

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

A linear time pattern based algorithm for n-

queens problem

N-vezir problemi için lineer zamanlı örüntü

temelli algoritma

Yazar(lar) (Author(s)): Bergen KARABULUT1, Atilla ERGÜZEN2, Halil Murat ÜNVER3

ORCID1: 0000-0003-0755-1289

ORCID2: 0000-0003-4562-2578

ORCID3: 0000-0001-9959-8425

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Karabulut B., Ergüzen A. and Ünver

H. M., “A linear time pattern based algorithm for n-queens problem”, Politeknik Dergisi, 25(2): 615-622,

(2022).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.762967

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

A Linear Time Pattern Based Algorithm for N-Queens Problem

Önemli noktalar (Highlights)

❖ This study proposes a new algorithm for a benchmark problem.

❖ The proposed algorithm produces solution(s) for all n values.

❖ The proposed algorithm runs in linear time with O(n) time complexity.

❖ Even very large n values, it produces solution(s) without using complex calculations or searching.

❖ This study provide an effective solution to the handled problem.

Aim

The purpose of this study is to develop an algorithm producing solution(s) in large n values of n-

queens problem.

Design & Methodology

A pattern based approach that produces at least one unique solution for all n values (n>3) was

detected and it used to create an algorithm.

Originality

The developed algorithm can produce solutions without using complex calculations or

searching. In this respect, the proposed method provides efficiency compared to similar studies.

Findings

The developed algorithm with О(n) time complexity produces quite faster solution to n-queens

problem and even in some values this algorithm produces (n-1)/2 unique solutions in linear time.

Conclusion

In this study, a linear time pattern based algorithm was proposed for the n-queens problem. The

developed method provides an important contribution in terms of producing solutions for large

values in linear time.

Declaration of Ethical Standards

The authors of this article declare that the materials and methods used in this study do not require ethical committee

permission and/or legal-special permission.

Politeknik Dergisi, 2022; 25(2) : 615-622 Journal of Polytechnic, 2022; 25(2): 615-622

615

A Linear Time Pattern Based Algorithm for N-Queens

Problem
Araştırma Makalesi / Research Article

Bergen KARABULUT*, Atilla ERGÜZEN, Halil Murat ÜNVER

Computer Engineering Department, Engineering Faculty, Kırıkkale University, 71450 Yahşihan, Türkiye

 (Geliş/Received : 06.07.2020 ; Kabul/Accepted : 17.12.2020 ; Erken Görünüm/Early View : 18.12.2020)

 ABSTRACT

The n-queens problem is the placing of n number of queens on an nxn chessboard so that no two queens attack each other. This

problem is important due to various usage fields such as VLSI testing, traffic control job scheduling, data routing, dead-lock or

blockage prevention, digital image processing and parallel memory storage schemes mentioned in the literature. Besides, this

problem has been used as a benchmark for developing new artificial intelligence search techniques. However, it is known that

backtracking algorithms, one of the most frequently used algorithms to solve this problem, cannot produce all solutions in large n

values due to the exponentially growing time complexity. Therefore, various methods have been proposed for producing one or

more solutions, not all solutions for each n value. In this study, a pattern based approach that produces at least one unique solution

for all n values (n>3) was detected. By using this pattern, a new algorithm that produces at least one unique solution for even very

large n values in linear time was developed. The developed algorithm with О(n) time complexity produces quite faster solution to

n-queens problem and even in some values, this algorithm produces (n-1)/2 unique solutions in linear time.

Keywords: N-queens problem, constraint satisfaction problem, NP-hard, NP-complete, optimization problem.

N-Vezir Problemi için Lineer Zamanlı Örüntü Temelli

Algoritma

ÖZ

N-vezir problemi, nxn boyutundaki bir satranç tahtasına n adet vezirin herhangi iki vezir birbirine saldırmayacak şekilde

yerleştirilmesidir. Bu problem literatürde değinilen VLSI testi, trafik kontrol işi planlama, veri yönlendirme, ölümcül kilitlenme ya

da tıkanıklık önleme, dijital görüntü işleme ve paralel bellek depolama şemaları gibi çeşitli kullanım alanlarından dolayı önemlidir.

