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Abstract

In the past decade, mixed-effects modeling has received a great deal of attention in the
applied and theoretical statistical literature. They are very flexible tools in analyzing
repeated measures, panel data, cross-sectional data, and hierarchical data. However, the
complex nature of these models has motivated researchers to study different aspects of
this problem. One of which is to test the significance of random effects used to model
unobserved heterogeneity in the population. The method of likelihood ratio test based
on the normality assumption of the error term and random effects has been proposed.
However, this assumption does not necessarily hold in practice. In this paper, we propose
an optimal test based on the so-called uniform local asymptotic normality to detect the
possible presence of random effects in linear mixed models. We show that the proposed
test statistic is, consistent, locally asymptotically optimal even for a model that does not
require the traditional assumption of normality and is comparable to the classical L.ratio-
test when the standard assumptions are met. Finally, simulation studies and real data
analysis are also conducted to empirically examine the performance of this procedure.

Mathematics Subject Classification (2020). 62J05, 62F03, 62F05, 62G10
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1. Introduction

The linear mixed-effects (LME) modeling (e.g.[16]) has been generating increasing in-
terest in current statistical literature in last years [6,25]. These models are widely used to
describe heterogeneity in a population and suitable to analyze repeated measures and hi-
erarchical data in a wide variety of fields, such as health sciences, biology, economics, and
pharmacokinetics. This because, both the intra and inter-subject variability in data with
possible correlation structures can be modeled with appropriate random effects in addition
to the error terms (e.g.[27]). They offer a suitable balance between over-parameterized
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models separately fitted to each individual, and global models that do not take into ac-
count inter-individual parameter variability. A crucial issue when adjusting such a model
to data consists of identifying fixed and/or random effects. Testing the nullity of the
variances of random effects can be useful for checking unobserved heterogeneity of the
population, which means determining whether there are significant individual-specific de-
viations from the population mean. In this context, one way to do so is through a standard
likelihood ratio tests (LRT), as suggested by Morrell [20]. However, this test is based on
the assumption that the random effects and the error terms follow a multivariate normal
distribution, which is not always the case in reality. More recently, this approach has
been considered by several authors in conjunction with empirical Bayesian and permuta-
tion test (e.g.[24]) while Drikvandi and Noorian [7] have considered the permutation test
for a more broad class of linear mixed models with correlated errors. The results were
shown that both tests to perform well, albeit the permutation test with the likelihood ratio
statistic tends to provide a relatively higher power when testing multiple random effects.
Our study is, to some extent, complementary to this paper. As an alternative to LR-test,
Bayesian and permutation test, particularly concerning detecting the randomness in the
coefficients of individual effects in longitudinal and clustered data, we present a paramet-
ric and non-parametric test locally and asymptotically optimal. Practical examples of a
model building using Uniform Local Asymptotic Normality (ULAN) optimal test models
can be found in [1,4,10,19] among many others.

In this paper, the problem of testing random-slope model are studied, including the
situation when the assumption of normality of random effects and error components is not
met, we consider the specific model of the following form:

Yij = Bo+ (B1 + mi) Xij + €4, i=1,...,n, j=1,...,m, (1.1)
where

Y;; is the observed response for jth observation of individual 7,

— Xj; is a non-stochastic exogenous regressor,

— Bp and [ are, respectively, the fixed effects for the intercept and the slope,

— &4 is an 4.1.d error terms of sequence unobserved with probability density
frew f(e):=(1/o)fi(e/o),

— 1 is an 4.¢.d unobserved sequence of random effects with zero mean, o,
and density h : n — h(n) := (1/oy)hi(n/oy),

— 1; and g;; are independent for all 4 and j.

Under the null hypothesis the model (1.1) is reduced to

Y;jZBO"i_ﬁlXij_'_giﬁ z':l,...,n, j:1,...,m. (12)

It is therefore, important to be able to conduct a preliminary test of the null hypothesis

Ho : O’% = 0, with unspecified gy, 51, and f versus the alternative H; : 072] >0 (still, with

unspecified fy, 51, f, and h).

