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1. Introduction 

Navier-Stokes equations represent the motion of the fluid 

flow. In the incompressible flow case, it seeks for the veloc-

ity-pressure pair 𝑢: Ω × [0, 𝑇]  → 𝑅𝑑  (𝑑 = 2,3)  and 

𝑝: Ω × (0, 𝑇] → 𝑅 satisfying 

 

𝑢𝑡 + 𝑢 ⋅ ∇𝑢 − 𝜈Δ𝑢 + ∇𝑝 = 𝑓, for 𝑥  ∈  Ω, 0 < 𝑡 ≤ 𝑇, 

∇ ⋅ 𝑢 = 0,  𝑥  ∈  Ω,  for 0 ≤ 𝑡 ≤ 𝑇, 

𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈  Ω, (1) 

for 0 < 𝑡 ≤ 𝑇. Throughout this paper, for theoretical rea-

soning, we consider the case of periodic boundary condi-

tions. Nevertheless, numerical experiments with Dirichlet 

boundary conditions still performs as expected.  

Its well-known that fluid flow is continuum of scales, 

where the smallest persistent scales in the case of a 3D flow 

is of the order 𝒪(𝑅𝑒−3/4)  in size where the Reynolds 

number 𝑅𝑒 is inverse proportional to the viscosity coeffi-

cient 𝜈. Considering real-life applications of this equation, 

𝑅e could easily be around ~𝒪(1010) and even more for 

large domains, e.g., for atmosphere-ocean interaction. Cap-

turing all persistent scales, in many applications is not fea-

sible or indeed impossible. Contrarily, the large scales in the 

flow are responsible for much of the mixing and most of the 

momentum transport. Upon this observation, turbulence 

models like Large Eddy Simulation (LES) gained much 

attention [1,2,3]. The idea is that set a filter width 𝛿 >  0 

for the size of large scales and model the effect of the 

smaller scales to these large scales. This merely requires 

solving for large scales (bigger than 𝛿), and hence avoids 

singularities due to small turbulent fluctuations. 

 

If (⋅)𝛿 denotes a local, space averaging operator which 

commutes with differentiation, then averaging (1) gives the 

following non-closed equations for 𝑢
𝛿
and 𝑝

𝛿
in (0, 𝑇) ×

 Ω: 

𝑢𝑡
𝛿

+ ∇ ⋅ (𝑢
𝛿

𝑢𝑇
𝛿

) − 𝜈Δ𝑢
𝛿

+ ∇𝑝
𝛿

+∇ ⋅ (𝑢𝑢𝑇
𝛿

− 𝑢
𝛿

𝑢𝑇
𝛿

) = 𝑓
𝛿

(2𝑎)
 

∇ ⋅ 𝑢
𝛿

= 0. (2𝑏) 

An LES model is required when one tries to close the 

system (2) by choosing an approximation to the last term on 

the left-hand side of (2a). In this report, we consider the 

family of Approximate Deconvolution Models (ADMs). 

These models were introduced by Stolz and Adams in [4] 

and further studied in e.g., [5-10]. Given the family of ap-

proximate deconvolution operators 𝐺𝑁 (explained in Sec-

tion 2), the ADM for Navier-Stokes equations is, with the 

new model variables (w, q), as follows: 

𝑤𝑡 + ∇ ⋅ (𝐺𝑁𝑤)(𝐺𝑁𝑤)𝑇
δ

− νΔ𝑤 + ∇𝑞
δ

= 𝑓
δ

, (3𝑎) 
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∇ ⋅ 𝑤 = 0, (3𝑏) 

with 𝑤(0, x) = u0
δ(x)  and periodic boundary conditions 

(with zero means). 

We employ the zeroth-order approximate deconvolution 

model of turbulence; see, e.g., [6]. Throughout this paper, 

we use the self-adjoint filtering operator A−1 = (I −
δ2Δ)−1 detailed in Section 2. 

The zeroth-order (𝑁 = 0) ADM emerges when exact 

deconvolution 𝐴 is applied to both sides of (1.3𝑎). In the 

variational formulation: seek (𝑤, 𝑞) ∈ ((𝑋 ⋂ 𝐻2(Ω)), 𝑄) 

such that for any (𝑣, χ) ∈ (𝑋, 𝑄)  

 

(𝑤𝑡 , 𝑣) + δ2(∇𝑤𝑡 , ∇𝑣) + 𝜈(∇𝑤, ∇𝑣) + 𝜈δ2(Δ𝑤, Δ𝑣) 

+𝑏∗(𝑤, 𝑤; 𝑣) − (𝑞, ∇ ⋅ 𝑣) = (𝑓, 𝑣), (4) 

(∇ ⋅ 𝑤, χ) = 0. 

However, this choice of the filtering operator results in a 

fourth order term 𝜈δ2(Δ𝑤, Δ𝑣) in (4), which require em-

ploying C1 elements as is. Therefore, we follow [6] and 

use the mixed variational formulation: seek (𝑤, ζ, 𝑞) ∈
(𝑋, 𝑋, 𝑄) such that for any (𝑣, ξ, χ) ∈ (𝑋, 𝑋, 𝑄) 

 

(𝑤𝑡 , 𝑣) + δ2(∇𝑤𝑡 , ∇𝑣) + 𝜈(∇𝑤, ∇𝑣) + 𝜈δ2(∇ζ, ∇𝑣) 

+𝑏∗(𝑤, 𝑤; 𝑣) − (𝑞, ∇ ⋅ 𝑣) = (𝑓, 𝑣), (5) 

(∇𝑤, ∇ξ) = (ζ, ξ), (6) 

(∇ ⋅ 𝑤, χ) = 0. (7) 

The spaces 𝑋 and 𝑄 are defined in Section 2. 

Zeroth-order ADM attains high spatial accuracy. Howev-

er, time accuracy is also crucial for turbulence modeling. 

Accordingly, it shall be supplied with a stable high accura-

cy time discretization. This goal has been addressed with a 

predictor-corrector type deferred correction method in [11] 

and [12]. In this report, we investigate Crank-Nicolson 

scheme employed for zeroth-order ADM (CN-ADM).  