Ayrıca bu problem, yeni yapay zekâ arama tekniklerinin geliştirilmesi için bir referans noktası olarak kullanılmaktadır. Fakat

bilindiği üzere bu problemin çözümde sıklıkla kullanılan geri-izleme algoritmaları, katlanarak büyüyen zaman karmaşıklığından

dolayı büyük n değerleri için tüm çözümleri üretememektedir. Bu nedenle, her bir n değeri için tüm çözümleri bulmak yerine bir

veya daha fazla çözüm üretebilmek için çeşitli yöntemler önerilmiştir. Bu çalışmada, tüm n değerleri (n>3) için en az bir tane eşsiz

çözüm üreten bir örüntü tespit edilmiştir. Bu örüntü kullanılarak, çok büyük n değerlerinde bile lineer zamanda en az bir tane eşsiz

çözüm üreten yeni bir algoritma geliştirilmiştir. O(n) zaman karmaşıklığı ile geliştirilen algoritma, n-vezir problemine oldukça

hızlı çözüm üretmektedir ve hatta bazı değerler için lineer zamanda (n-1)/2 adet eşsiz çözüm üretmektedir.

Anahtar Kelimeler: N-vezir problemi, kısıt sağlama problemi, NP-hard, NP-complete, optimizasyon problemi.

1. INTRODUCTION

The n-queens problem is the placement of n number of

queens on an nxn chessboard in such a way that no two

queens are on the same row, column, or diagonal.

Therefore, there can be only one queen on each row,

column and diagonal. This problem was initially

suggested as 8-queens problem by a chess player Max

Bezzel in 1848 [1]. It was later extended to the n-queens

problem, with n queens on an nxn board. The various

application fields of this problem, which has been studied

more than a century ago, have been emphasized in the

literature. Sosic and Gu [2] stated that the n-queens

problem has practical applications in VLSI testing and

traffic control. Waqas and Bhatti [3] have listed

applications of n-queens problem and (n+1) queens

problem for real world problem as job/shop scheduling,

data routing, dead-lock or blockage prevention, efficient

resource management in computer systems, task

assignment in multiprocessors, digital image processing

and parallel memory storage schemes. It has also been

used in various practical applications. Wang et al. [4]

presented pixel decimation technique using the n-queen

lattice and presented an application for block-based

motion estimation using this novel technique. Bell and

Stevens [5], have presented one of the best survey about

the n-queens problem and have mentioned applications

of the problem in detail.

Many studies have been conducted to offer a solution to

the n-queens problem which was suggested initially in

1848. Solutions have been sought for the problem by

using various methods including optimization

techniques, parallel programming, mathematical

approaches, backtracking algorithms and different

patterns. Different methods have been applied to solve
*Sorumlu Yazar (Corresponding Author)

e-posta : brgnkarabulut@gmail.com

Bergen KARABULUT, Atilla ERGÜZEN, Halil Murat ÜNVER / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2022 ; 25(2) : 615-622

616

this problem, which has importance for various fields.

The studies in the literature can be divided into three

categories; finding one solution, finding more than one

solutions but not all and finding all solutions. One of the

most frequently used method for solving n-queens

problem is backtracking search that generate all possible

solutions. Murali et al. [6] simulated the N-queens

problem using backtracking algorithm. Güldal et al. [7]

proposed a hybrid approach by integrating sets and

backtracking. They have removed the threatened cells in

order to decrease the number of trial and error steps. Due

to the exponentially growing time complexity of

backtracking search [8], it cannot produce all possible

solutions in large n values [9]. For this reason, methods

which produce one or more solutions, instead of all

solutions for each n value were developed.

N-queens problem is also a combinatorial optimization

problem [10] and this problem has been used as a

benchmark for developing new AI search techniques [11,

12]. In the literature, there are different studies in which

artificial intelligence and computational intelligence

techniques have been used to solve the problem. Meng

and Wu [13] presented a Hybrid Genetic Algorithm in

their study to solve the problem. Khan et al. [14] was

proposed a solution for n-queen problem based on Ant

Colony Optimization. In their study Turky and Ahmad

[15] have been used Genetic Algorithm to produce

solution to the problem. Motameni [16] have used

Gravitational Search Algorithm to solve n-queens

problem. Maazallahi et al. [17], presented a DNA

computing model based on Adleman-Lipton model to

solve the n-queens problem. This model provides all

solutions and solve problem in a polynomial time

complexity. In other studies, Biogeography based

optimization [18], particle swarm optimization

Amooshahi et al. [19] were used to solve this problem.