2

" variance

The Likelihood Ratio Test (LRT) statistic is an asymptotic test statistic which has an x?
distribution with degrees of freedom given by the difference in the number of parameters
between the alternative and null hypotheses (see [11] and [20]), the test statistics (using
REML log-likelihood) is

LRT = 2(Ly — Ly) (1.3)
where L is the log-likelihood of the alternative hypothesis and Lg is the log-likelihood of
the null hypothesis.

Note that the LRT test is built with f; Gaussian. In the same sense, we try to derive
parametric test using the ULAN. Of particular interest is the Gaussian test (where its
square coincides with the LRT), with the proper standardization, we show that this test
is valid on the class of all densities f; with finished fourth-order moments.
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The procedures described above require specified-f;. These procedures are, therefore
highly parametric. However, this parameter is generally unknown, and should, therefore,
be considered a nuisance parameter. In order to eliminate this nuisance, we use a principle
of invariance, and it is in this context that tools such as rank tests appear (van der
Waerden, Wilcoxon and student).

The paper is organized as follows. In section 2.1, we collect the key assumptions and
the main definitions. In section 2.2, we establish the result of ULAN. It allows us to build
locally and asymptotically optimal parametric tests (Section 3.1). In section 3.2 we propose
the special case of the pseudo-Gaussian test (optimal under Gaussian densities). These
optimal parametric procedures are, however, only an intermediate step in the construction
process (Sections 4.1 and 4.2) of the most important optimal rank-based optimal tests.
Particular cases (van der Warden and Wilcoxon) are considered in section 4.4. We apply
our test procedure to the real famous dental growth dataset from [23], using the R package
lme4 [3]. The technical proofs are given in the Appendix.

2. Uniform local asymptotic normality
2.1. Notation and basic assumptions

To investigate the asymptotic behavior of the test statistics proposed and described
below, first of all, we introduce the following notations and assumptions used throughout
this document.

Let P denotes the probability distribution of the sequence of observed

Bo,P1,02,02:f1,h1
variables Y := (an), Yén), s Y,(g))’, where Yl(n) = (Yi(ln), Yign), s Yi%))’ satisfying the
regression model defined by equation (1.1), described above. In this formula, h; and f;
stand for the standardized densities of the individual random effects and the errors, respec-

tively. Under the null hypothesis (072] = 0), this last distribution reduced to Pg;) 81,0201
For a median zero and median absolute deviation one, we can consider the family of

standardized densities:

Fo = {f1 : /_11 fi(z)dz = 0.5 = /_000 fl(z)dz},

which has no effect on our testing procedure and does not require any moment conditions,
see [10] for example of such standardized densities.

The derivation of locally and asymptotically optimal tests at a given f; of density will
be based on the ULAN, with respect to (5o, f1, 02,0727)’, at (Bo, B1,02,0)" of the families
of distributions

:PS‘T,)hl = {P(n) . (Bo, B1) € R?, 0% >0 and 0727 > 0} .

Bo,B1,0%,02; f1,h1

An important precaution for ULAN property is that some regularity conditions must
be imposed which go back to [13]. Summarizing this, we throughout assume that the
following assumption holds:

Assumption (A) The density f; is such that

(A1) f1 €,
(A2)  fi(z) >0 forall z € R, . i _ i
(A3) fiis C?, with derivatives fi and fi; letting ¢f, = —f1/f1 and ¢y = fi/f1,

assume that

To(f) = [ Gh@A(EE < oo, T(f)= [ vh AR <.

j¢(f1)::/Rz2q§3cl(z)f1(z)dz < o0, and K¢¢(f1)::/Rz¢?cl(z)f1(z)dz < 0.
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Note that (A3) automatically also entails

Tou(h) 1= [ 0 (Dn ()i < 00 and Kow(h) = [ 265200 () a(2)dz < oc.

Denote by F4 the class of all densities satisfying Assumption (A), note that for any
fl € ?A,

() [ op(2)fi(2)dz = [ 2205, (2) fr(2)dz = [y, (2) fi(2)dz = [ 21y, (2) fi(2)dz = 0,
(i) [20p (2)f1(2)dz =1 and [ 229 (2) f1(2)dz = 2,
(iif) the mapping 6 — I'f, (#) is continuous for all § € R? x Rf x RY.

