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A Survey on Image Super-Resolution with 
Generative Adversarial Networks

Üretken Çekişmeli Ağlar ile Görsel Çözünürlük Artırımı  
Üzerine Bir Araştırma

Hürkal Hüsem1 , Zeynep Orman2

ABSTRACT
Super-resolution is a process to increase image dimensions with a specific upscaling factor while trying to 
preserve details that matche with the original high-resolution form. Super-resolution can be done with many 
techniques. But the most effective technique is the one that takes advantage of several neural network 
designs. Some network designs are more appropriate than others on the specific subject. This study focuses 
on super resolution studies using Generative Adversarial Network. Many studies use this neural network 
type to look at various topics such as artificial data production and making the data more meaningful. The 
key point of this neural network type is having two different sub-networks that try to defeat each other in 
order to make more realistic results. Performance metrics that measure the quality of a generated image, loss 
functions used in a neural network and research papers on super-resolution with Generative Adversarial 
Network are the main domains of this study. 
Keywords: Image Super-Resolution, Generative Adversarial Networks, Resolution Enhancement

ÖZ
Çözünürlük artırımı (süper-çözünürlük) belirli bir artırım değeri ile görselin yüksek çözünürlükteki 
detaylarını korumaya çalışarak boyutlarını artırma işlemidir. Süper-çözünürlük birçok teknik ile 
gerçekleştirilebilir. Ancak bu konudaki en etkili teknikler çeşitli sinir ağı tasarımlarından yararlanan 
tekniklerdir. Bazı ağ tasarımları belirli konularda diğerlerine göre daha uygundur. Bu çalışma Üretken 
Çekişmeli Ağlar ile gerçekleştirilmiş çözünürlük yükseltme işlemlerine odaklanmıştır. Birçok çalışma 
yapar veri üretimi ve verinin daha anlamlı hale getirilmesi gibi çeşitli konularda bu yapay sinir ağı tipini 
kullanır. Bu yapay sinir ağı tipi ile yapay veri üretimi ve verinin daha anlamlı hale getirilmesi gibi alanlarda 
başarılı çalışmalar mevcuttur. Daha gerçekçi sonuçlar üretebilmesi için birbirini yenmeye çalışan iki alt 
ağdan oluşması bu ağ türünün kilit noktasıdır. Üretilen görselin kalitesini ölçen başarım ölçümleri, sinir 
ağında kullanılan yitim fonksiyonları ve Üretken Çekişmeli Ağ kullanarak çözünürlük artırımı üzerine 
çalışılmış araştırma makaleleri bu çalışmanın temel alanında yer almaktadır.
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1. INTRODUCTION

Resolution is a measure of pixel density within the specified unit. Higher resolution images provide more detail about the 
scene. In some domains, there is a strong need to increase the details on images to work on. 

Super-resolution is a technique to enhance low-resolution images with minimum loss. This technique includes several 
processes such as denoising and deblurring (Protter, Elad, Takeda, & Milanfar, 2008). It is important for improving human 
understanding and getting higher accuracy values from computational tasks for the image. Higher resolution provides more 
details about the scene.

A survey on super-resolution gives detailed information about the history of the problems, domain, and algorithms (Nasrollahi 
& Moeslund, 2014). According to this survey, the first algorithm on super-resolution introduced the Fourier transform and 
the given solution was followed by many researchers (Gerchberg, 1974). The first hallucination solution solved with a neural 
network was applied to this problem area, to improve the resolution of fingerprint images (Mjolsness, 1985).

There are some traditional methods similar to super-resolution, such as interpolation. Interpolation is a similar technique 
with super-resolution but it shouldn’t be confused because interpolation cannot restore high-frequency details (Gotoh & 
Okutomi, 2004). Interpolation includes several simple and easy to implement methods such as nearest-neighbor interpolation, 
bilinear interpolation, and bicubic interpolation; but they also show poor results in quality as shown in Figure 1. Therefore, 
there is a strong need for detail in discovering and data completion. 

Figure 1. Quality comparisons of interpolation methods with “peak signal-to-noise ratio”  
(PSNR) and “structural similarity index” (SSIM)

Neural network-based studies, especially generative adversarial network (GAN) designs, overcome super-resolution problems. 
Visual details of state-of-the-art single-image super-resolution studies, SRGAN (Ledig, et al., 2016) and ESRGAN (Wang, 
et al., 2018) are shown in Figure 2 to highlight this necessity over the Set14 dataset baboon image. GAN-based studies 
significantly give better results than traditional methods. Somehow, ESRGAN’s peak signal-to-noise ratio (PSNR) is reported 
20.35 which is almost the same with bicubic interpolation as shown in Figure 1 despite bicubic interpolation’s poor quality. 
This situation occurs with the familiarity of the used performance metric and neural network tuning strategy. It also discussed 
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why PSNR and similar performance metrics were not the best metrics for super-resolution comparisons (Zhang, Shao, Hu, 
& Gao, 2017). 