However, in recent years more algorithmic studies have

been done and algorithms have been proposed for

solution of the problem. Abramson and Yung [1],

developed a new linear time divide and conquer

algorithm to solve n-queens problem and a related

problem that is the toroidal problem. Sosic and Gu [20],

presented a new probabilistic local search algorithm. This

algorithm runs in polynomial time and based on a

gradient based heuristic. Their algorithm finds a solution

for extremely large size n-queens problem. It is stated

that previous AI search algorithms can find solution with

n up to about 100, this method can find a solution with n

up to 500,000. In another study, Sosic and Gu [11]

developed two gradient-based heuristic based

probabilistic local search algorithms called Queen Search

2 (QS2) and Queen Search 3 (QS3). QS2 and QS3

algorithms run in almost linear time and can find a

solution for extremely large size n-queens problems.

With QS3 algorithm, a solution can be found for 500,000

queens in approximately one and a half minutes. In their

subsequent study, Sosic and Gu [9] presented a linear

time algorithm. With this algorithm, a solution can be

found for 3,000,000 queens in approximately 55 seconds.

In a new study they did in the following years, Sosic and

Gu [21] presented an efficient local search algorithm.

This algorithm runs in linear time. They can find a

solution for 3,000,000 queens using a workstation

computer. Lijo and Jose [22], proposed an algorithm that

has less computational complexity compared with

backtracking algorithm. Their algorithm based on

arithmetic progression and predicts potential candidate

solutions. The proposed algorithm has reduced the time

complexity by O(n3).

El-Qawasmeh and Al-Noubani [23], developed an

algorithm working in linear time for the problem.

Solutions have a modular structure and queens are placed

in pre-calculated positions, allowing for producing a fast

solution to the problem. They used 3 different strategies

in which they divided chessboard into two parts. They

have directly placed queens on non-overlapping points

beginning from the top of the board for the first half and

beginning from the bottom of the board for the second

half. They obtained a unique solution for 75% of n

values, and used the algorithm developed by Sosic for the

remaining 25%. They proved their strategies with a

software they developed and with mathematical

operations. In conclusion, they developed an algorithm

that works 100 faster in deterministic linear time in only

75% of n values for n>3 compared to Sosic’s algorithm.

Rohith et al. [24], obtained a unique solution in

polynomial time for (n+1)x(n+1) chessboard by

expanding nxn solution using a pattern that they

observed.

In this study, a pattern-based algorithm running in linear

time for n-queens was developed. A pattern that produces

at least one unique solution for every consecutive 6

values where n>3 was observed. Besides, this pattern

produces (n-1)/2 unique solutions in one in every

consecutive six values. By using this pattern, a general

algorithm was developed. With this algorithm, unique

and fast solutions were obtained even for extremely large

n values without resorting to complex calculations. The

developed algorithm is iterative and it only assigns a

position for queens in any n values. Computational

complexity of the algorithm is О(n).

2. METHODOLOGY

2.1. Notation for the N-Queens Problem

Any possible solution of the n-queens problem was

represented as the n-tuple (𝑞0, 𝑞1, … 𝑞𝑛). In this notation,

𝑞𝑖 is a column position on which the queen in the i-th row

is placed. Figure 1 shows an example of n-tuple notation

for n=4.

Figure 1. Solution to 4-queens problem

 A LINEAR TIME PATTERN BASED ALGORITHM FOR N-QUEENS PROBLEM… Politeknik Dergisi, 2022; 25 (2) : 615-622

617

2.2. Observed Pattern

The observed pattern produces at least one unique

solution for every value where n>3. It produces one

unique solution in four, two unique solutions in one, three

solutions in three and (n-1)/2 unique solutions in four in

every consecutive twelve values. In Table 1 solutions of

the pattern was presented. Firstly, the n values are

divided into two categories according to whether they are

even or odd. Then subcategories are determined by mode

operation. There are 3 subcategories for both even and

odd, so there are 6 subcategories in total. Solution sets

were given for 6 subcategories in Table 1.

Shift operation: In this operation an existing solution is

handled. In existing solution’s set, the last queen is taken

first and all other queens are shifted one position to the

right. When this operation is applied to an existing

solution, a new unique solution is obtained. However,

this operation can be performed only ((n-1)/2)-1 times.