The report is organized as follows. In Section 2, we in-

troduce the necessary notations and preliminary results. The 

new method is introduced, and the stability and accuracy 

results are given in section 3. The numerical tests involving 

a quantitative and a qualitative assessment will be presented 

in Section 4. 

2. Mathematical Preliminaries and Notations 

Throughout this paper, the norm || ⋅ || denotes the 

usual L2(Ω)-norm of scalars, vectors, and tensors, in-

duced by the usual 𝐿2 inner-product, denoted by (⋅,⋅). 

The space that the velocity (at time 𝑡) will be sought 

in is given by 

𝑋 = 𝐻𝑝𝑒𝑟
1 (Ω)𝑑 = {𝑣 ∈ 𝐿2(Ω)𝑑: ∇𝑣 ∈ 𝐿2(Ω)𝑑×𝑑   

 and 𝑣 periodic with period 𝐿} 

equipped with the norm ||𝑣||𝑋 = ||∇𝑣||. The space dual 

to 𝑋 has the norm  

|𝑓|−1 = sup
𝑣∈𝑋

(𝑓, 𝑣)

||∇𝑣||
 

The pressure (at time 𝑡) is sought in the space 

𝑄 = 𝐿𝑝𝑒𝑟
2 (Ω) = {𝑞: 𝑞 ∈ 𝐿2(Ω), ∫𝑞(𝑥)𝑑𝑥

Ω

= 0, 

𝑎𝑛𝑑 𝑞 periodic with period 𝐿}. 

Also, the space of weakly divergence-free functions is 

V, a subset of X, defined as 

𝑉 = {𝑣 ∈ 𝑋: (∇ ⋅ 𝑣, 𝑞) = 0, ∀𝑞 ∈ 𝑄} 

For measurable function 𝑣: [0, 𝑇] → 𝑋, we define  

||𝑣||𝐿𝑝(0,𝑇;𝑋) = (∫ ||𝑣(𝑡)||𝑋
𝑝

𝑇

0

𝑑𝑡)

1
𝑝

𝑑𝑡,  1 ≤ 𝑝 < ∞ 

and  

||𝑣||𝐿∞(0,𝑇;𝑋) = 𝑒𝑠𝑠 sup
0≤𝑡≤𝑇

|| 𝑣(𝑡)||𝑋. 

We assume throughout the paper that the velocity-

pressure finite element spaces 𝑋ℎ ⊂ 𝑋 and 𝑄ℎ ⊂ 𝑄 are 

conforming, have common approximation properties of 

finite element spaces, and also satisfy the discrete inf-sup, 

or 𝐿𝐵𝐵ℎ, condition  

inf
𝑞ℎ∈𝑄ℎ

sup
𝑣ℎ∈𝑋ℎ

(𝑞ℎ, ∇ ⋅ 𝑣ℎ)

||∇𝑣ℎ|| ⋅ ||𝑞ℎ||
≥ 𝛽ℎ > 0, (8) 

where 𝛽ℎ is bounded away from zero uniformly in ℎ. 

Examples of such spaces can be found in [13]. A com-

monly used examples of these spaces are 𝑋ℎ ⊂ 𝑋, 

𝑄ℎ ⊂ 𝑄, involving continuous piecewise polynomials of 

degree 𝑟 and 𝑟 − 1, respectively, with 𝑟 ≥ 1. 
The space of discretely divergence-free functions is 

𝑉ℎ = {𝑣ℎ ∈ 𝑋ℎ: (𝑞ℎ, ∇ ⋅ 𝑣ℎ) = 0, ∀𝑞ℎ ∈ 𝑄ℎ}. 
The approximate deconvolution model of turbulence is 

constructed on the following operator. 

 

Definition 1 (Approximate Deconvolution Operator)  

 

For a fixed finite 𝑁, define the 𝑁𝑡ℎ approximate de-

convolution operator 𝐺𝑁 by  

𝐺𝑁𝜙 = ∑(𝐼 − 𝐴𝛿
−1)𝑛𝜙

𝑁

𝑛=0

, 

where the averaging operator 𝐴𝛿
−1 is the differential 

filter: given 𝜙 ∈ 𝐿2(Ω), 𝜙
𝛿

∈ 𝐻2(Ω) is the unique so-

lution of  

𝐴
𝛿𝜙
𝛿 ≔ −𝛿2Δ𝜙

𝛿
+ 𝜙

𝛿
= 𝜙 in Ω, 
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under periodic boundary conditions. With periodicity 

assumption on boundaries, this operator commutes with 

differentiation. 

Lemma 2 The operator 𝐺𝑁
𝑖  is compact, positive, and is 

an asymptotic inverse to the filter 𝐴𝛿
−1, i.e., for very 

smooth 𝜙 and as 𝛿 → 0, it satisfies 

 

𝜙 = 𝐺𝑁𝜙
𝛿

+ (−1)𝑁+1𝛿2𝑁+2Δ𝑁+1𝐴𝛿
−(𝑁+1)

𝜙. 

 

The proof of the lemma can be found in [10]. 

 We also define the following norm, induced by the 

deconvolution operator 𝐴: 

 

|𝜙|𝐴
2 = |𝜙|2 + 𝛿2|∇𝜙|2. 

In the analysis we use the properties of the following 

Modified Stokes Projection (see [6]). 

Definition 3 (Modified Stokes Projection)  

Define the Stokes projection operator  

𝑃𝑆: (𝑋, 𝑋, 𝑄) → (𝑋ℎ, 𝑋ℎ, 𝑄ℎ), 

𝑃𝑆(𝑢, 𝜁, 𝑝) = (�̃�, 𝜁, 𝑝),  

satisfying  

𝜈(∇(𝑢 − �̃�), ∇𝑣ℎ) + 𝜈𝛿2(∇(𝜁 − 𝜁), ∇𝑣ℎ)

+ (𝑝 − 𝑝, ∇ ⋅ 𝑣ℎ) = 0, 

(∇(𝑢 − �̃�), ∇𝜉ℎ) = (𝜁 − 𝜁, 𝜉ℎ), 

(∇ ⋅ (𝑢 − �̃�), 𝑞ℎ) = 0, 

for any 𝑣ℎ ∈ 𝑋ℎ, 𝜉ℎ ∈ 𝑋ℎ, 𝑞ℎ ∈ 𝑄ℎ . 