Figure 2. Visual details of state-of-the-art super-resolution methods, SRGAN and ESRGAN (Wang, et al., 2018).

GANs have attracted attention in recent years and breathed new life into existing approaches from machine learning 
(Goodfellow, et al., 2014). Thanks to the increased use of GAN, highly successful results can be achieved in many areas such 
as image processing, signal processing, and security.

The second section gives general information about GAN, the third section includes several studies that use GAN on super-
resolution operations, the fourth section is about the performance metrics used in the overview studies, the fifth section is 
about loss functions used in overview studies, and the final section is about datasets used in overview studies. 

2. GENERATIVE ADVERSARIAL NETWORKS (GAN)

GAN is a generative system in which two separate neural networks overcome one another with a competition principle. These 
two networks, called the generative and the discriminative, are operated simultaneously. While the generative network (G) 
aims to produce realistic artificial data, the discriminative network (D) tries to distinguish whether the data received is real 
or false. 

After a competitive process, both networks specialized for their purposes and as a result, the GAN design realistically 
generates data. From this point of view, GAN is likened to a two-player mini-max game rather than an optimization problem. 
While the generative network aims to increase the error rate of the discriminative network, the discriminative network tries 
to reduce the failure probability by itself (Goodfellow, et al., 2014). 

The value function V(D,G) representing the mini-max game which is shown in (1) as an equation. While G wants to minimize 
V, D wants to maximize it. D refers to the differentiable function of discriminative network calculated by a multi-layer 
perceptron while G is generative. In the given equation, pz is expressed as the distribution generated over the x which is 
generated data. 

      (1)
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2.1. Generative Sub-network (G)

The purpose of G is to increase the likelihood that the discriminative network will fail by generating better data. G takes 
noise vector (Z) as input sampled from Gaussian or uniform distributions. If there was no update rule over z, the generative 
network would produce only noisy data. Generated data is easy to distinguish for D in the early epochs of training because 
noisy data is not good enough yet. G attempts to minimize the log(1-D(G(z))) value to descend its gradient so that it generates 
more realistic synthetic data (Goodfellow, et al., 2014).

The generative network tries to generate data that makes the discriminative network think it is real. In other words, if the discriminative 
network returns that D(x) = 1 for generated data, so this data marked as “real” and the discriminative network is deceived.

2.2. Discriminative Sub-network (D)

The discriminative network (D) always tries to find out whether the data received comes from the original data or not. This 
makes D a binary classifier. D(x) evaluates the likelihood of x coming from real data rather than pg. D is responsible for the 
proper labeling of the actual data and the generated data from G, therefore there is training to increase the probability of D. 
Proper labeling of D means the separation of real and artificial data correctly. This sub-network measures the difference in 
how generated data differs from the original one (Goodfellow, et al., 2014). Despite the fact that D and G are opponents, D 
tells G how to make real-like data.

GAN architecture is shown in Figure 3. The data that comes from the generative network is presented in a mixed manner with the 
actual data to the discriminative network. A loss value is calculated as a result of the predictive result of the discriminative network.

Figure 3. GAN architecture.

Small changes in inputs in the deep neural networks may cause serious changes in output values (Goodfellow, Shlens, & 
Szegedy, 2015). It emphasizes that the values applied in the same direction in the low-value bits of the input values may cause 
a conscious orientation at the output. The major reason for this is the frequent use of a linear or “linearized” activation 
function in the many neural networks.

Another generative neural network type similar to GAN is Variational Autoencoders (VAE). VAE is also used for generating 
data according to the input in an unsupervised manner. VAE can be divided into two parts as encoder and decoder. Encoder 
tries to reduce dimensions with a bottleneck in latent space, thus data is transformed into mean and standard deviation vectors. 
This process is a kind of learning loss compression algorithm. The last section of VAE, which is called decoder, generates 
new data according to these vectors and specified probability distribution (Kingma & Welling, 2014; Kingma & Welling, 
2019). VAEs are useful for creating similar data to the input for focusing on explicit information, but GANs focus on implicit 
information so that they can create new data that is not available yet. This situation makes GANs useful for realistic data 
generation and completing missing parts of the data.



143

Hüsem, H., Orman, Z.

