
0

0.712610
0.712610

 , v∗4 =


0.087706
0.087706
0.701646
0.701646

 .
As in [11], we add the followings remarks.

Remark 8.1. The vector p(3)2 is a principal vector of stage 2 for matrix A. But, since it is normed such that (p(3)2 ,v(3)2
∗
) = 1 instead of

‖p(3)2 ‖2 = 1, we have not Ap(3)2 = λ3 p(3)2 + p(3)1 , but instead, Ap(3)2 = λ3 p(3)2 + γ
(3)
1 p(3)1 with a factor γ

(3)
1 6= 0, γ

(3)
1 6= 1. Similarly, u(3)2

∗

is principal vector of stage 2 for A∗. But, due to the biorthogonalization process, we have not A∗u(3)2
∗
= λ3u(3)2

∗
+ u(3)1

∗
, but instead,

A∗u(3)2
∗
= λ3u(3)2

∗
+δ

(3)
1 u(3)1

∗
with a factor δ

(3)
1 6= 0, δ

(3)
1 6= 1. We leave it to the reader to check this numerically on our example.

Remark 8.2. Due to the foregoing remark, Formula (2.17) looks somewhat different. But, Formula (2.18) remains valid which is the
important point since the subsequent findings are based on Formula (2.18), not on Formula (2.17).

8.3. Numerical check of Theorems 2.6 and 2.9

From Theorem 2.6, Formula (2.30) and Theorem 2.9, Formula (2.33), we conclude

min
j=1,2,3

Reλ j(A)≤
Re(Au,v)
(u,v)

≤ max
j=1,2,3

Reλ j(A),

(u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R by setting k = 1, there. This can also be written as

Re(Au,v)
(u,v)

∈
[

min
j=1,2,3

Reλ j(A), max
j=1,2,3

Reλ j(A)
]
,
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(u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R. We check this for a series of vectors. One has[
min

j=1,2,3
Reλ j(A), max

j=1,2,3
Reλ j(A)

]
= [−0.1250,−0.1250];

in other words

Re(Au,v)
(u,v)

=−0.1250, (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.

Let

u1 = −5p1 +3p3,
v1 = −4v∗1 +2v∗3.

Then, u1 ∈ Np,R and v1 ∈ Nv∗,R as well as (u1,v1)� 0, and one obtains

u1 =


0.298311
3.944330

−0.037289−7.292039i
−0.493041+7.292039i

 , v1 =


−1.328504−0.085710i

4.156931+0.085710i
0−0.685679i
0+0.685679i

 ,
(Au1,v1) = −3.250000000000000+80.000000000000000i,
(u1,v1) = 26.000000000000004,

and thus

Re(Au1,v1)

(u1,v1)

.
=−0.125000000000000.

Let

u2 = 3p2,
v2 = −4v∗1 +2v∗2.

Then, u2 ∈ Np,R and v2 ∈ Nv∗,R as well as (u2,v2)� 0, and one obtains

u2 =


1.093806
−1.093806

−0.136726−4.375223i
0.136726+4.375223i

 , v2 =


−1.371359−0.128565i

1.371359+0.128565i
0−1.028519i
0+1.028519i

 ,
(Au2,v2) = −0.750000000000000−24.000000000000000i,
(u2,v2) = 6,

and thus

Re(Au2,v2)

(u2,v2)

.
=−0.125000000000000.

Let

u3 = −5p1 +3p2−4p3,
v3 = −4v∗1 +2v∗2−2v∗3.

Then, u3 ∈ Np,R and v3 ∈ Nv∗,R as well as (u3,v3)� 0, and one obtains

u3 =


−3.557631
−2.099223

0.444704−11.667262i
0.262403+11.667262i

 , v3 =


−2.785572−0.128565i
−0.042855+0.128565i

0−1.028519i
0+1.028519i

 ,
(Au3,v3) = −4.250000000000000+56.000000000000000i,
(u3,v3) = 34,

and thus

Re(Au3,v3)

(u3,v3)

.
=−0.125000000000000.