The following assumption concerns the asymptotic behavior of regression coefficients, it is
standard in the context of rank-based inference. Let

i=1j=1
cm2 _ LS~ ()2 < ()2 c(m)2)2
X, = EZ(X] )* and Xee EZ (Xi. )
j=1 =1
Assumption (B) The covariates X;; = Xi(;.z), i1=1,...nand j =1,...,m are such that,

(B.1) the classical Noether [21] condition here holds: namely,

n m

s (n) 7 (n))2 (n) T(n)\2| _ R
lim lrg%xn(Xij — X)) /z;z:l(XU - x( )) =0, j=1,...,m,
i=1j=

(B.2) the sequence Min) is bounded as n — oo,
= X 2

(B.3) Xy.l)2 and M, ,En) converge to ,ug(" and ui( , respectively, k = 1,...,4; particularly,
Ml(n) =X converges to u{( .

Note that, asymptotic results hold under (B.1)-(B.2), as n — oco. But those requiring the
convergence of local experiment to obtain ULAN property, only hold as n tends to infinity
under (B.3).

Assumption (C) Hypothesis (C) concerns density (normalized) h; of random coeffi-
m

. 2
cient. Define G, x(n,y) = ‘HI fi(zj — xyn), Gzx(n,y) = 8G§’7;‘2(n’y) for y > 0, x =
]:

(21,22, ..., ) € R™, x2 = (22, 23,...,22)) € R™ and, z = (21,22, ..., zm) € R™.

cey by

(C.1) Jgnhi(n)dn =0 and [u n*hi(n)dn =1,

(C.2) the Fisher information associated with o, is

Yy 2 2
1 o Mumo Jo Coxlrlalmdndu]” p g
Yy
Lio(f15y) == Je jl;[l fi(zj—zyn)ha(n)dn (2.1)
mxLy(fr) +mI3(fr) (m(®)? = %) ity =0.

Note that the function y — Z7( fi;y) is continuous from the right at y = 0 for all

x = (21,22, Tm)".

Assumption (C2) actually is an assumption involving the couple (f1,h1) for all f1 € Fy,
let

Feyp = {h1] ha satisfies (C.1) and (f1, h1) satisfy (C.2)}.
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2.2. Uniform local asymptotic normality

In the following, for a fixed density f1 € F 4, we establish the ULAN result with respect
to intercept, regression coefficient, scale parameter o2, and the parameter of interest 03] =
0, the reader is referred to [18].

We denote by ICén) = (MQ(n)) , ICfln) = (]\Jin))_l/2 , and §4+n"1/2¢M 7 sequences

by small perturbations of the parameter 6 := (3o, 81,02,0)" under alternative where,

—-1/2

1 0 0 0
(n)
w0 K 0 o
=10 0 1 o (2:2)
o o o0 K&

and 7(") := (Tl(n),TQ(n),T?En),TAEn)>/ € R? x R* is such that sup,, (7)1 < oo,

Define the standardized residual Z;; by

Zij:Zij(/807/8170'2) ::( = IBOO. lBl Zj)’ izla"w”a j:la-"vma

and note that, under P(ﬁz)fh 02 .0:f1 Zi; coincides with ¢;;/0. We then have the following

proposition (see Appendix (A) for a proof).
Proposition 2.1 (ULAN). Let Assumptions (B.1), (B.2) and (C) hold. Fix fi € Fa

and hy € Feyp,. Then, the family ’ngf?m is ULAN (for n — oo with fized m) at any
6 := (Bo, f1,02,0)" with central sequence

> 5 65 (Zy)
A 6)
? n) n m
K Zi) Xii
) A(f?_)z(G) 2 i;j§1¢fl( )
n il IV e L3 S (Zion (Z) — 1) (23)
A(f?;)?,(e) %zzljzl 0%
(n) (n) n m m m
Apral0) % x {j:11/)f1 (Zij) X7, +]§1 2 (Zij)on (Ziz)Xinil}
1#]5
and information matriz
FE‘T;)M(@) F}?;)lz(g) FE«T;)ls(@) FS‘T;)M(H)
(n) (n) (n) (n)
1 2 n n n n ! ’
’ F§1313(0) F.SC1§)23(9) FE‘1;)33(0) FE‘1§)34(9)
T0) TEL,0) T,0) T,00)
with .
n n M n
L (@) = To(h): Tiaa(®) = 2 0mToln), Ting(®) = 5oKoo(h)
2
") gy . M M) gy .— " gy .— "
Ff1;14(9) = WI@&UQ» Ff1;22(9) = I¢(f1), Ff1;23(9) = W’Cw(ﬁ)’
(") oy . My ) gy . M
Ff1;24(9) = 20(M2(")Mi">)1/21¢w(f1)7 Ff1;34(9) = 402(M£”))1/2K¢w(f1)7

