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ABSTRACT

In this study, Euler and De Moivre’s formulas for fundamental matrices of commutative
quaternions are obtained. Simple and effective methods are provided to find the powers and roots
of these matrices with the aid of De Moivre’s formula obtained from the fundamental matrices
of commutative quaternions. Moreover, our results are supported by pseudo-codes and some
examples.
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1. Introduction

In 1892, Segre introduced the concept of commutative quaternions [1]. This number system is sometimes
referred to as reduced bi-quaternions [2]. The set of commutative quaternions is a commutative ring under
a combination law and commutative law of a four-dimensional Clifford algebra. Also, this set contains
non-trivial idempotents, zero-divisors and nilpotent elements [3]. The commutative quaternions play an
important role in neural networks, control and system theory, digital signal and image processing, etc. Thus,
there is a considerable of literature on commutative quaternions and their matrices in recent years. Pei et
al. presented digital image processing based on commutative quaternions [2]. Also, the authors defined a
simplified commutative quaternion polar form to represent the color image. In [4], Pei et al. first introduced the
eigenvalues, eigenvectors, singular value decomposition and generalized inverse of a commutative quaternion
matrix. In [5], Isokawa et al. presented two types of multistate Hopfield neural networks using commutative
quaternion. In [6], Kosal et al. developed some explicit expression of the solution of the Kalman-Yakubovich-
conjugate commutative quaternions matrix equations. In [7], Yuan et al. studied the Hermitian solutions of
commutative quaternion matrix equation (AX B, CX D) = (E, G).In[8], Kosal and Tosun constructed universal
similarity factorization equalities over the commutative quaternions and their matrices. Also, the authors
studied some algebraic properties of commutative quaternions and commutative quaternion matrices. In
[9], Kosal derived the expressions of minimal norm least-squares solution for the commutative quaternion
matrix equation AX = B. Moreover, the author investigated their applications in colour image restoration.
In [10], Zhang et al. introduced concepts of norms of commutative quaternion matrices and derived two
algebraic techniques for finding solutions of least squares for the matrix equations AX ~ B and AXC ~ B
in commutative quaternion matrix algebra.

In this study, Euler and De Moivre’s formulas for fundamental matrices of commutative quaternions are
obtained. A simple and effective methods is provided to find the powers and roots of these matrices with
the aid of De Moivre’s formula obtained from the fundamental matrices of commutative quaternions.
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Throughout this paper, the following notations will be used. Let N, Z, R and H denote the set of natural
number, integer numbers, real numbers and commutative quaternions, respectively. Also, all computations
are performed on an Intel i7-3630QM@2.40GHz/16 GB computer using MATLAB R2016a software.

2. Algebraic Properties of Commutative Quaternions
The set of commutative quaternions can be represented as

H = {a=ap + a1i + a2j + aszk : ap,a1,a2,a3 € Rand i,5, k ¢ R} (2.1)

where

PP=—1, %=1, k*=—-1,ij=ji=k, jk=kj =1 ki=1ik=—j. (2.2)
From (2.2), the operation of multiplication on the set of commutative quaternions H is commutative. There
are three types of conjugates of the a = ag + a1i + azj + ask € H. They are 'a = ag — a1i + asj — ask, %a =
ap + a1i — asj — ask and 3@ = ag — a1i — asj + ask. The norm of the a € H is defined as

lall = Va (‘@) (*a) (°a) = i/[(ao +a2)” + (a1 + as)?][(ao — az)” + (a1 — ag)’]. (2.3)
If ||a|| # 0 for a € H then a has multiplicative inverses. Inverse of a is defined by
() Ca) (o)
1 .
lal

Also, every commutative quaternion a € H (||a|| # 0) can be written by

a = ||a]| (cos ¢ + i sin @) (cosh & + j sinh 0) (cos 1) + k sin 1) (2.4)

where ¢ and ¢ are Euclidean angle, @ is the hyperbolic angle. Also ¢, 1 and 6 are called principal arguments.
Principal arguments for a € H are equal to

6= tan! (Zeosimgen ),

2 2
ao—al—a2+a3

6 = Ltanh~! (M) , 2.5)

-2 aZ+a?+a3+a?

b = dtan~! (Zeogpmges ),

2
agtaj—az;—ajz

The equality in (2.4) is called the polar representation of the a € H.
Since i? = k> = —1 and j2 = 1 for any a € H (||a| # 0), also we can express generalization of Euler’s formula
for commutative quaternions as follows

b0tk — 1—%f+%?—...+i(¢—%?+‘§—?—...) [1+§+%+...+j(0+§+%‘?+...) ]
2 4 3 }5
f%+%—...+k(w—1§—!+’{,’—!—...>
= (cos¢ + isin¢) (cosh 0 + jsinh 0) (cos + ksin )
for any real ¢, 6 and . Thus any a € H (||a|| # 0) can be written by
a = ||al| e?OIHIE, (2.6)

The equality in (2.6) is called the Euler form of the commutative quaternion a € H [11].