So, totally (n-1)/2 solutions are obtained. An example

was given in Figure 2. As shown in Figure 2.a, solution

set of n=5 queens is (1, 3, 5, 2, 4). Shift operation can be

applied in this value one times and new unique solution

set is (4, 1, 3, 5, 2). So, two unique solutions are

produced.

Figure 2. a) 1st solution of 5-queens b) 2nd solution of 5-

queens

2.3. Proposed Algorithm

The proposed algorithm is based on a pattern and does

not contain search operation. The positions of queens on

the board are predetermined and the solution set is

generated directly by the pattern. The algorithm works

for n>3.

The main function calls the decision function called

determineSolutionFunction() if n is greater than 3.

Main Function: nQueens

1: Set n = get the board size from user

2: if n >3 then

3: Call determineSolutionFunction(n);

4: else quit

Function: determineSolutionFunction(n)

1: if n is even then

2: if (n+1) mod 3 is equal to zero then

3: if n/2 mod 2 is equal to zero then

4: Call Function1(n)

5: else

6: Call Function2(n)

7: else

8: Call Function3(n)

9: else

10: if n mod 3 is equal to 0 then

11: if (n-1) mod 4 is equal to 0 then

12: Call Function4(n)

13: else

14: Call Function5(n)

15: else

16: Call Function6(n)

Table 1. Solution sets

Residue class Solution(s)

n is even

(n+1) mod 3 = 0 & (n/2) mod 2 = 0
(e.g., n= 8, 20, 32, 44 …)

Solution 1= (2, 4, 6, … n, 3, 1, 7, 5, … (n-1), (n-3))
Solution 2= (4, 6, …n, 3, 1, 7, 5, … (n-1), (n-3), 2)

(n+1) mod 3 = 0 & (n/2) mod 2 ≠ 0

(e.g., n= 14, 26, 38, 50 …)

Solution 1 = ((n-1), 2, 4, … n, 3, 1, 7, 5, … (n-3), (n-5))

Solution 2 = (n, 3, 5, … (n-1), 1, 4, 2, 8, 6, … (n-2), (n-4))
Solution 3= ((n-5), (n-1), 2, 4, … n, 3, 1, … (n-7), (n-9), (n-3))

(n+1) mod 3 ≠ 0

(e.g., n= 4, 6, 10, 12, 16, 18 …)
Solution 1= (2, 4, … n, 1, 3, … (n-1))

n is odd

n mod 3 = 0 & (n-1) mod 4 = 0
(e.g., n= 9, 21, 33, 45 …)

Solution 1 = ((n-1), 5, 3, 9, 7, … n, (n-2), 2, 4, … (n-3), 1)
Solution 2 = (1, (n-1), 5, 3, 9, 7, … n, (n-2), 2, 4, … (n-3))

Solution 3 = ((n-2), 4, 2, 8, 6, … (n-1), (n-3), 1, 3, … (n-4), n)

n mod 3 = 0 & (n-1) mod 4 ≠ 0
(e.g., n= 15, 27, 39, 51 …)

Solution 1 = ((n-1), 3, 5, 7, … n, 4, 2, 8, 6, … (n-3), (n-5), 1)

Solution 2 = (3, 5, 7, … n, 4, 2, 8, 6, … (n-3), (n-5), 1, (n-1))

Solution 3 = ((n-1), 3, 5, 7, … (n-2), 1, 4, 2, 8, 6, … (n-3), (n-5), n)

n mod 3 ≠ 0

(e.g., n= 5, 7, 11, 13, 17, 19 …)

Solution 1 = (1, 3, … n, 2, 4, … (n-1))

Solution 2 = ((n-1), 1, 3, … n, 2, 4, … (n-3)) (Shift operation)

⋮
Solution (n-1)/2 = (4, 6, … (n-1) ,1, 3, … n, 2) (Shift operation)

*Non-consecutive numbers in the solution sets typed as bold and italic.
*Shift operation: Create new solution by shifting the previous solution one column right.

Bergen KARABULUT, Atilla ERGÜZEN, Halil Murat ÜNVER / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2022 ; 25(2) : 615-622

618

In decision function, a solution function is selected

according to the mode operation and the program

branches to the appropriate function. Six functions;

Funtion1, Funtion2, Funtion3, Funtion4, Funtion5 and

Funtion6 are defined for the 6 different subcategories

determined in the pattern. By using these functions,

solution sets for related n values are produced.