T(M(0) == 12 (Jo(f1) — 1), and
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Ciu(0) = iy (oML +2I2(f1)(mXo(-) - (")),

More speczﬁcally, for any sequence 6" (50") ,6’1 ,( ) ,0)', such that nl/Q(ﬁ(()n) —
Bo), 1/2( ) (,Bln ﬁl) and n1/2(( ( "2 —02) are O (1). For any bounded sequence

7 € R3 x R under PéO)L)-fl (as n — oo with fized m), we have

(n) = log P00 =172 700: 1y 1y
0(n) 4n—1/2£) +(n) /9(n) £, R n)
3 /005 f1,h dPé(n)Jc1 (2.5)
n)’ n n 1 n)/ (n
— )Agﬁ)(e( ) ( )I‘Sﬁ)(e) (") 4 op(1)
and
n -1/2 n n L
(r0) Al ™) 5 N(©,1). (2.6)
Let Assumption (B.3), I‘%Z)(H) converges to
Zy(f1) W o(f1) 35 Koo(f1) W%w(fl)
e ni _m
o (Hé()l/zqu(fl) Zy(f1) 20( §)1/2’C¢¢(f1) za(uguf)l/z%w(ﬁ)
Ff1(9) =52 1 X X (27)
25 Kos(f1) —H o Kes(f1) gz (Te(f) = 1) —FmKeu(f1)
20(u§) 402 (“4)1()
7I 4M§< 5L, b Hg{ 1/2 Ly ¢
)" ou(f1) ) v (f1) o) Koy (f1) F1:44(6)
where
1
Ly:04(0) == W {M4 (Zp(f1) — 2Z5(f1)) + 2mI3(f1)4s } :
Return to A;T)(H), via Le Cam’s Third Lemma, under P((%) 1j2g) gy pyp B8 T 00, We
can proof that:
AT (0) = N (T, ()7, Ty, (6)).
We have also the asymptotic relative linearity of central sequences, namely,
A0+ M) — AW (0) = 10 (0) + op(1) (2.8)

n)

for all 7 under Pé, f1> 88— 00, which allows us to estimate the unknown parameter 6 in
the test statistic.

The non-diagonal form of I‘;?)(H) implies that the nuisance parameters By, 81,02, in

general, are not information-orthogonal to the parameter of interest a%. Point out that
the density h; of the random coefficient does not appear in the central sequence (2.3) and
the information matrix (2.4). Therefore, it does not influence the optimal test statistics.

3. Optimal parametric and pseudo-Gaussian tests

We are interested in testing the null hypothesis of absence of random slope (ag =0) in
(1.1). It can be formally written

U se=U U U U{Prsoem)

g1€%0 g1€F0 BoER B1ER 620
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where the (standardized) noise density remains an unspecified semiparametric hypothesis.
Parametric alternatives will be considered, of the form, for a fixed density fi € Fa,

—J U UU U PPt

BoER P1ER 62>002>0 h1 €T f;

The parameters (y, 31, and o2 are nuisance parameters, while 0727 is the parameter of

interest. Let us first study the problem parametric tests ﬂfén)( f1) against ﬂfgn)( f1).