In (𝑉ℎ, 𝑋ℎ, 𝑄ℎ), this formulation reads: given 

(𝑢, 𝜁, 𝑝) ∈ (𝑉, 𝑋, 𝑄), find (�̃�, 𝜁) ∈ (𝑉ℎ, 𝑋ℎ) satisfying 

𝜈(∇(𝑢 − �̃�), ∇𝑣ℎ) + 𝜈𝛿2(∇(𝜁 − 𝜁), ∇𝑣ℎ)

+ (𝑝 − 𝑞ℎ, ∇ ⋅ 𝑣ℎ) = 0, 

(∇(𝑢 − �̃�), ∇𝜉ℎ) = (𝜁 − 𝜁, 𝜉ℎ) (9) 

for any 𝑣ℎ ∈ 𝑉ℎ, 𝜉ℎ ∈ 𝑋ℎ, 𝑞ℎ ∈ 𝑄ℎ. 

We give the stability and accuracy results for the modi-

fied Stokes projection (9) without proof. The proof can 

be found in [6]. The proof requires the inverse inequality 

to hold 

||∇𝜙|| ≤ 𝐶ℎ−1||𝜙||, ∀𝜙 ∈ 𝑋ℎ. 

To that end, we assume the mesh to be quasi-uniform. 

Preposition 4 (Stability of the Stokes Projection)  

Let �̃�, 𝜁 satisfy (9) for given 𝑢, 𝜁. The following 

bound holds: 

𝜈||∇�̃�||2 + 𝜈𝛿2||𝜁||2  

≤ 𝐶(𝜈(1 + 𝛿2ℎ−2)||∇𝑢||2 + 𝜈𝛿2||𝜁||2

+ 𝜈−1 inf
𝑞ℎ∈𝑄ℎ

||𝑝 − 𝑞ℎ||2 

In the error analysis of the proposed method, we use 

the error estimate of the Stokes projection (9). 

Preposition 5 (Error estimate for the Stokes Projection)  

Suppose the discrete inf-sup condition (8) holds. Then, 

the error in the Stokes projection satisfies 

𝜈||∇(𝑢 − �̃�)||2 + 𝜈δ2||𝜁 − ζ|̃|2 

≤ 𝐶[𝜈(1 + δ2ℎ−2) inf
𝑣ℎ∈𝑉ℎ

||∇(𝑢 − 𝑣ℎ)||2

+ 𝜈𝛿2(1 + 𝛿2ℎ−2) inf
𝜉ℎ∈𝑋ℎ

||𝜁 − 𝜉ℎ||2

+ 𝜈−1 inf
𝑞ℎ∈𝑄ℎ

||𝑝 − 𝑞ℎ||2 

where 𝐶 is a constant independent of ℎ and 𝑅𝑒. 

Define the explicitly skew-symmetrized trilinear form 

𝑏∗(𝑢, 𝑣, 𝑤) ≔
1

2
(𝑢 ⋅ ∇𝑣, 𝑤) −

1

2
(𝑢 ⋅ ∇𝑤, 𝑣). 

The following estimates are commonly used (see [13] for 

proofs):  

There exists a constant 𝐶 = 𝐶(Ω) such that  

|𝑏∗(𝑢, 𝑣, 𝑤)| ≤ 𝐶(Ω) ||∇𝑢|| ||∇𝑣|| ||∇𝑤||, 

|𝑏∗(𝑢, 𝑣, 𝑤)| ≤ 𝐶(Ω)√||𝑢|| ||∇𝑢|| ||∇𝑣|| ||∇𝑤||. 

We will also need the following inequalities: for any 

u ∈ V 

 

inf
𝑣∈𝑉ℎ

|∇(𝑢 − 𝑣)| ≤ 𝐶(Ω) inf
𝑣∈𝑋ℎ

|∇(𝑢 − 𝑣)| , (10) 

inf
𝑣∈𝑉ℎ

|𝑢 − 𝑣| ≤ 𝐶(Ω) inf
𝑣∈𝑋ℎ

|∇(𝑢 − 𝑣)| , (11) 

 

The proof of (10) can be found in [13], and (11) follows 

from the Poincare-Friedrich's inequality and (10). 

Through this report, the averages of two time levels are 

denoted by 𝑣𝑛+1/2 =
1

2
(𝑣𝑛+1 + 𝑣𝑛). Also let 𝑣𝑛 =

𝑣(𝑡𝑛) and let 𝑣ℎ,𝑛 approximate 𝑣𝑛  at 𝑡𝑛 time level. 

 

3. Formulation and Theoretical Results 

Algorithm 6  

Let 𝑓 ∈ 𝐿2(0, 𝑇; 𝐻−1(Ω)), time step Δ𝑡 > 0 and end 

time 𝑇 > 0 be given. Set 𝑀 = 𝑇/ Δ𝑡 and 𝑤ℎ,0 =
�̅�(0), 𝑞ℎ,0 = 𝑝(0). For all 
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𝑛 = 0,1, … , 𝑀 − 1, compute 𝑤ℎ,𝑛+1, 𝑞ℎ,𝑛+1 via: 

Find 𝑤ℎ,𝑛+1, 𝜁ℎ,𝑛+1 ∈ 𝑋ℎ, 𝑞ℎ,𝑛+1 ∈ 𝑄ℎ  satisfying for 

all 𝑣ℎ , 𝜉ℎ ∈ 𝑋ℎ, 𝜒ℎ ∈ 𝑄ℎ 

(
𝑤ℎ,𝑛+1 − 𝑤ℎ,𝑛

Δ𝑡
, 𝑣ℎ) + 𝛿2 (∇ (

𝑤ℎ,𝑛+1 − 𝑤ℎ,𝑛

Δ𝑡
) , ∇𝑣ℎ) 