Acta Infologica, Volume 4, Number 2, 2020

In super-resolution problems, VAEs tend to generate blurry results because of the bottleneck. Important and necessary details 
on an image fail to encode and decode during this process. GAN architecture was designed to be unsupervised like VAEs 
and can be a very advantageous approach to increase the amount of data needed by producing artificial data in deep learning 
applications that need a large dataset. 

3. OVERVIEW 

Super-resolution studies aim to produce higher resolution and quality images than low-resolution images. But also, some 
studies benefit from super-resolution as well are explained in another sub-section.

3.1. Single-Image Super-Resolution (SISR) GAN Studies

This section includes GAN based super-resolution studies on context-free or context-aware images such as the human face, 
text, traffic signs, satellite, etc. All studies in this section are SISR studies.

Inspired by many super-resolution studies using GAN, “a generative adversarial network (GAN) for image super-resolution 
(SR)” (SRGAN) applied a realistic super-resolution process in the quality of photo-shooting to each image (Ledig, et al., 2016). 
Perceptual loss and content loss functions were used together instead of pixel-based similarity. SRGAN also benefited from the 
deep residual network and achieved higher mean opinion score (MOS) than the state-of-the-art techniques in the literature.

Four times and eight times magnifications were applied with the style transfer and resolution upgrade approach (Johnson, 
Alahi, & Fei-Fei, 2016). Semantic analysis was used to increase success in both processes. The proposed system consists of 
two parts; an image transformation network and a loss network which is a convolutional neural network. The basis of this 
selection is that the semantic and perceptual information that the loss function wants to calculate can be easily coded with 
the convolutional neural network.

Perceptual GAN is used to solve the small object detection problem which is traffic sign detection (Li, et al., 2017). There 
are cases where the boundary or silhouette is certain, but when interpreted due to its small size, incorrect results will likely 
occur. To develop a better object recognition application, the resolution upgrade process is applied to the small size objects.

In order to overcome the limitations of pixel-based loss methods, loss functions have been designed for both the generative 
and the discriminative network. High SSIM results in 4x and 8x upscaling were achieved with the super-resolution perceptual 
generative adversarial network (SRPGAN) (Wu, Duan, Liu, & Sun, 2017).

Face Conditional Generative Adversarial Network (FCGAN), named neural network design, is applied to human faces for 
enhancement (Bin, Weihai, Xingming, & Chun-Liang, 2017). Four times scaling was performed with this network structure. 
There was no need for any preprocessing such as alignment and semantic information input. Also, this model was not affected 
by accessories such as hats and glasses.

A GAN based residual neural network was designed using a 4x upscaling factor (Zhang, Shao, Hu, & Gao, 2017). In addition 
to the changes in the convolutional content loss and adversarial loss functions, several operations were performed during 
the training of the network and pre-processing the data. Especially, with the “mean opinion score” (MOS) criteria was found 
to be prominent among similar studies in the literature. It was criticized that in super-resolution studies, many models use 
mean squared error, which generates a higher PSNR signal but does not give a strong perceptual result.

Small and blurred human faces in visuals were made more detailed (Bai, Zhang, Ding, & Ghanem, 2018). Unlike previous 
studies in the literature, up-sampling and refinement sub-networks were used together. Another innovation was the ability 
to distinguish between real and generated data acquired in the discriminative network, as well as the ability to distinguish 
whether the area sampled in the relevant visual if it is a face. The dataset in this study was not developed to directly study 
human faces. Therefore, it has become necessary to do this in the discriminative network.

Thanks to the Transferred GAN (TGAN), a combination of the transfer-learning approach and the abandonment of the batch 
normalization process, super-resolution is applied to satellite images (Ma, Pan, Guo, & Lei, 2018). The batch normalization 
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increased the computational time despite the increase in performance in other image-processing tasks, but there was not 
enough remarkable effect on super-resolution applications.

To further improve image quality of SRGAN networks, both the adversarial and perceptual loss functions and network 
enhancements were introduced in Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) (Wang, et al., 
2018). The normalization process was abandoned like Ma et al. (2018). The most important point of the study was the method 
called Residual-in-Residual Dense Block (RRDB), the patterns in natural visuals studied were much better than SRGAN. 
Thus, this work placed first at the PIRM2018-SR Challenge (region 3) (Blau, Mechrez, Timofte, Michaeli, & Zelnik-Manor, 
2018) with the best perceptual index.

EnhanceNet uses both perceptual and texture matching lossand focuses on texture details in images (Sajjadi, Scholkopf, & 
Hirsch, 2017). Architecture was designed with a fully convolutional network and residual learning blocks.