3.1. Optimal parametric tests

We suppose that the innovation density fi is specified, the main consequence of the
ULAN results imply that the local experiments

(n) 3 +
{P6+n71/2€(n)7—;f17h1|7- cR° xR ,hl S ?C‘fl}

converges to the Gaussian shift experiment (I'y, given in 2.7)
{N(@(0)7,T70)| 7 € R* xR . (3.1)

ULAN and this convergence imply that locally optimal test must be based on the residual
of A4 with respect to (A1, Ay, Az)", computed at A(n) 4(0) and (Agff)l (9), ASZ;?Q(G), Al (9))

f1:3
(see, for instance [17]). That residual takes the form
A;ﬁ(@ = AS«?;)4(9) = (Tf1;14(0), T py124(0), T g, ;34(0))
— (n)
Tran(0) Tpiaa(0) Tras(0)) A%l(e)
Upa2(0) Tpi2a(0) Tpy23(6) Afo(8) (3.2)
Lpias(0) Dpias(0) Tpiss(6) A;T?S(G)

= AW (0) = T3, 0) A1 (0) = T5,5(0) A1, (8) — T4, 5(0) A1, (8),

(n)

A;ﬁ) (0) is asymptotically normal under P, #, with mean zero and variance
F?1;44(9) = Ff1§44(0) - (Ff1;14(9)>rf1;24(0)?Ff1;34(9))
-1
Lpn(0) Tpia(0) Tpas(0) If1;14(0)
X | Prizn2(0) Tria(0) Tri3(0) L f1;24(0) (3.3)
Tpa3(0) Tries(0) Triss(0) Tf,:34(0)
= D344(0) = T 0 (0)L 71514(0) — Ty 0 (0)T f1:24(0) — T 13(6)L 1,;34(6).
Therefore a test locally uniformly asymptotically most powerful for the sequence
{ 50 5170_2 0.fr } of null hypotheses against the alternatives {Pﬁo 61.0%0% 1.0 \0727 >0, hy €
Feyf, b can be based on the test statistic Tf1( )(0), where

T30) = (13 0) " a3 ). (3.4

Recall that 6 remains unknown, so it should be replaced by an adequate estimator o).
Thus, let us show that

T;l(n) 0) — T;(n)(é(")) = op(1) under Pg:}l, as n — oo (3.5)

1

where, 0 = (B9, f1,02,0)" and o (Bon) 61 , 0 ,0)’ satisfies the following assump-
tions.
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Assumption (D)
(D.1)  n2(£™)=1(" — 9) = Op(1) under any P(g?}l, as n — 0o,
(D.2) 6" is locally asymptotically discrete, that is, let us denote by B(r) the ball with

radius r and center at the origin, the number of possible values of 6" in shrinking
ellipsoids of the form 6 + £™B(r) is finite.

Assumption (D.1) is a constancy assumption of the optimal rate, always under the null
hypothesis. As also the assumption (D.2), it is standard in this context; in fact, any
satisfactory estimator (D.1) can be converted into a satisfactory estimator (D.1) - (D.2)
by discretization its three components first on mesh grids en~2 en~Y 2lCén) and en~1/2

respectively (¢ > 0 arbitrary).
Given the hypothesis (D.1), in the definition of T;l(n), the continuous mapping theorem,
therefore, implies that replacing (F}E?A(G)) with (F}i@l(é(”))) only has op(1) impact.

Proof. of (3.5). Recall that ULAN implies (2.8) for all 7", due to (D.1)-(D.2), that

gives way, under Pg,l}l ,as n — 0o,

AR — A 0)

AFLE™) = AL(6)
- (n) (H(n (n)
Ty Tp Tig \ ' Aflgl(ef )) _Afl-51(9)
—(P147 Toyg, F34) o1 Too Tog A;Tf(g(”)) — A;Tf(g)
r T T n) /Aln n
e T L A0 - AT 0)

= —(Tar, Tz, Tug) (€)1 5, g

I'n TI'e I'is
+(F41, 2, F43) [o1 T'yo TI'og
31 I'so I'sz

Iy T T'as (()n) — o

x| Tor Taa Tog | (€M) 5, _p, | +op(1)
31 TI'se I'sg (62 — 52

= Op(l).

Consequently,

T;l(n)(é(”)) - T;l(n)(ﬁ) =op(1) under P((??}l’ as n — oo.

0

More precisely, from the application of Le Cam’s third Lemma, we have the following
result.