+𝜈(∇𝑤ℎ,𝑛+1/2, ∇𝑣ℎ)  + 𝜈𝛿2(∇𝜁ℎ,𝑛+1/2, ∇𝑣ℎ) 

+𝑏∗(𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2, 𝑣ℎ) − (𝑞ℎ,𝑛+1/2, ∇ ⋅ 𝑣ℎ) 

= (
𝑓(𝑡𝑛+1) + 𝑓(𝑡𝑛)

2
, 𝑣ℎ) , (12) 

(∇𝑤ℎ,𝑛+1/2, ∇𝜉ℎ) = (𝜁ℎ,𝑛+1/2, 𝜉ℎ), (13) 

(∇ ⋅ 𝑤ℎ,𝑛+1/2, 𝜒ℎ) = 0. (14) 

Theorem 7 (Stability)  

Let 𝑤ℎ,𝑛+1 be computed by Algorithm 6. Let 𝑓 ∈
𝐿2(0, 𝑇; 𝐻−1(Ω)). Then, for 𝑛 = 0, … , 𝑀 − 1,  

|𝑤ℎ,𝑀|𝐴
2 + 𝜈Δ𝑡 ∑ ||∇𝑤ℎ,𝑛+1/2||2

𝑀−1

𝑛=0

 

2𝜈𝛿2Δ𝑡 ∑ ||ζℎ,𝑛+1/2||2

𝑀−1

𝑛=0

 ≤ |𝑤ℎ,0|𝐴
2   

+𝜈−1Δ𝑡 ∑ |
𝑓(𝑡𝑛+1) + 𝑓(𝑡𝑛)

2
|−1

2

𝑀−1

𝑛=0

. 

Proof. Take 𝑣ℎ = 𝑤ℎ,𝑛+1/2 ∈ 𝑋ℎ in (12), 𝜉ℎ =
𝜁ℎ,𝑛+1/2 ∈ 𝑋ℎ in (13) and 𝜒ℎ = 𝑞ℎ,𝑛+1/2 in (14), and 

then substitute (13) and (14) in (12). Due to the skew-

symmetry property of the trilinear form  

 

𝑏∗(𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2) = 0 and  

 

(𝑞ℎ,𝑛+1/2, ∇ ⋅ 𝑤ℎ,𝑛+1/2) = 0 from (14). Therefore, 

1

2Δ𝑡
(|𝑤ℎ,𝑛+1|𝐴 − |𝑤ℎ,𝑛|𝐴) 

+𝜈||∇𝑤ℎ,𝑛+1/2||2  + 𝜈𝛿2||𝜁ℎ,𝑛+1/2||2 

≤ (
𝑓(𝑡𝑛+1) + 𝑓(𝑡𝑛)

2
, 𝑤ℎ,𝑛+1/2). 

Using the definition of 𝐻−1(Ω)-norm on the right-hand 

side and applying Young’s inequality 

(
𝑓(𝑡𝑛+1) + 𝑓(𝑡𝑛)

2
, 𝑤ℎ,𝑛+1/2)

≤  |
𝑓(𝑡𝑖+1) + 𝑓(𝑡𝑖)

2
|−1||∇𝑤ℎ,𝑛+1/2|| 

≤
1

2𝜈
|

𝑓(𝑡𝑖+1) + 𝑓(𝑡𝑖)

2
|−1

2  +  
𝜈

2
||∇𝑤ℎ,𝑛+1/2||2. 

Substituting the last bound we get 

1

2Δ𝑡
(|𝑤ℎ,𝑛+1|𝐴 − |𝑤ℎ,𝑛|𝐴) 

+ 
𝜈

2
||∇𝑤ℎ,𝑛+1/2||2 + 𝜈𝛿2||𝜁ℎ,𝑛+1/2||2 

≤
1

2𝜈
|

𝑓(𝑡𝑛+1) + 𝑓(𝑡𝑛)

2
|−1

2  

Multiplying both sides by 2Δ𝑡 and summing over all 

time levels gives the desired result. 

Theorem 8 (Convergence)  

Let 𝑤ℎ,𝑛+1 be computed by Algorithm 6. Let 𝑓 ∈
𝐿2(0, 𝑇; 𝐻−1(Ω)), 

Δ𝑡 ≤ ν3||∇𝑤||
𝐿4(0,𝑇;𝐿2)

−4
, 

𝑤 ∈ 𝐿2(0, 𝑇; 𝐻𝑚+1(Ω)) ∩ 𝐿4(0, 𝑇; 𝐻1(Ω)), 

𝑤𝑡 ∈ 𝐿4(0, 𝑇; 𝐻1(Ω)), 

𝑤𝑡𝑡𝑡 ∈ 𝐿2(0, 𝑇; 𝐻1(Ω)), 𝑞 ∈ 𝐿2(0, 𝑇; 𝐻𝑚(Ω)). 

Then there exist a constant 𝐶 = 𝐶(Ω, 𝑇, 𝑢, 𝑞, 𝑓, ν), such 

that for 𝑛 = 0, … , 𝑀 − 1,  

||𝑤𝑀 −  𝑤ℎ,𝑀||
2

+ 𝛿2||∇(𝑤𝑀 − 𝑤ℎ,𝑀)||
2

+ 𝜈Δ𝑡 ∑ ||∇(𝑤𝑛+1/2 − 𝑤ℎ,𝑛+1/2)||
2

𝑀−1

𝑛=0

 

+𝜈𝛿2Δ𝑡 ∑ ||∇(𝜁𝑛+1/2 − 𝜁ℎ,𝑛+1/2)||
2

𝑀−1

𝑛=0

 

≤  𝐶𝜈−1Δ𝑡 ∑ [ℎ2𝑚 + 𝛿4 + Δ𝑡4]

𝑀−1

𝑛=0

. 