SRFeat also used long-skipped 16 residual block connections in the generative network to produce high-frequency structural 
features (Park, Son, Cho, Hong, & Lee, 2018). SRFeat has two discriminative networks; one has an adversarial loss and the 
other has pixel-wise loss functions. ImageNet dataset is used for pre-training while DIV2K dataset is used for fine-tuning.

Learning to super-resolve both text and face images within a single model, it aimed to produce solutions with a common 
network design called Multi-class GAN (MCGAN) instead of separate networks for each class (Xu, et al., 2017). Although 
there was only one generative network in design, there were as many discriminative networks as the number of classes. The 
discriminative networks were updated simultaneously. MCGAN used feature matching loss (23) that extracts features 
dynamically from the discriminative network instead of getting from a fixed Visual Geometry Group (VGG) network.

A different perspective for training images provided to GANs that stands in front of the standard downscaling operation 
which is a bilinear interpolation (Bulat, Yang, & Tzimiropoulos, 2018). But it was discovered that this method was not good 
enough for real-world low-resolution images because of factors such as blur, compression artifacts, sensor noise, etc. To 
overcome this problem, a high-to-low generation network was designed for the degradation process before low-to-high 
evaluation.

TextSR is focused on text-image super-resolution and uses “text perceptual loss” inspired by perceptual loss (Wang, et al., 
2019). TestSR uses ASTER (Shi, et al., 2018) as a base recognition network and also focused on text correction and ASTER 
is not a super-resolution study. But, with the help of image super-resolution, text recognition was taken one step further and 
generating text images was advanced to a better level. 

3.2. Multi-Image or Video-based Super-Resolution GAN Studies

License plate number recognition was another challenging task in computer vision. Domain Priori GAN (DP-GAN) recovered 
license plate numbers, even unrecognizable by humans, from various viewpoints of multiple surveillance cameras with the 
help of other components in progressive vehicle search (Liu W. , Liu, Ma, & Cheng, 2017). The vehicle search was used for 
recognizing vehicles in combination with the plate numbers as well. DP-GAN has the capability of aligning plate numbers 
also. None of the performance metrics were included in our study. Human evaluation was used for recognizing numbers to 
measure system performance. At this point, MOS seems similar but not the same exactly. 

A temporally coherent generative model was designed for fluid flow super-resolution (Xie, Franz, Chu, & Thuerey, 2018). 
This study was the first on GAN. It was realized on a four-dimensional dataset with two discriminative networks, one focuses 
on space and the other on temporal aspects. The loss function used in this study is a novel adversarial loss function that 
evaluated the temporal coherence of the outputs. 

4. PERFORMANCE METRICS

Performance metrics used to compare the studies and network optimization metrics used by each network to produce better 
results are given below.
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The performance metric was used to calculate how effective the proposed method was. Similar studies can be compared 
using these metrics. The matching of performance metric and studies are shown in Table 1.

Table 1
Performance metrics and studies in which they are used

Performance Metrics Studies

Mean Opinion Score (MOS)
(Ledig, et al., 2016)
(Zhang, Shao, Hu, & Gao, 2017)
(Wang, et al., 2018)

Peak Signal-to-Noise Ratio (PSNR)

(Ledig, et al., 2016)
(Johnson, Alahi, & Fei-Fei, 2016)
(Wu, Duan, Liu, & Sun, 2017)
(Bin, Weihai, Xingming, & Chun-Liang, 2017)
(Zhang, Shao, Hu, & Gao, 2017)
(Sajjadi, Scholkopf, & Hirsch, 2017)
(Ma, Pan, Guo, & Lei, 2018)
(Wang, et al., 2018)
(Park, Son, Cho, Hong, & Lee, 2018)
(Xu, et al., 2017)
(Bulat, Yang, & Tzimiropoulos, 2018)
(Wang, et al., 2019)

Structural Similarity Index (SSIM)

(Ledig, et al., 2016)
(Johnson, Alahi, & Fei-Fei, 2016)
(Wu, Duan, Liu, & Sun, 2017)
(Zhang, Shao, Hu, & Gao, 2017)
(Xu, et al., 2017)
(Ma, Pan, Guo, & Lei, 2018)
(Wang, et al., 2018)
(Park, Son, Cho, Hong, & Lee, 2018)
(Wang, et al., 2019)

Dark Channel Ratio (DCR) (Xu, et al., 2017)

Confusion Matrix (Accuracy) (Li, et al., 2017)
(Bai, Zhang, Ding, & Ghanem, 2018)

4.1. Mean Opinion Score (MOS)

It is a subjective assessment average with score values numbered from one to five. Usually used in the telecommunications 
industry to measure user experience and averages user ratings (ITU-T, 2006). Similarly, it is a metric made with the average 
of the scores given by the individuals in the super-resolution studies. Therefore, a subjective judgment is made. A higher 
MOS value means that images are more similar.