Let

u4 = −5p1 +3p2 +6p3−4p4,
v4 = −2v∗1 +4v∗2 +2v∗3−3v∗4.
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Then, (u4,v4)� 0, and one obtains

u4 =


3.513437
4.971845

−3.289618−11.667262i
−3.471919+11.667262i

 , v4 =


2.522455−0.128565i
−0.220262+0.128565i
−2.104939−1.028519i
−2.104939+1.028519i

 ,
(Au4,v4) = −13.812257748298542−7.999999999999989i,
(u4,v4) = 46,

and thus

Re(Au4,v4)

(u4,v4)
= −0.709454874462791

6= −0.1250

which is not surprising since u4 6∈ Np,R = [p1, p2, p3] and v4 6∈ Nv∗,R = [v∗1,v
∗
2,v
∗
3]. Recall at this point that r = 3 and v∗j = u( j)

m j

∗
, j = 1,2,3

are the principal vectors of maximum stage associated with the eigenvalues λ j(A∗), j = 1,2,3, as the case may be. With m1 = m2 = 1

and m3 = 2, therefore v∗1 = u(1)1
∗

and v∗2 = u(2)1
∗

are eigenvectors and v∗3 = u(3)2
∗

is a principal vector of stage 2 whereas v∗4 = u(3)1
∗

is an
eigenvector and thus not a principal vector of maximum stage.
Let

u5 = [1,2,3,4]T ∈ R4,
v5 = [4,3,2,1]T ∈ R4.

Here, one obtains

(Au5,v5) = 29.437500000000000,
(u5,v5) = 20,

and thus

Re(Au5,v5)

(u5,v5)
= 1.471875000000000 6=−0.1250

which is neither surprising since (u5,v5) 6� 0 due to

α
(5) := (α

(5)
k )k=1,··· ,4 = ((u5,v

∗
k))k=1,··· ,4 =


−0.685679+0.192847i
−0.685679−0.192847i

2.121320
5.174642


and

β
(5) := (β

(5)
k )k=1,··· ,4 = ((pk,v5))k=1,··· ,4 =


0.319027+1.458408i
0.319027−1.458408i

4.684582
2.137829

 .

8.4. Computational aspects

In this subsection, we say something about the used computer equipment and the computation times.
(i) As to the computer equipment, the following hardware was available: an Intel Core2 Duo Processor at 3166 GHz, a 500 GB mass storage
facility, and two 2048 MB high-speed memories. As software package for the computations, we used MATLAB, Version 7.11.
(ii) The computation time t of an operation was determined by the command sequence t1=clock; operation; t=etime(clock,t1). It is put out
in seconds, rounded to four decimal places. For the computation of the eigenvalues of matrix A in Subsection 8.2, we used the command
[XA,DA]=eig(A); the pertinent computation time was less than 0.0001 s.

9. Numerical Example 2

In this section, we proceed in a similar way as in Section 8. Here, we present an example of a real non-diagonalizable matrix A with real
eigenvalues.
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9.1. The matrix A and its eigenvalues and principal vectors

We take the matrix A from [1, Example 5.2, p.82]. So, let

A =

 4 1 1
2 4 1
0 1 4

 .
In [1], the eigenvalues are given as

λ1 = 6,
λ2 = 3,
λ3 = λ2,

where the numbering is such that λ1 ≥ λ2. According to [1], the associated right eigenvectors are given as

p1 = p(1)1 =

 3
4
2

 , p2 = p(2)1 =

 0
1
−1

 ;

they are unnormed. Here, m1 = 1 and m2 = 2. So, here, r = 2. A corresponding principal vector p3 = p(2)2 is not given in [1].
Further, there, the vectors u∗1 and u∗2 of A∗ = AT are given as

u∗1 = u(1)1
∗
=

 1
1
1

 , u∗2 = u(2)1
∗
=

 2
−1
−1

 ;

they are also unnormed. Again, the principal vector u∗3 = u(2)2
∗

is not given in [1].
From

Ap(2)2 = λ2(A)p(2)2 + p(2)1 ,

one can determine a principal vector p(2)2 , and from

A∗u(2)2
∗
= λ2(A∗)u

(2)
2
∗
+u(2)1

∗
,

a principal vector u(2)2
∗
. By hand calculation, we obtain

p(2)2 =

 1
−1

0

 , u(2)2
∗
=

 0
1
−2


if we choose the third component of p(2)2 and the first component of u(2)2

∗
as zero. At this point, we remind that these principal vectors of

stage 2 are only determined up to an associated eigenvector.

9.2. Auxiliary computational results

Using the Matlab routine eig.m, we obtain

λ1 = 6,
λ2 = 3,
λ3 = λ2.