Proposition 3.1. Let 01 satisfy Assumptions (D), let Assumptions (B) and (C) hold,
and fix fi € Fa. Then,
(i) for any 6 = (B, B1,02,0), T}kl(n)(é(”)) s asymptotically normal, with mean zero
under Pfg?}l, mean (F}1;44(9))1/2T4 under Pg_? and variance one un-
der both,

n=1/26 7 f1
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(ii) The sequence of tests rejecting the null hypothesis 9‘(0 (fl) as soon as T;Zl(n)(é("))
exceeds the (1—a) standard normal quantile of the standard normal distm’bution is

locally asymptotically most powerful unbiased, at asymptotic level «, for IHO (fl)
against alternatives of the form

JUUU U {PWmnnin )

60 ,81 o2 J%>0h1€?c|f1

An important case is the Gaussian versions (fi = ¢1). It is easily verified that (2.3)
and (2.7) becomes

n m
> > Zij
i=1j=1
(TL) n m
KQ Z Z Zngz]
(n) a n i:rr{jZI
AV (9) = 1 2 1 3.6
o1 ( ) U\/ﬁ %z‘;uz:% (Zz] - E) ) ( )
K™ n m m m
vy (22] - 5) X2+ S 3 ZiZa Xy Xy
i=1 | j=1 j:”zi}
and
a,uf(
a 73 0 0
(uX)
X
(M‘Z‘)ll/z a 0 0
2
Fd’l (0) - 0_2 0 0 1 a,ug( (3 7)
202 202(“2()1/2
a/-l/g( ma2u§20
0 0 1 1/2
202 (i) 202 (u)

3.2. Pseudo-Gaussian test

The Gaussian versions of (3.2) and (3.3), obtained from (3.6) and (3.7), are as follows

Jj=1 Jj=11

*(n QIC( n m m
A¢(17) o 0—2\/>Z ZZEJ (X’L2j )+ZZZU Zle]le , (38)
=

2

Phaa0) = g (mOmid™ — 6] (39)

The Gaussian central sequence A, *(n )(9) in (3.8) allows having optimal asymptotic tests
under g; = ¢1. Define

1 n m

m{" = — 3" Ziy, mlg) = /Zgl(z)dzv

i=1j=1
and pk(g1) = [(z — m(gl))kgl(z)dz for k=2,34.

Let us show that the Gaussian optimal test is valid under densities g; in a broad class
of densities, which is of course highly desirable. This is indeed possible, and that a small
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modification in (3.8) leads to a pseudo-Gaussian test, which remains valid when the actual
density g1 € F%, where % the class of all densities g1 € F such that us(g1) < oco. Define

AZAO) = WZ > 28 (X5 = M) 4 303 — i)~ i) XX

7j=1 7=1

—~—
[

i

Decomposing (Z;; — mgn)) into (Z;; — p1(91)) + (11 (g1) — mgn)), it easily follows from this
consistency that

QK(")

AZO) = QUz\le { > 23 (X5 - ") + jé S (2 — m(g0)(Za - m(m))Xz‘an} +op(1). (3.10)
Under P((:g)l (with g1 € F7), A;(l"i(e) is asymptotically normal with mean zero and
variance

a4

P ®) = oo (0= 08)%) (a(91) = Galon)?) + 2mGaton)? (mud™ — ) ) - (3:11)

(n)

Consequently under P9'g17 as n — oo, for any g1 € Cr’a,

o(n ° —1/2 o(n
757 (9) = (r¢17g1;44(9)) AL () (3.12)
is asymptotically standard normal.
In practice, the pseudo-Gaussian test will be based on the statistics T (;l(n) (0), when

ummmmﬁmmmmmww—gz< m%ﬁ%;;%rm%%
=1y =1 7=

and —- E Z( m!" )), respectively.
1=1j=
The parameter f remains unspecified under the null hypothesis, so it should be replaced

)

by estimator 6. It means that under P((;Lgl, for any g1 € 93,

T(;l(n) 0y — T(;l(n)(ﬁ) is op(1). For that, we have to show A;(l?i(é(”)) — Az(lni(ﬁ) is op(1).
Using the linearity of Afg) (0) under ngl, for any T = (11, 72,73,0)', g € 57,

A0+ M) - Al () = -1 (0)7 + op(1). (3.13)
Following the same steps as in proof of (3.5), we can easily find the equivalence between
A;(lni (0() and A:fﬁ(&), therefore between T;I(n)(é(”)) and T;l(") (#). In summary, we have
the following result.
Proposition 3.2. Let 0" satisfy Assumptions (D), let Assumptions (B) and (C) hold,
for any g1 € F%4. Then,