4.2. Peak Signal-to-Noise Ratio (PSNR)

It is the ratio between the maximum possible signal strength and the noise distortion that affects image quality. Correlated 
with the average of squared errors in each pixel (Dosselmann & Yang, 2005). A higher PSNR value indicates that the two 
images are more similar.

PSNR, which measures the quality of compression in image compression processes, is still widely used due to its simple 
structure, especially in video images. It is one of the most reliable methods for comparing super-resolution images. This 
method is commonly used in analog systems and provides value in decibels (Huynh-Thu & Ghanbari, 2008). 

First, the mean squared error (MSE) for PSNR is calculated as in equation (2) (PSNR, 2020). m and n represent the rows and 
columns in the input image. I is the input image, K is the image as a result that comes from the super-resolution process. The 
total square error is calculated for each pixel of the two images.

          
(2)
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The result obtained with (2) will be used in (3). MAXI represents the highest possible pixel value in the input image.

           (3)

MAXI directly depends on the bit depth of the image. For images with a bit depth of b, the MAXI value can be obtained as 
in (4).

            (4)

4.3. Structural Similarity Index (SSIM)

It is used to measure the structural similarity between two images. Calculated by taking into account the characteristics of 
both images such as brightness, contrast, and structure (Wang, Bovik, Sheikh, & Simoncelli, 2004). A higher SSIM value 
means more similar images.

Detects changes between two images by focusing on luminance, contrast, and structure properties of images. The luminance 
equation is shown in (5), contrast in (6), and structure in (7).

            (6)

            

(7)

C1, C2, and C3 are used in the equations in (8) to get rid of the uncertainty in case of μx
2+μy

2 result converges to zero. K1 
and K2 constants are fixed numbers are less than 1. L can be calculated as MAXI, which represents the bit depth in the PSNR 
calculation expressed in (4). 

             

(8)

Finally, SSIM is the weighted average of luminance, contrast and structure values as shown in equation (9).

         (9)

In order to generalize the formula, by accepting the values a, β and γ equal to 1, the equation can be reduced to the state in 
(10). In this case, μ denotes the mean of the image while σ is standard deviation. So, σxy is the covariance of the x and y images.

         
(10)

4.4. Dark Channel Ratio (DCR)

Used to express clarity and sharpness between two images. It is not a widely used technique in super-resolution studies. It 
was used to calculate how much the blurred images were clarified in blurred face images (Xu, et al., 2017). The DCR equation 
is defined in (11). x is the input image and xgt is the ground-truth of x. φ(x) is the dark channel of x. ε is set to 10-8 to avoid 
division by zero.
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           (11)

5. LOSS FUNCTIONS

In neural network design, some loss functions are used. Although some changes have been made on these loss functions, the 
actual loss function, which it is based on, has been highlighted in terms of meaningful pairing. The studies and optimization 
metrics are shown in Table 2, but studies use adversarial loss formulated as GAN formula in (1) not shown in this table.

Table 2
Super-resolution aimed loss functions and studies in which they are used

Loss Functions Studies

Perceptual Loss

(Ledig, et al., 2016)
(Johnson, Alahi, & Fei-Fei, 2016)
(Li, et al., 2017)
(Liu W. , Liu, Ma, & Cheng, 2017)
(Wu, Duan, Liu, & Sun, 2017)
(Sajjadi, Scholkopf, & Hirsch, 2017)
(Wang, et al., 2018)
(Park, Son, Cho, Hong, & Lee, 2018)
(Wang, et al., 2019)

Pixel-wise Loss

(Xu, et al., 2017)
(Bin, Weihai, Xingming, & Chun-Liang, 2017)
(Sajjadi, Scholkopf, & Hirsch, 2017)
(Zhang, Shao, Hu, & Gao, 2017)
(Liu W. , Liu, Ma, & Cheng, 2017)
(Bai, Zhang, Ding, & Ghanem, 2018)
(Ma, Pan, Guo, & Lei, 2018)
(Bulat, Yang, & Tzimiropoulos, 2018)

Charbonnier Loss (Wu, Duan, Liu, & Sun, 2017)

Feature Matching Loss
(Xu, et al., 2017)
(Park, Son, Cho, Hong, & Lee, 2018)
(Bulat, Yang, & Tzimiropoulos, 2018)

Texture Matching Loss (Sajjadi, Scholkopf, & Hirsch, 2017)
(Xie, Franz, Chu, & Thuerey, 2018)

5.1. Perceptual Loss Function

Systems that perform performance evaluation per pixel are not able to make a fair assessment. With one-pixel shift, calculating 
a significant difference between the original image and the generated image, even if it contains all of the visual features 
created in its original form (Johnson, Alahi, & Fei-Fei, 2016). During the training phase, using perceptual loss focused on 
higher-level features rather than pixel data. Therefore, perceptual loss deals with error in property space rather than pixel 
space. However, despite the increase in success, with the emergence of the optimization problem, the processing time is 
prolonged.