The pertinent computed biorthonormal right eigenvectors and principal vectors[
p(1)1 , p(2)1 , p(2)2

]
= [p1, p2, p3]

are unnormed. The algebraic multiplicities are thus m1 = 1 and m2 = 2.
For the adjoint matrix A∗, we obtain

λ1(A∗) = λ1(A),
λ2(A∗) = λ2(A),
λ3(A∗) = λ2(A).

(9.1)

The associated eigenvectors and principal vectors are[
u(1)1
∗
,u(2)1

∗
,u(2)2

∗]
= [u∗1,u

∗
2,u
∗
3]

are also unnormed.



Universal Journal of Mathematics and Applications 23

As in [11], we biorthogonalized these vectors based on Theorem 2.1 such that the relations (8.4) - (8.7) hold. The details of the biorthogonal-
ization can be found in [11].
Define

v∗1 = v(1)1
∗
= u(1)1

∗
= u∗1,

v∗2 = v(2)1
∗
= u(2)2

∗
= u∗3,

v∗3 = v(3)1
∗
= u(2)1

∗
= u∗2.

Herewith,

(pi,v∗j) = δi j, i, j = 1, · · · ,3 (9.2)

where

p1 =

 −0.577350269189626
−0.769800358919501
−0.384900179459750

 , v∗1 =

 −0.577350269189626
−0.577350269189626
−0.577350269189626

 ,

p2 =

 0
−1.427248064296125

1.427248064296125

 , v∗2 =

 −0.622799155329218
0.077849894416152
0.778498944161523

 ,

p3 =

 −0.816496580927726
1.632993161855452
−0.816496580927726

 , v∗3 =

 −0.816496580927726
0.408248290463863
0.408248290463863

 .
These results are based on the eigenvectors and principal vectors computed by using the Matlab routine jordan. We leave it to the reader to
compute these vectors by starting with the unnormed vectors stated in Section 9.1. The result is somewhat different. This outcome is not
surprising since the principal vectors are determined only up to eigenvectors for the treated matrix A.
We conclude this section by mentioning that, here, similar remarks hold to those at the end of Section 8.2.

9.3. Numerical check of Corollaries 5.2 and 5.5

From Corollary 5.2, Formula (5.3) and Corollary 5.5, Formula (5.7), we conclude

min
j=1,2

λ j(A)≤
(Au,v)
(u,v)

≤ max
j=1,2

λ j(A),

(u,v)� 0, u ∈ Np,R = [p1, p2]R, v ∈ Nv∗,R = [v∗1,v
∗
2]R by setting k = 1, there. This can also be written as

(Au,v)
(u,v)

∈
[

min
j=1,2

λ j(A), max
j=1,2

λ j(A)
]
,

(u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R. We check this for a series of vectors. One has[
min
j=1,2

λ j(A), max
j=1,2

λ j(A)
]
= [3;6].

Let

u1 = −5p1 +3p2,
v1 = −4v∗1 +2v∗2.

Then, u1 ∈ Np,R and v1 ∈ Nv∗,R as well as (u1,v1)� 0, and one obtains

u1 =

 2.886751345948128
−0.432742398290872

6.206245090187128

 , v1 =

 1.063802766100067
2.465100865590808
3.866398965081549

 ,
(Au1,v1) = 138.0000000000000,
(u1,v1) = 25.999999999999996,

and thus

(Au1,v1)

(u1,v1)

.
= 5.307692307692308 ∈ [3;6].

Let

u2 = 3p2,
v2 = −4v∗1 +2v∗2.
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Then, u2 ∈ Np,R and v2 ∈ Nv∗,R as well as (u2,v2)� 0, and one obtains

u2 =

 0
−4.281744192888376

4.281744192888376

 , v2 =

 1.063802766100067
2.465100865590808
3.866398965081549

 ,
(Au2,v2) = 17.999999999999996,
(u2,v2) = 5.999999999999998,

and thus

(Au2,v2)

(u2,v2)

.
= 3.000000000000000 ∈ [3;6].

Let

u3 = −2p1 +2p2,
v3 = −2v∗1 +2v∗2.

Then, u3 ∈ Np,R and v3 ∈ Nv∗,R as well as (u3,v3)� 0, and one obtains

u3 =

 1.154700538379251
−1.314895410753249

3.624296487511752

 , v3 =

 −0.090897772279185
1.310400327211556
2.711698426702298

 ,
(Au3,v3) = 36,
(u3,v3) = 7.999999999999999,

and thus

(Au3,v3)

(u3,v3)

.
= 4.500000000000001 ∈ [3;6].