Procedure: Function1(n)

1: Set number=2, index=0

2: while number is smaller than or equal to n do

3: Set solutionArray[index] = number

4: Increment index by one and number by two

5: end while

6:

7: Set tempIndex= index

8: Set number=1

9: while number is smaller than n do

10: Set solutionArray[index] = number

11: Increment index by one and number by two

12: end while

13:

14: while tempIndex is smaller than n-1 do

15: Increase solutionArray[tempIndex] by two

16: Decrease solutionArray[tempIndex+1] by two

17: Increase tempIndex by two

18: end while

19:

20: Call printSolution(solutionArray)

21:

22: Set newSolutionArray[n-1] = solutionArray[0]

23: for i= 0, 1, 2, …, n-2 do

24: Set newSolutionArray[i] = solutionArray[i+1]

25: end for

26:

27: Call printSolution(newSolutionArray)

Procedure: Function2(n)

1: Set number=2, index=1

2: Set solutionArray[0] = n-1

3: while number is smaller than or equal to n do

4: Set solutionArray[index] = number

5: Increment index by one and number by two

6: end while

7:

8: Set tempIndex=index

9: Set number=1

10: while index is smaller than n do

11: Set solutionArray[index] = number

12: Increment index by one and number by two

13: end while

14:

15: while tempIndex is smaller than n-1 do

16: Increase solutionArray[tempIndex] by two

17: Decrease solutionArray[tempIndex+1] by two

18: Increase tempIndex by two

19: end while

20:

21: Call printSolution(solutionArray)

22:

23: Copy SolutionArray to tempSolutionArray

24: for i= 0, 1, 2, …, n-1 do

25: if solutionArray[i] is equal to 0 then

26: Set solutionArray[i]=1

27: else

28: Increase solutionArray[i] by one

29: end for

30:

31: Call printSolution(solutionArray)

32:

33: Set newSolutionArray[0]=tempSolutionArray[n-1]

34: for i= 0, 1, 2, …, n-2 do

35: Set newSolutionArray[i+1]=tempSolutionArray[i]

36: end for

37:

38: Call printSolution(newSolutionArray)

Procedure: Function3(n)

1: Set number=2, index=0

2: while number is smaller than or equal to n do

3: Set solutionArray[index] = number

4: Increase index by one and number by two

5: end while

6:

7: Set number=1

8: while number is smaller than n do

9: Set solutionArray[index] = number

10: Increment index by one and number by two

11: end while

12:

13: Call printSolution(solutionArray)

Procedure: Function4(n)

1: Set number=3, index=1

2: Set solutionArray[0] = n-1, solutionArray[n-1] = 1

3: while number is smaller than or equal to n do

4: Set solutionArray[index] = number

5: Increase index by one and number by two

6: end while

7:

8: Set tempIndex=index

9: Set number=2

10: while number is smaller than n-2 do

11: Set solutionArray[index] = number

12: Increase index by one and number by two

13: end while

14:

15: Set index=1

16: while index is smaller than tempIndex do

17: Increase solutionArray[index] by two

18: Decrease solutionArray[index+1] by two

19: Increase index by two

20: end while

21:

22: Call printSolution(solutionArray)

23:

 A LINEAR TIME PATTERN BASED ALGORITHM FOR N-QUEENS PROBLEM… Politeknik Dergisi, 2022; 25 (2) : 615-622

619

24: Set newSolutionArray[0] = solutionArray[n-1]

25: for i=1, 2, 3, …, n-1 do

26: newSolutionArray[i] = solutionArray[i-1]

27: end for

28:

29: Call printSolution(newSolutionArray)

30:

31: for i= 0, 1, 2, …, n-1 do

32: if solutionArray[i]-1 is equal to 0 then

33: Set solutionArray[i]=n

34: else

35: Decrease solutionArray[i] by one

36: end for

37:

38: Call printSolution(solutionArray)

Procedure: Function5(n)

1: Set number=3, index=1

2: Set solutionArray[0] = n-1,

3: while number is smaller than or equal to n do

4: Set solutionArray[index] = number

5: Increase index by one and number by two

6: end while

7:

8: Set tempIndex=index

9: Set number=2

10: while number is smaller than n-1 do

11: Set solutionArray[index] = number

12: Increase index by one and number by two

13: end while

14:

15: while tempIndex is smaller than n-1 do

16: Increase solutionArray[tempIndex] by two

17: Decrease solutionArray[tempIndex+1] by two

18: Increase tempIndex by two

19: end while

20:

21: solutionArray[n-1] = 1

22: Call printSolution(solutionArray)

23:

24: Set newSolutionArray[n-1] = solutionArray[n]

25: for i= 0, 1, 2, …, n-2 do

26: Set newSolutionArray[i] = solutionArray[i+1]

27: end for

28:

29: Call printSolution(newSolutionArray)

30: Set tempValue= solutionArray[n/2]

31: Set solutionArray[n/2]= solutionArray[n-1]

32: Set solutionArray[n-1]= tempValue

33:

34: Call printSolution(newSolutionArray)

Procedure: Function6(n)

1: Set number=1, index=0

2: while number is smaller than or equal to n do

3: Set solutionArray[index] = number

4: Increase index by one and number by two

5: end while

6:

7: Set number=2

8: while number is smaller than n do

9: Set solutionArray[index] = number

10: Increase index by one and number by two

11: end while

12:

13: Call printSolution(solutionArray)

14:

15: while newSolutionArray[n-1] is not equal to 2 do

16: Set newSolutionArray[0] = solutionArray[n-1]

17: for i=1, 2, 3, …, n-1 do

18: Set newSolutionArray[i] = solutionArray[i-1]

19: end for

20:

21: Call printSolution(newSolutionArray)

22: Copy newSolutionArray to solutionArray

23:

24: end while

2.4. Control of Solutions

A correct solution requires that no two queens share the

same row, column, or diagonal. If the place of the 𝑞𝑖

queen is 𝐵[𝑋1, 𝑌1] and the place of the 𝑞𝑖+1 is 𝐵[𝑋2, 𝑌2],

then;

▪ 𝑋1 ≠ 𝑋2 (not in the same row)

▪ 𝑌1 ≠ 𝑌2 (not in the same column)

▪ |𝑋1 − 𝑋2| ≠ |𝑌1 − 𝑌2|│(not in the same

diagonal)

If all the requirements above are achieved, it means that

no two queens threaten each other. The correctness of the

solution can be checked whether all requirements for n

value queens placed in nxn board are achieved. To

control solution a check function called solutionCheck

was defined. This function is used to check whether the

solutions are correct.

Procedure: solutionCheck(solutionArray: array[1…n]

of integer)

1: for k=0, 1, 2, …, n-1 do

2: for i=k+1, k+2, …, n-1 do

3: if solutionArray[k] is equal to solutionArray[i]) or

|k-i| is equal to

 |solutionArray[k]-solutionArray[i] then

4: return false

5: end for

6: end for

7: return true

3. RESULTS AND DISCUSSION

In this study, a method which runs in linear time and

produces at least one unique solution for the solution of

n-queens problem has been studied. In the conducted

study, a pattern was observed which produce at least one

unique solution for n>3 in 6 different categories. This

pattern produces different numbers of solutions for each

Bergen KARABULUT, Atilla ERGÜZEN, Halil Murat ÜNVER / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2022 ; 25(2) : 615-622

620

category. In Table 2, number of solutions obtained with

the pattern for related n values was presented. Only for

the first 12 numbers, number of solutions are given in

Table 2, since these number of solution numbers are

repeated every consecutive 12 values. As stated in the

table, a fixed number of solutions are obtained at some

values. However, in some values (n-1)/2 solutions are

obtained.

The number of obtained solutions is presented

graphically in Figure 3. When the Figure 3 is examined,

it is seen that in some values, a fixed number of solutions

are obtained, whereas in some values, the number of

solutions increases linearly.

A linear time algorithm was developed using the

specified pattern. In order to test the developed

algorithm, a program was created on the NetBeans

programming platform using the Java programming

language. The developed program was run on a personal

computer with i7 2.40GHz processor. With the help of

the program, we have investigated the time needed to

obtain a unique solution. The obtained results for some

values were given in Table 3.

Various studies have been done to solve this problem.