The perceptual loss calculated by a loss network collects all the squared errors and averages them. In order to calculate 
feature and style cost in a loss network (𝜙), two different equations (13) and (16) are used. The weight values (W) in the 
network producing super-resolution is minimized by the stochastic gradient descent method (Johnson, Alahi, & Fei-Fei, 
2016). W is shown as (12).

          (12)

Each loss function calculates a single value. While calculating this value, the difference between the original image and the 
generated image is examined. The loss functions are deep convolutional neural networks. However, there is no need to 
calculate style loss for single-image super-resolution (Johnson, Alahi, & Fei-Fei, 2016).
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In the feature reconstruction loss function, the feature differences calculated by the loss network are obtained. For the x 
image, the value generated in the j-th layer is represented by ϕj(x). If the j-th layer is a convolutional neural network, a feature 
map of Cj x Hj x Wj is obtained. Here, Cj defines the color depth, Hj is the height of the image, and Wj is the width of the 
image, each in the j-th layer. The output from the x image in a network trained according to W weights is expressed as 

. The desired image y is obtained by feature loss (13) between these two images (Johnson, Alahi, & Fei-Fei, 2016). 

          
(13)

Perceptual loss focuses on the structural features of the image. Differences in color, pattern, and shape are excluded.

There is no need for style loss calculation for super-resolution. However, in combination with style reconstruction loss, it 
makes a significant difference. Equation (16) is used for style reconstruction loss. 

 Firstly, it is necessary to define gram matrix.  is a matrix of size Cj x Cj which is defined as shown in (14).

         
(14)

To make a more efficient calculation, if we put the matrix  into the form , the function  is written 
as (15).

            (15)

Thus, the style reconstruction loss is calculated as in (16) by the square Frobenius norm of the difference of defined gram 
matrices.

           (16)

5.2. Pixel-wise Loss (Mean Squared Error)

It is the metric used to calculate errors in pixel space. The total error of each matching pixel is obtained and used as shown 
in (17). This expression is the normalized Euclidean distance of two images of the same size. This method is only possible 
if we have a ground truth image that can be compared (Johnson, Alahi, & Fei-Fei, 2016).

            (17)

In equation (18), another content loss function is also defined as convolutional content loss (Zhang, Shao, Hu, & Gao, 2017). 
 is the high-resolution output image. This equation is also used to combine with other formulas to improve the 

performance. Zhang et al. (2017) used (18) in combination with cross-entropy while Liu et al. (2017) used adversarial loss.

         (18)

Pixel-based loss functions are far from producing an efficient result for the human eye but may give better results over PSNR 
and SSIM because they are focused on one-to-one mapping.

5.3. Charbonnier Loss

To ensure the correctness of low-frequency details on result image, Charbonnier loss is used as a content loss function by 
Wu et al. (2017). The Charbonnier loss is defined in (19). 
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          (19)

y is denoted as ground truth image and G(z) is the constructed image. Here, the Charbonnier penalty function is needed to 
be defined as shown in (20).

            (20)

5.4. Feature Matching Loss

It is an error calculation method developed based on the features in the image on the idea that pixel-based study does not 
give good results. The feature matching loss (21) is defined and then adopted to original GAN formulation in (1) to recover 
more realistic details (Xu, et al., 2017).

         
(21)

 is the feature response to x at the l-th layer.

5.5. Texture Matching Loss

Source and generated image should be the same style to apply matching loss (Sajjadi, Scholkopf, & Hirsch, 2017). Gram 
matrix that defines correlations between different feature channels is shown in (22).

             (22)

This Gram matrix is used in (23).

          (23)

With this loss method, generating more realistic results are possible. Xie et al. (2018) used a mathematically similar loss 
function to texture matching loss.