(i) for any 6 = (Bo, B1,02,0), ( )(é( )) is asymptotically normal, with mean zero
* L] _1/2
under P((%;;N mean (F¢1 1(0)) (F¢1,gl,44(9)) T4 under Pé_: 12 gy
ance one under both,

(i) The sequence of tests rejecting the null hypothesis U{XL)Q = U J‘C(()n) (g1) as soon
g1€5%

and vari-

as T(;l(n) (0™ exceeds the (1 — ) standard normal quantile of the standard normal
distribution, is locally asymptotically most powerful unbiased, at asymptotic level
a, for 5‘(1(:’)2 against alternatives of the form

U U U U U {P(BZ?&,UZ,U%@LM } ’

Bo B1 02 d2>0h1€TF |y,
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4. Optimal rank tests

Regarding parametric tests obtained in Section 3.1, their drawback is that the validity
of these tests is limited to fi; must be specified, and for the pseudo-Gaussian test in Section
3.2, it still needs finite order moments four.

Its performances are likely based on the actual underlying density. In practice, a correct
specification of the actual density g; is totally unrealistic, the problem must be considered
a semi-parametric standpoint, where g; plays the role of a nuisance, however, it is more
delicate than in the parametric case (see [9]).

4.1. From parametric to semiparametric experiments

The central sequences AEZIL)(G) and the information matrices I‘;T)(H) are defined as if fi

is specified, it means that until now the approach is purely parametric, which leads us to
consider the semiparametric approach under which f or f; remains completely unspecified
is more reasonable. Then, the number of parameters of interest reduced from four to two,

the only remaining parameters are therefore, 51 and 0727. Redifine Zf;)(ﬁl) =Y — p1X5,

K(n) n m
=3 % p(Zij) Xy
A(”)(ﬁ ) \/ﬁ i=1j5=1
A(fn)(ﬁl) = A{;LQ) ' - (n) n m m m (41)
ria () 12(% Py {jzl Vi (Zig) X7, +J§1 z; ¢f(Zij)¢f(Ziz)Xinu}
1%
and
(n) (n)
I‘Scn)(/ﬁl) = F{TgQ(ﬁl) F{;LQ)4(B ) , converging, along (B.3) — subsequences, to
Ff;24(ﬁl) Ff;44(51
m X
mZy(f) %Igbw(f)
2(ug )
LB = |
sz(f ) T 4(61)
where Lpaa(81) = (B @p(f) = 2Z3(F)) + 2mT2(Pliz |
My

4.2. Rank-based versions of central sequences

A general result concerning the relationship between efficient semiparametric procedures
and rank-based procedures was established in [14]. In such a context, semiparametrically
efficient tests can be obtained by conditioning the f-central sequence on the maximal in-
variant associated with some appropriate generating group.

Denote by, Rgl) (B1) the rank of the residual Zl(Jn ) (61) among the residuals
237 (B1), s Zuim(B1) and RO) = RO (By) := (RYY (B), .., R (B1)-

From the results of [14], under the null hypothesis Pgll?o; 2 the version of the semipara-
metrically efficient (at f and 6 = (f1,0)) obtained conditioning Agcn) by the rank vector
R™(51),

AP (B) =B [AP (B8 R™(8))] . (4.2)
The conditional definition (4.2) allows us to obtain a statistical test based on the ranks.

(n)(

In practice, this definition of A 7 (an exact-score) is not appropriate, and the explicit
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approximate-score form (as for the exact-score version, for simplicity using the same no-
tation)

(n)

A]”,4(51)
n (n)
]Cé ) n m [ Rz (n)
o ( J ) - }XZ
\/ﬁ 7,; ]gl !/ N + 1 ¢f J
= K m R(n) —(n) m m R(ﬂ) R(n) n
2y/n £ { Z—:l [\Ilf(N—:-l) - wf :|X12] + 21 Z [(I)f(Nj_l))q)f(N.:_l) C](f )}ijle
T =
n (n)
0 am Ry (n)
P I ) | Xy — My"
o7 L 2 () (X - ]
= Kin) n m R! " m m RE ) R(™
2vn Z:1 { Z:1 \Df(Nil)[ng a MQ( )} * Z:1 lza(bf(Nil)q)f(Nil)[X”X” B C(”)} }
= J= j=1ll=
1#]

Yro F~!and cm = " X
m—1 m

Let us add the following assumption on f, in order to have the equivalence between the
approximate- f-score rank statistics and the exact- f-score rank statistics.