One of the best known of these studies was done by Sosic

and Gu [22]. Sosic and Gu stated that they could find a

solution less than 55 seconds using a workstation for

3,000,000 queens in their recent work. The developed

method in this study is able to produce at least one unique

solution for all values as in the study of Sosic and Gu

[22]. In addition, as shown in Table 3, our algorithm

developed in this study is able to produce solutions in less

than 1 second at much larger values of 3,000,000.

Table 2. Number of solutions

Number of queens n Number of solutions

4 1

5 (n-1)/2=2

6 1

7 (n-1)/2=3

8 2

9 3

10 1

11 (n-1)/2=5

12 1

13 (n-1)/2=6

14 3

15 3

Figure 3. Number of solutions

Table 3. Test results of proposed algorithm

Number of queens n Time to find a solution

(seconds.miliseconds)

4,000,000 0.15

5,000,000 0.29

6,000,000 0.32

7,000,000 0.28

8,000,000 0.54

9,000,000 0.28

10,000,000 0.28

 A LINEAR TIME PATTERN BASED ALGORITHM FOR N-QUEENS PROBLEM… Politeknik Dergisi, 2022; 25 (2) : 615-622

621

In a study conducted in the following years, El-

Qawasmeh and Al-Noubani [23] presented an algorithm

that can generate a solution 100 times faster than Sosic's

algorithm. Queens’ positions are predetermined in the

study and there is no need for any calculation or

searching operation. In this way, the researchers have

achieved speed increase. However, their algorithm is able

to produce a correct solution of 75% rather than the full

value of n. They used Sosic’s algorithm in 25% values

that they cannot produce solution. Our developed

algorithm predetermines queens’ positions similar to the

algorithm of El-Qawasmeh and Al-Noubani, and does

not require search operation or any computation.

Moreover, our algorithm is able to produce a solution of

all n values (100%). In addition, in most values (about

83%) can produce more than one unique solution. Even

in some values (about 33%), (n-1)/2 unique solutions can

be produced.

4. CONCLUSION

N-queens problem is an important problem with its

applications in various fields and subject to new studies.

However, it is also a difficult problem due to the time

complexity that grows exponentially. It is known that

backtracking algorithms, one of the most frequently used

algorithms to solve this problem, cannot produce all

solutions in large n values due to this time complexity

problem. It is not possible to get all possible solutions for

large values. For this reason, the development of methods

that can produce one or more solutions but not all for

large values has become important.

In this study, a linear time pattern based algorithm was

proposed for the n-queens problem. The developed

algorithm produce at least one unique solution for all n

values and it produces solution(s) quite faster with O(n)

time complexity. Besides, for most values (about 67%) it

can produce more than one solution. Moreover, for some

values (about 33%) it can produce (n-1)/2 unique

solutions. The developed method provides an important

contribution in terms of producing solutions for large

values in linear time. In addition, for many values it can

produce solutions without using complex calculations or

searching. In this respect, the proposed method provides

efficiency.

DECLARATION OF ETHICAL STANDARDS

The authors of this article declare that the materials and

methods used in this study do not require ethical

committee permission and/or legal-special permission.

AUTHORS’ CONTRIBUTIONS

Bergen KARABULUT: Developed the theoretical

framework, designed the algorithm, performed the

experiments and analyse the results.

Atilla ERGÜZEN: Developed the theoretical

framework, designed the algorithm, performed the

experiments and analyse the results.

Halil Murat ÜNVER: Developed the theoretical

framework, wrote the manuscript.

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES

[1] Abramson B., and Yung M.M., “Construction through

decomposition: A linear time algorithm for the n-queens

problem”, Colombia University Computer Science

Technical Reports, CUCS-129-84, (1984).

[2] Sosic R., and Gu J., “A polynomial time algorithm for the

n-queens problem”, ACM SIGART Bulletin, 1(3): 7-11,

(1990).

[3] Waqas M., and Bhatti A.A., “Optimization of N+ 1

Queens Problem Using Discrete Neural

Network”, Neural Network World, 27(3): 295, (2017).

[4] Wang C.N., Yang S.W., Liu C.M., and Chiang, T., “A

hierarchical decimation lattice based on N-queen with an

application for motion estimation”, IEEE signal

processing letters, 10(8): 228-231, (2003).

[5] Bell J., and Stevens B., “A survey of known results and

research areas for n-queens”, Discrete

Mathematics, 309(1): 1-31, (2009).

[6] Murali G., Naureen S., Reddy Y.A., Reddy M.S.,

JNTUA-Pulivendula J.P., and JNTUA-Pulivendula J.P.