6. DATASETS

The datasets used in super-resolution and matching of the studies are shown in Table 3. SET5 and SET14 datasets include 
low and high-resolution images (Bevilacqua, Roumy, Guillemot, & Alberi-Morel, 2012). BSDS dataset has different variations 
such as BSDS100, BSDS200, BSDS300, and BSDS500 and they are created for image segmentation and boundary detection 
(The Berkeley Segmentation Dataset and Benchmark, 2019). Tsinghua-Tencent includes traffic signs inside a vehicle-view 
(Traffic-Sign Detection and Classification in the Wild, 2019). The Caltech benchmark dataset includes vehicle-view videos 
for detecting pedestrians (Caltech Pedestrian Detection Benchmark, 2019). The Manga109 dataset includes commercially 
made Japanese manga images between the 1970s and 2010s (Dataset, 2019). The T91 is created for training neural networks 
with high-resolution images (Kaggle - T91 Image Dataset, 2019). The General100 has uncompressed 100 BMP formatted 
images in good quality (Dong, Loy, & Tang, 2016). The Dataset of Hradis included scientific papers for text-deblurring 
(Hradiš, Kotera, Zemcık, & Šroubek, 2015). The CelebA dataset included more than 200K celebrity images with annotations 
(Large-scale CelebFaces Attributes (CelebA) Dataset, 2019). The Wider Face was created for face benchmark from a publicly 
available WIDER dataset (Yang, Luo, Loy, & Tang, 2016). The LS3D-W is a 3D facial landmark dataset (Bulat & Tzimiropoulos, 
2017). The DIV2K was proposed for benchmarking on single-image super-resolution which includes 1000 images at 2K 
resolution and the test set is not publicly available (Agustsson & Timofte, 2017). The UC Merced dataset included remote 
sensing images (UC Merced Land Use Dataset, 2019). The Flickr2K was collected from the Flickr website and consisted of 
2650 images at 2K resolution (Timofte, Agustsson, Van Gool, Yang, & Zhang, 2017). The OST was collected from search 
engines containing over ten thousand images (Wang, Yu, Dong, & Change Loy, 2018). The Urban100 included real human-
made structures containing 100 images (Huang, Singh, & Ahuja, 2015). The ImageNet has over 14 million images built in 
a hierarchical structure for object recognition tasks (Deng, et al., 2009).
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Ten different text-based datasets are included as shown in Table 3 (Wang, et al., 2019). Synth90k (Jaderberg, Simonyan, 
Vedaldi, & Zisserman, 2015) and SynthText (Gupta, Vedaldi, & Zisserman, 2016) are synthetic text datasets. IIT5k-Words 
includes texts with lexicons (Mishra, Alahari, & Jawahar, 2012). Street View Text is collected from Google Street View 
(Wang, Babenko, & Belongie, 2011). ICDAR 2003 has cropped words that have non-alphanumeric characters or less than 
three characters with lexicons (Lucas, et al., 2005). The ICDAR 2013 is an advanced form of ICDAR 2003 with no lexicons 
(Karatzas, et al., 2013). The ICDAR 2015 contained irregular texts within bounding boxes (Karatzas, et al., 2015). The SVT-
Perspective was a benchmark dataset for recognizing perspective texts (Phan, Shivakumara, Tian, & Tan, 2013). The CUTE80 
contained curved texts (Risnumawan, Shivakumara, Chan, & Tan, 2014). The VeRi dataset was created for vehicle re-
identification but used as license plate number recognizing and this dataset has 50,000 images of 776 vehicles from 20 
different cameras (Liu X. , Liu, Mei, & Ma, 2016).

Datasets that are directly used for super-resolution tasks are included in Table 3 and Table 4.

Table 3
Datasets and their domains used in super-resolution tasks using GAN
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SET5

(Ledig, et al., 2016)
(Johnson, Alahi, & Fei-
Fei, 2016)
(Sajjadi, Scholkopf, & 
Hirsch, 2017)
(Park, Son, Cho, Hong, 
& Lee, 2018)

ü

SET14

(Ledig, et al., 2016)
(Johnson, Alahi, & Fei-
Fei, 2016)
(Sajjadi, Scholkopf, & 
Hirsch, 2017)
(Park, Son, Cho, Hong, 
& Lee, 2018)

ü

BSDS

100

(Ledig, et al., 2016)
(Johnson, Alahi, & Fei-
Fei, 2016)
(Sajjadi, Scholkopf, & 
Hirsch, 2017)
(Wang, et al., 2018)

ü

200 (Wu, Duan, Liu, & Sun, 
2017) ü

300
(Ledig, et al., 2016)
(Park, Son, Cho, Hong, 
& Lee, 2018)

ü

Tsinghua-Tencent 
100K (Li, et al., 2017) ü

Caltech benchmark (Li, et al., 2017) ü

Manga109 (Li, et al., 2017) ü

T91 (Wu, Duan, Liu, & Sun, 
2017) ü

General100 (Wu, Duan, Liu, & Sun, 
2017) ü

CelebA

(Bin, Weihai, Xingming, 
& Chun-Liang, 2017)
(Zhang, Shao, Hu, & 
Gao, 2017)
(Xu, et al., 2017)