Theorem 2.1. [11] Let a = ||a| (cos ¢ + isin ¢)(cosh @ + jsinh §)(cos v + ksinv) = ||al| e?* 7 +¥% Then we have

a"™ = ||a||" (cos n¢ + i sin ng)(coshnf + j sinh nd)(cos nip + ksinnap) = |Ja||"en®HHnoitnvk

for every integer n.
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Theorem 2.2. [4] Let a € H. Then the equation ™ = a has n* n** roots for Vn € N.

Theorem 2.3.

where

In here, ¢ (a) =

ao
. 1- 2- 3.\ p—1 _ | Q1
Pdiag (a, a,“a, a)P =
as
1 1 1 1
1 =i s .
pP== LT gnd P =
2 J J -7 —J
-k k k -k
—a; a —as
ag ag a2
—az ap —aip
as Qi ao

quaternions clearly reveals three basic facts:

1. a € His algebraically isomorphic to

H =

—ap a2 —ag
ap as a2
—asz ap —a
az aj ao

through the bijective map a € H defined as

a=ao+aii+axj+azk — p(a) =

2. Every a € H has a real matrix representation

over the R.

ap —a1

ai ao
pla)=1, _

2 as

as a2

—a;
ao
—as
az

N =

ao

a2
as
ago
ai

— = = =

a1

az

as

a2
as
ao
aj

—as
a2
—a;
ag

ai
ag
asg
a2

—as
az
—aq
ao

as
as
agp
ay

[8] Let a € H. Then a satisfy the following Universal Similarity Factorization Equality (USFE)

is called fundamental matrix of a € H. USFE over the commutative

ag,a1,as,a3 € R CR4X4

—as
a2
—a;
ag

3. All real matrices in H' can uniformly be diagonalized over the commutative quaternions.
y g q

Theorem 2.4. [11] Let a,b € Hand X € R. Then the following identities are satisfied:
¢ (a) +¢(b),

p(a)p(b),
p(a)p(b),

1. p(a+bd) =

ab) =
¢ (a)b) =

¢ (
a
¢ (
¢ (Aa) = Ap (a),

. trace (p (a)) = a + 'a + %a + a,

4
+lall” =

2
3
4
5. (¢ (@) = ("),
6
7

|det (¢ (a))
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3. Euler’s and De Moivre’s Formulas for the Fundamental Matrices of Commutative
Quaternions

Now, we introduce the Euler and De Moivre’s formulas for fundamental matrix ¢(a) of a € H (]la]| #0).

Depending on the casual character of commutative quaternions, we can express fundamental matrix ¢(a) as
follows:

w(a) = v/ (det (p(a))) (cos ¢ Iy + ¢ (i) sin @) (cosh O I, + ¢ () sinh 0) (cos i Iy + ¢ (k) sine)) (3.1)

where I, is the 4 x 4 unit matrix,

cos¢ —sing 0 0
. sin cos 0 0
cos Ly + o (i)sing = ﬁ ((i)) cos¢p —sing |’
0 0 sing cos ¢
cosh @ 0 sinhd 0
o 0 coshf 0 sinh@
cosh 0 Iy + ¢ (j)sinh 6 = sinh 6 0 coshf 0
0 sinhf 0 coshd
and
cos 1 0 0 —siny
) 0 cos sin 0
costp Iy + ¢ (k) siny = 0 —sinz cosz 0
sin 1) 0 0 cos Y

The equality in the (3.1) is called the polar form of the fundamental matrix ¢(a).

Theorem 3.1. Let ¢, 0, ¢ € Rand n € Z. Then following identities are satisfied:

a. (cos Iy + ¢ (i)sing)" = cosng Iy + ¢ (i) sin ne,

b. (cosh 6 I, + ¢ (j)sinh )" = coshnf Iy + ¢ (j) sinh nd,

c. (costIy+ o (k)siny)" = cosnip Iy + ¢ (k) sinna.

Proof. We use induction on positive integer n. Suppose that

cosk¢ —sinke 0 0
. N k. sink¢ cosko 0 0
(cos@ Iy + (1) sing)” = 0 0 coskd —sinke
0 0 sink¢ cosko
Using the identities
cos ¢ cosng — sin psinng = cos (n+ 1) ¢
cos ¢sinng + sin pcosng = sin(n+ 1) ¢
we get
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(cos ¢ I + o (i) sin §) ! = (cos ¢ I + o (i) sin §)"* (cos ¢ L + ¢ (i) sin ¢)

cosk¢y —sink¢ 0

0 cos¢ —sing 0 0
sink¢ cosko 0 0 sing cos¢ 0 0

o 0 0 cosk¢p —sinkg 0 0 cos¢ —sing

0 0 sink¢ cosko 0 0 sing  cos¢

cos(k+1)¢ —sin(k+1)¢ 0 0

| sin(k+1)¢ cos(k+1)¢ 0 0

N 0 0 cos(k+1)¢p —sin(k+1)¢

0 0 sin(k+1)¢ cos(k+1)¢

=cos(k+1)dIs+ ¢ (i)sin(k+ 1) ¢.
Hence the first formula is true for ¥n € N. Also the formula hold for all integer n, since

1
%0(@)_1 =T (cos¢p Iy — ¢ (i) sin¢g) (cosh O I, —
(det ((a)))
The accuracy of b and c are also shown in a similar way.