Proof. We first set 𝑣 = 𝑣ℎ  in (5), 𝜉 = ξh in (6) and 

𝑞 = 𝑞ℎ in (7), and then take their averages of 𝑛𝑡ℎ and 

𝑛 + 1𝑠𝑡 time levels.  

(
𝑤𝑡

𝑛+1 + 𝑤𝑡
𝑛

2
, 𝑣ℎ) + 𝛿2 (∇ (

𝑤𝑡
𝑛+1 + 𝑤𝑡

𝑛

2
) , ∇𝑣ℎ) 

+𝜈(∇𝑤𝑛+1/2, ∇𝑣ℎ)  + 𝜈𝛿2(∇𝜁𝑛+1/2, ∇𝑣ℎ) 

+𝑏∗(𝑤𝑛+1/2, 𝑤𝑛+1/2, 𝑣ℎ) − (𝑞𝑛+1/2, ∇ ⋅ 𝑣ℎ) 

+
Δ𝑡2

4
𝑏∗ (

𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
,
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
, 𝑣ℎ) 

= (
𝑓(𝑡𝑛+1) + 𝑓(𝑡𝑛)

2
, 𝑣ℎ) , (15) 

(∇𝑤𝑛+1/2, ∇𝜉ℎ) = (𝜁𝑛+1/2, 𝜉ℎ), (16) 
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(∇ ⋅ 𝑤𝑛+1/2, 𝜒ℎ) = 0. (17) 

Then, subtracting (12) from (15) and (13) from (16) and 

letting 𝑒τ = 𝑤τ − 𝑤ℎ,τ give the following error equa-

tions: 

(
𝑤𝑡

𝑛+1 + 𝑤𝑡
𝑛

2
−

𝑤ℎ,𝑛+1 − 𝑤ℎ,𝑛

Δ𝑡
, 𝑣ℎ) 

+𝛿2 (∇ (
𝑤𝑡

𝑛+1 + 𝑤𝑡
𝑛

2
) − ∇ (

𝑤ℎ,𝑛+1 − 𝑤ℎ,𝑛

Δ𝑡
) , ∇𝑣ℎ) 

+𝜈(∇𝑒𝑛+1/2, ∇𝑣ℎ)  + 𝜈𝛿2(∇(𝜁𝑛+1/2 − 𝜁ℎ,𝑛+1/2), ∇𝑣ℎ) 

+𝑏∗(𝑤𝑛+1/2, 𝑤𝑛+1/2, 𝑣ℎ)−𝑏∗(𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2, 𝑣ℎ) 

+
Δ𝑡2

4
𝑏∗ (

𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
,
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
, 𝑣ℎ) 

−(𝑞𝑛+1/2 − 𝑞ℎ,𝑛+1/2, ∇ ⋅ 𝑣ℎ) = 0, 

(∇𝑒𝑛+1/2, ∇𝜉ℎ) = (𝜁𝑛+1/2 − 𝜁ℎ,𝑛+1/2, 𝜉ℎ). 

By Taylor expansion, 
𝑤𝑛+1−𝑤𝑛

Δ𝑡
−

𝑤𝑡
𝑛+1+𝑤𝑡

𝑛

2
= Δ𝑡2𝜌𝑛+1/2, 

where 𝜌𝑛+1/2 =
𝑤𝑡𝑡𝑡

𝑛+
1
2

8
. Therefore,  

(
𝑤𝑡

𝑛+1 + 𝑤𝑡
𝑛

2
−

𝑤ℎ,𝑛+1 − 𝑤ℎ,𝑛

Δ𝑡
, 𝑣ℎ) 

= (
𝑒𝑛+1 − 𝑒𝑛

Δ𝑡
, 𝑣ℎ) + Δ𝑡2(𝜌𝑛+1/2, 𝑣ℎ) 

and  

(∇ (
𝑤𝑡

𝑛+1 + 𝑤𝑡
𝑛

2
) − ∇ (

𝑤ℎ,𝑛+1 − 𝑤ℎ,𝑛

Δ𝑡
) , ∇𝑣ℎ) 

= (∇ (
𝑒𝑛+1 − 𝑒𝑛

Δ𝑡
) , ∇𝑣ℎ) + Δ𝑡2(∇𝜌𝑛+1/2, ∇𝑣ℎ) 

Decompose the error in two parts: 𝑒𝜏 = 𝜂𝜏 − 𝜓ℎ,𝜏 

where 𝜂𝜏 = 𝑤𝜏 − 𝑤 �̃� and 𝜓ℎ,𝜏 = 𝑤ℎ,𝜏 − 𝑤 �̃� and add  

 

and subtract 𝜁𝑛+1/2̃ , where 𝑤𝑛+1/2̃ ∈ 𝑉ℎ, 𝜁𝑛+1/2̃ ∈ 𝑋ℎ 

are chosen as the modified Stokes projection, defined via 

(9). Putting all these together and setting 

 

 𝑣ℎ = 𝜓ℎ,𝑛+1/2 and 𝜉ℎ = 𝜁𝑛+1/2 − 𝜁𝑛+1/2̃  yield  

 

(
𝜓ℎ,𝑛+1 − 𝜓ℎ,𝑛

Δ𝑡
, 𝜓ℎ,𝑛+1/2)

+ 𝛿2 (∇ (
𝜓ℎ,𝑛+1 − 𝜓ℎ,𝑛

Δ𝑡
) , ∇𝜓ℎ,𝑛+1/2) 

+𝜈(∇𝜓ℎ,𝑛+1/2, ∇𝜓ℎ,𝑛+1/2)  

+𝜈𝛿2(∇(𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ ), ∇𝜓ℎ,𝑛+1/2) 

= (
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
, 𝜓ℎ,𝑛+1/2)

+ 𝛿2 (∇ (
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
) , ∇𝜓ℎ,𝑛+1/2) 

+Δ𝑡2(𝜌𝑛+1/2, 𝜓ℎ,𝑛+1/2) + Δ𝑡2(∇𝜌𝑛+1/2, ∇𝜓ℎ,𝑛+1/2) 

+
Δ𝑡2

4
𝑏∗ (

𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
,
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
, 𝜓ℎ,𝑛+1/2) 

+𝑏∗(𝑤𝑛+1/2, 𝑤𝑛+1/2, 𝜓ℎ,𝑛+1/2)

− 𝑏∗(𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2, 𝜓ℎ,𝑛+1/2), 

(∇𝜓ℎ,𝑛+1/2, ∇(𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ )) 

= ((𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ ), (𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ )). 