ü ü
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Wider Face (Bai, Zhang, Ding, & 
Ghanem, 2018) ü

DIV2K

(Ma, Pan, Guo, & Lei, 
2018)
(Wang, et al., 2018)
(Park, Son, Cho, Hong, 
& Lee, 2018)

ü ü

UC Merced 
(Remote Sensing 
Dataset)

(Ma, Pan, Guo, & Lei, 
2018) ü

Flicker2K (Wang, et al., 2018) ü ü

OST (Outdoor 
Scene Training) (Wang, et al., 2018) ü ü

Urban100
(Sajjadi, Scholkopf, & 
Hirsch, 2017)
(Wang, et al., 2018)

ü ü

ImageNet (Park, Son, Cho, Hong, 
& Lee, 2018) ü

Dataset of Hradis (Xu, et al., 2017) ü

Synth90k (Wang, et al., 2019) ü

SynthText (Wang, et al., 2019) ü

IIIT5k-Words (Wang, et al., 2019) ü

Street View Text (Wang, et al., 2019) ü

ICDAR
2003 (Wang, et al., 2019) ü

2013 (Wang, et al., 2019) ü

2015 (Wang, et al., 2019) ü

SVT-Perspective (Wang, et al., 2019) ü

CUTE80 (Wang, et al., 2019) ü

VeRi (Liu X. , Liu, Mei, & 
Ma, 2016) ü

LS3D-W (Bulat, Yang, & 
Tzimiropoulos, 2018) ü

Four-Dimensional 
Fluid Dataset

(Xie, Franz, Chu, & 
Thuerey, 2018) ü

Number of Unique Studies 3 5 1 1 1 1 2 6 6 1 4 4 4

According to information in Table 3, different dataset counts are shown in Table 4. Goodfellow, et al. (2014) is not a super-
resolution study, so not included. The average working dataset count per study is 2.81.

Table 4
Studies and the number of different datasets used for super-resolution

Studies Dataset Count
(Ledig, et al., 2016) 4
(Johnson, Alahi, & Fei-Fei, 2016) 3
(Liu X. , Liu, Mei, & Ma, 2016) 1
(Li, et al., 2017) 3
(Wu, Duan, Liu, & Sun, 2017) 3
(Bin, Weihai, Xingming, & Chun-Liang, 2017) 1
(Zhang, Shao, Hu, & Gao, 2017) 1
(Sajjadi, Scholkopf, & Hirsch, 2017) 4
(Xu, et al., 2017) 1
(Bai, Zhang, Ding, & Ghanem, 2018) 1
(Ma, Pan, Guo, & Lei, 2018) 2
(Wang, et al., 2018) 5
(Park, Son, Cho, Hong, & Lee, 2018) 5
(Bulat, Yang, & Tzimiropoulos, 2018) 1
(Xie, Franz, Chu, & Thuerey, 2018) 1
(Wang, et al., 2019) 9
Average: 2.81
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7. CONCLUSIONS

In the literature, there was not any surveys on GAN based super-resolution studies. This study aimed to overcome this 
shortcoming.

The popularity of GAN is increasing day by day. The most powerful part of the GAN is having two simultaneous networks 
trying to overcome each other. This process is likened to mini-max games and at the end of the process, more realistic data 
can be generated. Finally,, the most important point on GAN is the loss functions used in it. Thanks to the successful 
implementation of loss functions, the neural network generates more realistic results.

In addition to producing artificial data, GAN has been used in different working areas and has many variations with its 
applications to reduce noise in the data and clean up the data containing noise. GAN studies on various datasets are the 
biggest indicators of this situation. On the basis of good results of artificial neural networks, there is a need for training with 
a lot of data to make the pattern more meaningful. For example, when super-resolution is applied using GAN in faces that 
are not clearly apparent in photographs, a solution such as increasing the limited data can be considered. 

Super-resolution is a process of the increment of details in images. GAN based super-resolution studies produced more 
detailed results than other traditional interpolation methods and state-of-the-art neural network-based studies. But some 
performance metrics cannot measure the quality perceptually. Most common performance metrics like PSNR and SSIM 
may be higher even if the quality is poor. The source of this kind of problem is about the loss functions used in neural 
networks. If the loss function in any neural network is similar to the performance metric, the neural network learns to increase 
its performance score, but the result may not as good as the score. It seems that MOS (mean opinion score) is more useful 
and accurate as a super-resolution performance metric.
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