Corollary 3.1. (De Moivre’s Formula): Let ¢ (a

©(4)sinh @) (cos Iy — ¢ (k) sine) .

a) be fundamental matrix of a € H (||a|| # 0) . Then, we have

o(a)" ( (det (¢ ( )))) (cosnd Iy + o (3) sinng) (coshnf I + ¢ (§) sinh nd) (cosneh I + o (k) sin neh)
for every n € Z.

Theorem 3.2. Let ¢ (a)

be fundamental matrix of commutative quaternion a = ag + a1 + azj + ask. The equation
X" = (a) has n? nt" roots for Vn € N and these roots are in this form

X = (p(a))™ = (det (¢ (ap + a2 + (a1 + a3) i)))ﬁcp(cos M + isin ‘Hzﬂkl)f@ (%

+ (det (¢ (ap — az + (a1 — az)i))) ™ ¢
where ki,ky =0,1

(cos M + isin 2 +2”k2) ( ) .
(a1 — as) 1, respectively.

1 and ¢, ¢ are arguments of complex numbers ag+ az + (a1 + as)i and ag — ag +
Proof. We can express the commutative quaternion a = ag + a1i + azj + ask as follows

a = (ap + a1t) + (az + agi)j

= (ao + az + (a1 + a3)i) = + (ap — as + (a1 — a3)i) L.
In this case, we have
pla) =@ (ag + az + (a1 + az)i (123)1 ao—a2+(a1—a3)i)<p(%)
= (det (¢ (ag + a2 + (a1 +as3)i)))*

)* @ (cos ¢ +ising) ¢ (H'j) (3.2)
T @ (cosg’ +ising’) e (73)
ndVn e N

C(5)) - () () G2 - () -+

2
In this case, we get

)
+(det (¢ (ag — a2 + (a1 — a3)1i)))

In here, ¢ (1£2) and ¢ (*7) matrices are idempotent an

(pa)™ =

(det (2 (ao + az + (a1 + as) 1)) ¥ p(cos ¢ + i sin §) p(L21) ™
+(det (¢ (ap — az + (a1 — az) i) ™ @(cos ¢’ + isin¢’) Mp(l—)
= (det (¢ (ao + a2 + (a1 + as) 1)) )

i)))

) p(cos ¢ + i sin ¢) ¢ (
(det (¢ (ag — az + (a1 — a3)

3=

2
1+j

(3.3)
2
‘%go(cosgb’ + isin¢’ )% (1?3) .

n
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ES

Since the complex numbers (cos ¢ + isin ¢))% and (cos¢’ +isin¢’)™ will have at most n roots, the equation
X" = ¢ (a) has n? n'" roots for Vn € N. O

3.1. Euler’s Formula for Fundamental Matrix of Commutative Quaternions

Let A= ¢ (i) ¢ (j) ¢ (k) . Obviously, (¢ ()" = —Lu, (¢ (4))* = Iu, (¢ (k))* = —I4. Since

. V)2 )3 D)t
e = I, + o (i) + (90(2);15) + (50(3)1@ + (90(4)!¢) 4o

. 2 43 4
=i+ ()¢ — %14 —90(@)% + %14+-~-
2 4 . 3 5
:(l_i %—...)I4+<p(z)(¢—%+%—...>
=cos¢ Iy + ¢ (i)sin ¢,

. N 02 N3 ARV
e?0 = [, +0()0+ (@(;?9) + (w(g?f?) + (@(139) + .

. . 4
=J4+<p(j)9+§14+ap(y)§+%I4+...
2 4 3 3 5
:(1+92—!+%+...)I4+¢(g) <0+§—!+%+...)

= coshf Iy + ¢ (j)sinh 0

and
P BV = [+ o (k) + «o(@!w T («o(f;)!wﬁ T (w(/?!w o
=Lt o) — LI — k)Y + YT+ ..
(-G - hre) (v - )
=cos¥ Iy + ¢ (k)siny,
we have

efWote(NI+e(R)Y — (cos ¢ Iy + o (i) sin @) (cosh @ Iy + ¢ (j) sinh 0) (costp Iy + ¢ (k) sina) .