Since (𝑤𝑛+1/2̃ , 𝜁𝑛+1/2̃ ) is taken to be the modified 

Stokes projection of (𝑤𝑛+1/2, 𝜁𝑛+1/2) ∈ (Vh, Xh) some 

of the terms in the error equation disappears. 

Substituting the second equation in the first and applying 

Cauchy-Schwartz inequality we get 

1

2Δ𝑡
(||𝜓ℎ,𝑛+1||

2
− ||𝜓ℎ,𝑛||

2
)

+
𝛿2

2Δ𝑡
(||∇𝜓ℎ,𝑛+1||

2
− ||∇𝜓ℎ,𝑛||

2
) 

+𝜈 ||∇𝜓ℎ,𝑛+1/2||
2

+ 𝜈𝛿2 ||𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ ||
2

 

≤ ||
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

−1

||∇𝜓ℎ,𝑛+1/2||

+ 𝛿2 ||∇
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
|| ||∇𝜓ℎ,𝑛+1/2|| 

Δ𝑡2 ||𝜌𝑛+1/2||
−1

||∇𝜓ℎ,𝑛+1/2||

+ Δ𝑡2 ||∇𝜌𝑛+1/2|| ||∇𝜓ℎ,𝑛+1/2||  

+
Δ𝑡2

4
𝑏∗ (

𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
,
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
, 𝜓ℎ,𝑛+1/2) 

+𝑏∗(𝑤𝑛+1/2, 𝑤𝑛+1/2, 𝜓ℎ,𝑛+1/2) 

−𝑏∗(𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2, 𝜓ℎ,𝑛+1/2). (3.7) 

The last two nonlinear terms on the right-hand side are 

decomposed as follows: 

|𝑏∗(𝑤ℎ,𝑛+1/2, 𝑤ℎ,𝑛+1/2, 𝜓ℎ,𝑛+1/2) 
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−𝑏∗(𝑤𝑛+1/2, 𝑤𝑛+1/2, 𝜓ℎ,𝑛+1/2)| 

= |𝑏∗(𝜂𝑛+1/2, 𝑤𝑛+1/2, ψℎ,𝑛+1/2)| 

+|𝑏∗(ψℎ,𝑛+1/2, 𝑤𝑛+1/2, ψℎ,𝑛+1/2)| 

+|𝑏∗(𝑤ℎ,𝑛+1/2, 𝜂𝑛+1/2, ψℎ,𝑛+1/2)|. 

Applying the upper bounds on trilinear forms followed 

by Young’s inequalities 

|𝑏∗(𝜂𝑛+1/2, 𝑤𝑛+1/2, ψℎ,𝑛+1/2)|  

≤ 𝐶 ||∇𝜂𝑛+1/2|| ||∇𝑤𝑛+1/2|| ||∇ψℎ,𝑛+1/2|| 

≤ 𝜇 ||∇ψℎ,𝑛+1/2||
2

+
𝐶

𝜇
||∇𝜂𝑛+1/2||

2

||∇𝑤𝑛+1/2||
2

, 

|𝑏∗(ψℎ,𝑛+1/2, 𝑤𝑛+1/2, ψℎ,𝑛+1/2)|  

≤ 𝐶 ||ψℎ,𝑛+1/2||
1/2

||∇ψℎ,𝑛+1/2||
3/2

||∇𝑤𝑛+1/2|| 

≤ 𝜇 ||∇ψℎ,𝑛+1/2||
2

+
𝐶

𝜇3
||∇𝑤𝑛+1/2||

4

||ψℎ,𝑛+1/2||
2

, 

|𝑏∗(𝑤ℎ,𝑛+1/2, 𝜂𝑛+1/2, ψℎ,𝑛+1/2)|  

≤ 𝐶 ||∇𝜂𝑛+1/2|| ||∇𝑤ℎ,𝑛+1/2|| ||∇ψℎ,𝑛+1/2|| 

≤ 𝜇 ||∇ψℎ,𝑛+1/2||
2

+
𝐶

𝜇
||∇𝜂𝑛+1/2||

2

||∇𝑤ℎ,𝑛+1/2||
2

 

Also, for the first nonlinear term, 

Δ𝑡2

4
𝑏∗ (

𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
,
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
, 𝜓ℎ,𝑛+1/2) 

≤
CΔ𝑡2

4
||∇

𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
||

2

||∇ψℎ,𝑛+1/2|| 

≤ 𝜇 ||∇ψℎ,𝑛+1/2||
2

+ CΔ𝑡4 ||∇
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
||

4

 

On the right-hand side of (3.7), we apply Young’s ine-

quality and choose an appropriate 𝜇 to get  

1

2Δ𝑡
(||𝜓ℎ,𝑛+1||

2
− ||𝜓ℎ,𝑛||

2
)

+
𝛿2

2Δ𝑡
(||∇𝜓ℎ,𝑛+1||

2
− ||∇𝜓ℎ,𝑛||

2
) 

+𝜈 ||∇𝜓ℎ,𝑛+1/2||
2

+ 𝜈𝛿2 ||𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ ||
2

 

≤ 𝐶𝜈−1 ||
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

−1

2

+ 𝐶𝜈−1𝛿4 ||∇
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

2

 

+𝐶𝜈−1Δ𝑡4 ||𝜌𝑛+1/2||
−1

2

+𝐶𝜈−1Δ𝑡4 ||∇𝜌𝑛+1/2||
2

 

+𝐶𝜈−1 ||∇𝜂𝑛+1/2||
2

(||∇𝑤𝑛+1/2||
2

+ ||∇𝑤ℎ,𝑛+1/2||
2

) 

+CΔ𝑡4 ||∇
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
||

4

+ 𝐶𝜈−3 ||∇𝑤𝑛+1/2||
4

||ψℎ,𝑛+1/2||
2

. 