Let

u4 = −5p1 +3p2 +6p3,
v4 = −2v∗1 +4v∗2 +2v∗3.

Then, (u4,v4)� 0, and one obtains

u4 =

 −2.012228139618228
9.365216572841840
1.307265604620772

 , v4 =

 −2.969489244793074
2.282596696971587
5.085192895953069

 ,
(Au4,v4) = 145.7298612851365,
(u4,v4) = 34,

and thus

(Au,v4)

(u4,v4)
= 4.286172390739309 ∈ [3;6]

even though u4 6∈ Np,R = [p1, p2]R and v4 6∈ Nv∗,R = [v∗1,v
∗
2]R.

Let

u5 = [1,2,3]T ∈ R3,
v5 = [3,2,1]T ∈ R3.

Here, one obtains

(Au5,v5) = 67,
(u5,v5) = 10,

and thus

(Au5,v5)

(u5,v5)
= 6.700000000000000 6∈ [3;6]

which is not surprising since (u5,v5) 6� 0 due to

α
(5) := (α

(5)
k )k=1,2,3 = ((u5,v

∗
k))k=1,2,3 =

 −3.464101615137755
1.868397465987655
1.224744871391589


and

β
(5) := (β

(5)
k )k=1,2,3 = ((pk,v5))k=1,2,3 =

 −3.656551704867629
−1.427248064296125

0.000000000000000

 .
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10. Conclusion

It has been shown that there exist generalized Rayleigh-quotient representations of the real and imaginary parts of the eigenvalues of general
matrices that parallel those for the eigenvalues of diagonalizable matrices. As in that case, for the moduli, only a max-representation
could be stated. The special case of general matrices with real eigenvalues has also been considered. The main difference to the case of

diagonalizable matrices is that the space Nu∗,R = [u∗1, · · · ,u∗n]R is replaced by the space Nv∗,R = [v∗1, · · · ,u∗r ]R where v∗j = v( j)
1
∗
= u( j)

m j

∗
are

the principal vectors of largest stage m j pertinent to the eigenvalues λ j(A∗) = λ j(A) for j = 1, · · · ,r. As application, a new formula for
the spectral radius ρ(A) for general matrices is obtained. On a numerical example from the theory of linear dynamical systems with non-

diagonalizable system matrix A (Example 1), we check that
Re(Au,v)
(u,v)

∈ [ min
j=1,··· ,r

Reλ j(A), max
j=1,··· ,r

Reλ j(A)], (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R.

On a further example (Example 2), also for a non-diagonalizable matrix A, this time with real eigenvalues, we check numerically that
(Au,v)
(u,v)

∈ [ min
j=1,··· ,r

λ j(A), max
j=1,··· ,r

λ j(A)], (u,v)� 0, u ∈ Np,R, v ∈ Nv∗,R. We mention that, in the case of diagonalizable matrices, the results

of [10] are obtained back since then r = n and m j = 1 for j = 1, · · · ,r so that then Nv∗,R = Nu∗,R and Nσ(A) =Cn. The paper is of interest on
its own in the areas of Linear Algebra and Numerical Analysis. Beyond this, it could be of value to mathematicians and engineers, in general.
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Appendix

As in [10], with a minor additional hypothesis, the generalized min-, min-max-, and max-min-representaions for the moduli of eigenvalues
can be proven. In this Appendix, we show this, but restrict ourselves to the min-max-representation. The minor additional hypothesis is
p j ∈Mp and v∗j ∈Mv∗ . A further advantage of this additional hypothesis is that the proofs simplify. But, we omit the proof since it is similar
to that in the case when matrix A is diagonalizable in [10].
We have the following theorem.

Theorem 10.1. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.1).
Then, for every j = 1, · · · ,n and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = n+1− j where additionally
pj ∈Mp and v∗j ∈Mv∗ , the following inequalities are valid:

|λ j(A)| ≤ max
(u,v)�0

u∈Mp ,v∈Mv∗

|(Au,v)|
(u,v)

≤ |λ1(A)|,

and the following representation formulas hold:

|λ j(A)|= min
dimMp=m, p j∈Mp

dimMv∗=m,v∗j∈Mv∗

max
(u,v)�0

u∈Mp ,v∈Mv∗

|(Au,v)|
(u,v)

.

Remark 10.2. We mention that, with the above additional hypotheses, the proofs of Theorems 2.6 - 2.10, Theorems 3.2 - 3.5, Theorem 4.1,
and Corollaries 5.1 - 5.5 get also simpler.
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