Thus, every fundamental matrix of commutative quaternion a (J|a|| # 0) can be written by
@ (a) = ¥/ (det (@(a)))erDo+e0)o+ek)y, (34)
This equality is called the Euler formula of the fundamental matrix ¢ (a) .

Corollary 3.2. Let gp(a) =3 (det (Qp (a)))e‘ﬂ(i)¢+‘ﬂ(j)9+ﬁa(k)w and sg(b) = ¢ (det (SD (b)))eﬁﬁ(i)¢/+50(j)9/+tp(k)’¢'/ are
fundamental matrices of commutative quaternions a, b (||a|| # 0, ||b]| # 0) . Then we have

o(a)" = /(det (¢ (a))" envr@otne@otne®y e 7,

90(0)71 =/ (det (go(a)))*1 e (o= p(i)o—(k)Y

and
0 ()@ (b) = &/det (ip (ab))e? D (61¢) T (040 )+ k) (")
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3.2. Numerical algorithms for Power and Root Calculation of Fundamental Matrices

We now give the numerical algorithms for obtaining the power and root of fundamental matrices based on
our results.

Algorithm 1.

1. Begin

2. Enter the fundamental matrix and the power to calculate the fundamental matrix

3. Calculate the determinant of the fundamental matrix

4. Calculate fi, teta, psi angles according to equation (2.5)

5. Calculate Euler’s formula according to equation (3.4)

6. Calculate the power of the fundamental matrix according to Corollary 3.2.

7. Write power

8. Stop.

Algorithm 2.

1. Begin

2. Enter the fundamental matrix and the root of the basic matrix to be calculated

3. Rewrite the fundamental matrix according to the equation (3.2)

4. Calculate the roots of the fundamental matrix according to Theorem 3.2

5. Write Roots

6. Stop.

The graph below shows the time elapsed when calculating the power of a randomly generated fundamental
matrix with the matrix multiplication and the algorithm 1 in MATLAB.
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7.5 T T T
Our Algorithm

7 Ordinary Matrix Product | o

Second
(4,1

o5 I I I I | |
10 20 30 40 50 60 70 80 90 100

Calculated Power(x100)

Figure 1. Comparison of ordinary matrix product and algorithm 1 methods.

It is clear from the graph that the algorithm 1 used to calculate the power of the fundamental matrix reaches
the result in a shorter time than the ordinary matrix multiplication.

3.3. Numerical Examples

Example 3.1. Let us find the 100th power of the fundamental matrix

DO 00 [0 [0 | =

INIEE NI NI NI

N

|
B[00 |00 [0 | =
D00 |00 | =0 | —

according to the Corollary 3.2.
The determinant of matrix A is 1. Let us now obtain the Euler formula of the matrix A. Since

_ 1 —1 ( 2(agai—azasz) |\ _ 1 —-1(1\ _=m
- Zta'n (a%—a%—a%—l—a% - Qtan (O) - 4>

1 —1 ( 2(apaz+aiaz) \ __ 1 -1 —
0= itanh <W) = §tanh (0) =0
and

_ 1 —1 ( 2(agaz—aiaz) | _ 1 —1(=1\ _
¢ - Qtan (a%+a%—a§—a§ - Ztan ( 0 ) -

INHE

the Euler formula of matrix A is
A = {/det (A)erDote0)0Fe()Y — o) F+e(R) T
Therefore we get
A100 = (100p(D)F+1000(R) F — 1000() F (1000(R) — (1)) (—I,) = I4
according to Corollary 3.2 where I, is the 4 x 4 unit.

Example 3.2. Let us find the square root of the fundamental matrix

DO | 0 | 0| =

SIEE NI NI ST

h

I
N[00 0| o | =
N 0| 00| b0 | —
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according to the Theorem 3.2.
We can express matrix A as follows:

1000 0 -1 0 0
o100 1+ 1 00 0 1—j
A‘00109"<2>+0 001“’(2)
00 01 0 0 1 0
Then we get
143 1—3
A= p(cos0+isin0) ¢ t +@(cosz+isinz)gp i
2 2 2 2
As a result, the following result is obtained

A

[\v]

3 — cos 2mky +isin 2mky 1+7 + o ( cos ﬂ +isin w 1-7
—v 2 2 )7\ 2 )77 2 2 "\ )

where ki, ks =0, 1.
According to Theorem 3.2, the equation X? = A has 4 square roots and these roots are in this form

242 V2 2-V2 V2
1 VEoaesr V3o
Az =+ 4 1 4 1
22 V2 24v2 V2
IRV R, B, B,
4 4 4 4
2—2 V2 24V2 V2
4 4 4 4
) _V2 2-V2 V2 242
A3 = + 1 4 4 4
242 V2 2-V2 V2
4@ 2+\§§ _4ﬁ 2—\?15
4 4 4 4
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