Multiplying both sides by 2Δ𝑡 and summing over all 

time levels, 

||𝜓ℎ,𝑀||
2

+ 𝛿2||∇𝜓ℎ,𝑀||
2

  

+𝜈Δ𝑡 ∑ ||∇𝜓ℎ,𝑛+1/2||
2

𝑀−1

𝑛=0

+ 𝜈𝛿2Δ𝑡 ∑ ||𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ ||
2

𝑀−1

𝑛=0

 

≤ ||𝜓ℎ,0||
2

+ 𝛿2||∇𝜓ℎ,0||
2
 

+ 𝐶𝜈−1Δ𝑡 ∑ [||
𝜂𝑛+1−𝜂𝑛

Δ𝑡
||

−1

2

+ 𝛿4 ||∇
𝜂𝑛+1−𝜂𝑛

Δ𝑡
||

2

+𝑀−1
𝑛=0

Δ𝑡4 (||𝜌𝑛+1/2||
−1

2

+ ||∇𝜌𝑛+1/2||
2

+ ||∇
𝑤𝑛+1−𝑤𝑛

Δ𝑡
||

4

) +

||∇𝜂𝑛+1/2||
2

(||∇𝑤𝑛+1/2||
2

+  ||∇𝑤ℎ,𝑛+1/2||
2

)]  

+Δ𝑡 ∑ [𝐶𝜈−3 ||∇𝑤𝑛+1/2||
4

||ψℎ,𝑛+1/2||
2

]

𝑀−1

𝑛=0

. 

Use the approximation properties of 𝑋ℎ, 𝑄ℎ . Since the 

mesh nodes do not depend upon the time level, it follows 

from (10) and (11) that 

Δ𝑡 ∑ ||
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

−1

2𝑛

𝑖=0

≤ 𝐶Δ𝑡 ∑ ||
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

2𝑛

𝑖=0

≤ 𝐶ℎ2𝑚 

Δ𝑡 ∑ ||∇
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

−1

2𝑛

𝑖=0

≤ 𝐶Δ𝑡 ∑ ||∇
𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
||

2𝑛

𝑖=0

≤ 𝐶ℎ2𝑚 

𝑘 ∑ ||∇𝜂𝑛+1/2||
2

𝑛

𝑖=0

≤ 𝐶ℎ2𝑚. 

Under the assumption of the theorem 
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Δ𝑡 ∑ Δ𝑡4 ||𝜌𝑛+1/2||
−1

2
𝑀−1

𝑖=0

≤ 𝐶Δ𝑡 ∑ Δ𝑡4 ||𝜌𝑛+1/2||
2

𝑛

𝑖=0

≤ 𝐶Δ𝑡4, 

Δ𝑡 ∑ Δ𝑡4 ||∇𝜌𝑛+1/2||
2

𝑛

𝑖=0

≤ 𝐶Δ𝑡4, 

Δ𝑡 ∑ Δ𝑡4 ||∇
𝑤𝑛+1 − 𝑤𝑛

Δ𝑡
||

4𝑀−1

𝑖=0

≤ 𝐶Δ𝑡4. 

 

Applying the discrete Gronwall's lemma and using 

bounds in the stability and the accuracy of the modified 

stokes projection theorem, give  

||𝜓ℎ,𝑀||
2

+ 𝛿2||∇𝜓ℎ,𝑀||
2

+ 𝜈Δ𝑡 ∑ ||∇𝜓ℎ,𝑛+1/2||
2

𝑀−1

𝑛=0

 

+𝜈𝛿2Δ𝑡 ∑ ||𝜁ℎ,𝑛+1/2 − 𝜁𝑛+1/2̃ ||
2

𝑀−1

𝑛=0

 

≤  𝐶𝜈−1[ℎ2𝑚 + 𝛿4 + Δ𝑡4]. 

It must be noted that initial ||𝜓ℎ,0||
2

+ 𝛿2||∇𝜓ℎ,0||
2
er-

rors stays within the desired accuracy due to the preposi-

tion 4 of the modified Stokes projection. 

The stated error estimate now follows by applying the 

triangle inequality. 

 

Corollary 9 (Optimal Convergence Rate)  

Suppose that in addition to the assumptions of the above 

theorem, 𝑋ℎ and 𝑄ℎ are composed of Taylor-Hood 

finite elements (P2 − P1). Then the error is of the form, 

||𝑤𝑀 −  𝑤ℎ,𝑀||  

+ [𝜈Δ𝑡 ∑ ||∇(𝑤𝑛+1/2 − 𝑤ℎ,𝑛+1/2)||
2

𝑀−1

𝑛=0

]

1/2

 

≤  𝒪(ℎ2 + δ2 + Δ𝑡2). 

4. Numerical Results 

First, we perform a convergence test for the proposed 

CN-ADM. In this test non-homogeneous Dirichlet 

boundary conditions are implemented. Although theory 

of the model requires periodicity, this choice of bounda-

ry conditions still performs as Corollary (9) suggests. 

Computations are performed with deal.II – a general-

purpose object-oriented finite element library [17] – on a 

machine running with Ubuntu 16.04.4 LTS operating 

system. 

For the convergence rate assessment, consider a two-

dimensional problem with a known exact solution of the 

NSE in 

 Ω = [0,1]2 by 

𝑢1 = 𝑒−𝑡(1 − 𝑥2 − 𝑦2)𝑦, 

𝑢2 = 𝑒−𝑡(𝑥2 + 𝑦2 − 1)𝑥, 

 𝑝 = 0. 