“Graphical Simulation of N Queens

Problem”, International Journal of Computer

Technology and Applications, 2(6), (2011).

[7] Güldal S., Baugh V., and Allehaibi S., “N-Queens solving

algorithm by sets and backtracking”, In SoutheastCon,

IEEE, 1-8 (2016).

[8] Lijo V.P. and Jose J.T., “Solving N-Queen Problem by

Prediction”, IJCSIT International Journal of Computer

Science and Information Technologies, 6(4): 3844-

3848, (2015).

[9] Sosic R. and Gu J., “3,000,000 queens in less than one

minute”, ACM SIGART Bulletin, 2(2): 22-24, (1991).

[10] Matsuda S., “Theoretical characterizations of possibilities

and impossibilities of Hopfield neural networks in

solving combinatorial optimization problems”, In Neural

Networks, 1994. IEEE World Congress on

Computational Intelligence, 1994 IEEE International

Conference, (7): 4563-4566, (1994).

[11] Sosic R. and Gu, J., “Fast search algorithms for the n-

queens problem”, IEEE Transactions on Systems, Man,

and Cybernetics, 21(6): 1572-1576, (1991).

[12] Hu X., Eberhart R.C. and Shi Y., “Swarm intelligence for

permutation optimization: a case study of n-queens

problem”, In Swarm intelligence symposium, 2003,

SIS'03, Proceedings of the 2003 IEEE, 243-246, (2003).

[13] Meng F. and Wu S., “Research of hybrid genetic

algorithm in n-queen problem based on HCI”,

In Intelligent Information Technology Application,

2008. IITA'08. Second International Symposium

on, IEEE, (2): 3-7, (2008).

[14] Khan S., Bilal M., Sharif M., Sajid M. and Baig R.,

“Solution of n-queen problem using aco”, In Multitopic

Conference, 2009. INMIC 2009. IEEE 13th

International, 1-5, (2009).

Bergen KARABULUT, Atilla ERGÜZEN, Halil Murat ÜNVER / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2022 ; 25(2) : 615-622

622

[15] Turky A. and Ahmad A., “Using Genetic Algorithm for

Solving N -Queens Problem”, In 2010 International

Symposium on Information Technology, IEEE, Kuala

Lumpur, 745-747, (2010).

[16] Motameni H., Bozorgi S.H., Nezhad M.A.S., Berenjian

G. and Barzegar B., “Solving N-Queen problem using

Gravitational Search Algorithm”, Life Science Journal-

Acta Zhengzhou University Overseas Edition, 10(1): 37-

44, (2013).

[17] Maazallahi R., Niknafs A. and Arabkhedri P.A.,

“Polynomial-time DNA computing solution for the n-

queens problem”, Procedia-Social and Behavioral

Sciences, 83, 622-628, (2013).

[18] Habiboghli A. and Jalali T., “A Solution to the N-Queens

Problem Using Biogeography-Based

Optimization”, IJIMAI, 4(4): 20-26, (2017).

[19] Amooshahi A., Joudaki M., Imani M. and Mazhari N.,

“Presenting a new method based on cooperative PSO to

solve permutation problems: A case study of n-queen

problem”, In Electronics Computer Technology

(ICECT), 2011 3rd International Conference on, IEEE,

(4): 218-222, (2011).

 [20] Sosic R. and Gu J., “A polynomial time algorithm for the

n-queens problem”, ACM SIGART Bulletin, 1(3): 7-11,

(1990).

[21] Sosic R. and Gu J., “Efficient local search with conflict

minimization: A case study of the n-queens problem”,

IEEE Transactions on Knowledge and Data

Engineering, 6(5): 661-668, (1994).

[22] Lijo V. and Jose J.T., “Solving N-Queen Problem by

Prediction” Int. J. Comput. Sci. Inf. Technol, (6), 3844-

3848, (2015).

[23] El-Qawasmeh E. and Al-Noubani K., “Reducing the

Time Complexity of the N-Queens

Problem”, International Journal on Artificial

Intelligence Tools, 14(03):545-557, (2005).

[24] Rohith S., Gupta A. and Pramodh S., “A Novel Method

for Solving N-Queens Problem”, Int. J. Adv. Res.

Comput. Sci. Softw. Eng., 3(10), (2013).