The forcing 𝑓 and initial condition 𝑢0 are computed so 

that it complies with (1). The final time in the computa-

tions is 𝑇 = 1. In order to verify the theoretical claims 

on the convergence rates, we take  

Δ𝑡 = ℎ = 2𝛿 = 2−𝑁 . 
For 𝜈 = 0.1 the convergence rates in Table 1 confirm 

what is predicted by Corollary (9): the convergence rates 

of 2nd order are achieved. Also, we observe the asymptot-

ic character of convergence, which is typical for the 

ADM methods, [8,9,11,12]. 

To save horizontal space in the following tables, let 

the error norm ||𝑢 − 𝑤ℎ||
𝐿2(0,𝑇;𝐿2(Ω))

 and  

||𝑢 − 𝑤ℎ||
𝐿2(0,𝑇;𝐻−1(Ω))

 be abbreviated to ||𝑢 −

𝑢ℎ||
𝐿2𝐿2 and ||𝑢 − 𝑢ℎ||

𝐿2𝐻1, respectively. 

 

Table 1. Errors and convergence rates for  𝛎 = 𝟎. 𝟏 

 
N ||𝑢 − 𝑢ℎ||

𝐿2𝐿2
 CR ||𝑢 − 𝑢ℎ||

𝐿2𝐻1
 CR 

2 1.29135e-03 - 2.33857e-02 - 

3 6.04768e-04 1.09 6.70917e-03 1.80 

4 2.08182e-04 1.54 1.97635e-03 1.76 

5 5.61673e-05 1.89 5.23328e-04 1.92 

6 1.42303e-05 1.98 1.32449e-04 1.98 

 

As the viscosity coefficient 𝜈 = 10−5 decreases, the 

convergence rates improve slower for  

||𝑢 − 𝑤ℎ||
𝐿2(0,𝑇;𝐻−1(Ω))

  

norm – see the results for the flow at 𝜈 = 10−5 in Table 

2. Similar phenomenon is also observed in [12]. 

For the qualitative assessment, consider the 2D flow 

past an obstacle Figure 1, see [14]- [16]. In this setting 

the channel height is 𝐻 = 0.41𝑚, the channel length is 

𝐿 = 2.2𝑚, the diameter of the circle whose center is lo-

cated at 0.2𝑚 above the lower wall and 0.2𝑚 right of 

the left wall of the channel is 𝐷 = 0.1𝑚.  
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Fig. 1. Flow Domain 

 

Table 2. Errors and convergence rates for  𝛎 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 

 

N ||𝑢 − 𝑢ℎ||
𝐿2𝐿2

 CR ||𝑢 − 𝑢ℎ||
𝐿2𝐻1

 CR 

2 7.59320e-03 - 6.28074e-02 - 

3 3.21435e-03 1.24 3.05891e-02 1.04 

4 9.57501e-04 1.75 1.39632e-02 1.13 

5 2.50309e-04 1.94 6.72520e-03 1.05 

6 6.26949e-05 2.00 2.87011e-03 1.23 

 

 

Initially flow velocity and pressure are chosen zero 

everywhere in the domain. ‘No slip’ boundary conditions 

on the horizontal walls are strongly enforced. The time 

dependent inflow/outflow boundary condition is set to 

𝑤(0, 𝑦, 𝑡) = 𝑤(2.2, 𝑦, 𝑡) = 6𝑦(0.41 − 𝑦)/(0.41)2. 

Choosing ν = 0.001, this construction results in a 

time dependent Reynolds number, 0 ≤ 𝑅𝑒(𝑡) ≤ 100. 
The correct behavior for this setting is, from time t = 

2s to t = 4s, two vortices start to develop behind the ob-

stacle, and then they separate, later on a vortex street 

forms which can be visible until the final time t = 8, see 

[15],[16]. Plots of the flow at t = 2,4,6 and 8 are shown 

in Figure 2. These results look comparable with their 

corresponding plots in [15]-[16]. 

We also compute the maximum drag (CD) and lift 

(CL) coefficients along with the pressure differ-

ences 𝛥𝑃 as in [15] with Taylor-Hood elements. The 

filter radius δ is chosen to be the average mesh width. It 

must be noted that the proposed CN-ADM algorithm is a 

turbulence model; targeted to solve a variation of NSE 

not the NSE itself.  

 

Table 3. Comparison of drag, lift coefficients and pressure 

difference estimations with various references. 

 
Ref. [16] [16] [15] CN-ADM 

𝛥𝑡 0.001 0.001 0.00125 0.01 

dof 14,446 56,477 399,616 16,626 

𝐶𝐷,𝑚𝑎𝑥 2.2844 2.8472 2.95092 2.70686 

𝐶𝐿,𝑚𝑎𝑥 0.0176 0.4010 0.47795 0.44425 

𝛥𝑃 -0.1267 -0.1138 -0.1116 -0.1152 

 

Also, our computations are performed on a very coarse 

mesh with a higher time step-size. Therefore, an exact 

match with the reference values of lift and drag is not 

required. Nevertheless, we should observe results close 

by these values to consider CN-ADM useful. In this re-

gard, we mostly compare our results with those obtained 

in [16].  

 

Table 3 suggests that CN-ADM performs quite better 

than the Leray model (without any indicator given in 

[16]) solved with 14,446 degrees of freedom. Comparing 

to the finer-mesh results with Leray model, CN-ADM 

seems to produce better results for lift coefficient even if 

it was computed 10 times coarse time step size and 

around 3.4 times less degrees of freedom. For the drag 

coefficient and pressure drop, Leray model with higher 

degrees of freedom produces better results. 

 

5. Conclusions 

A turbulence model with high accuracy both in temporal 

and spatial variables presented in this report. Both theory 

and computational results suggest that proposed high accu-

racy is indeed achieved. Also, a qualitative testing is pre-

sented that match with its reference turbulent behavior. In 

addition to these, computations for drag and lift coefficients 

of a benchmark problem is presented: illustrating this model 

could be employed for such computations beside any quali-

tative assessments. 
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Fig. 2. Flow Profiles at Time 𝐭 = 𝟐, 𝟒, 𝟔, 𝟖𝐬. 
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