A.5) The density f is such that and v are monotones, or the difference between two
f f
monotone functions.

Based on Héjek’s projection theorem (for more details see, [12]), with f satisfying
Assumption (A.5) and under P! we have

B1,0;9”
AP = AP (B) +op(1)
(n) n m
8 E (a0 60) [ - 1)
I L e
+§:1 li”:l @, (G2 (81)) @5 (G2 (B1)) | X1y X — O] }

Let Assumptions (A) and (B) hold, under Pg )0 g Ngcn) (£1) is normal with mean zero and

covariance matrix
(n) (n)
n Ly05(B1) Lh4(Ba
rgﬂwnz—( i) Lt )), (43)
:2

Lroa(B1) Tya(B1)
with
m( (”)—(Mf”))Q) m<M§”)—M1<”)M§”))
L,(0) = Ty(f), LY2,(0) = Tyy(f), and
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0 = (0 - 087 + 2 53 - 0

4Min) i=1j=11=1
l#j
4.3. Semiparametrically optimal rank tests
The rank based version of A;EZ) (B1) defined in (3.2) is
(n)
AR (B = AT — S AT (8) (4.4)
Ly0(B1)

with
Dya(B) _ (5™) 20" — M ML) )
CfL()  204) 087 — (")) Told)

é;gz) (£1) is normal, under Pgl}l with mean zero and variance

(C4(61))°

*(n) (n)
ey (B) = LpuB)—
fa4 f744 n
L (B1)
(n) (n) 4 r(n)\2 72
n m (M§™ — M M, Zsy(f)
_ E};L;(ﬁl) (M; 1 2 ) Y

A e - (fY)?) Tl

Therefore, the test statistic is

T (81) = (T3 (81) 2250 (). (4.5)

Not that 81 remains unknown, so it should be replaced by adequate estimator 1. That es-
timator should be such that both the asymptotic standard normal distribution of I}(n) (5’1)
under Pgﬁo; @ and the asymptotic optimality under P(ﬁ?o; f of the resulting test be pre-
served. Thus, let’s show that it is possible, but requires a small change in (4.5) indeed
in the central sequence é;g?(ﬂl), that we will then note it by Q}Ez) (B1). Note that this
modification only has op(1) imapct (the proof will appear later).

Q;n) (61) is, under Pglb?o; o locally asymptotically linear in 51, that is, satisfies

AP B+ P - Al B) = -1l /31)( )+0p<1> (4.6)
= 22 (B) 724 op(1)
g42 ﬁl
with
() iy = O g ) iy = D M)
Lroa: 1) — ,9), L 1 yd),
f.9;22 M2(n) ¢ fg 42 2(M2n)M4n))1/2 Vo

i= [ 6 @)y (67 ) and Tualfg) = [ 5 )y(G )i
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Note that, for f = g, Zy(f, f) = Z4(f) and  Zyg(f, f) = Zye(f). Then, define

(n)
" L2
AFP(B) = AT - L AT (8)
L} gi22(P1)
n)y1/2 n n n
(M) 2 (0 — MV M) Ty (£,9) ()

(B1)

n)\1/2 n n)y 2 ~f;2
2(M{™) 2 (V- (M) Lo(f:9)
with variance

n n n)\ 2
(M — M M)’ Te(t,9)

am " (Mg — (mf)?) T3 9)
X [2Z5(£,9)Zou (/) = To(NTpol(f.9)]. (A7)

5 (B1) =TV (6r) —

While, under Pgﬁo;g (the f = g case),

A (50 — I¥%  Diio ()
~f4 (/81) f~4 (61) - | = (n) + (n ) A (61)
' r Y
~f.f22  ~f;2

Let BAEH) satisfy Assumption (D.1)-(D.2), it results from asymptotic linearity (4.6) and

Lemma 4.4 in [15], under P(B??O;g

(n)
o(n), A(n o(n n E 42 +(n n)\—1,5(n
éf54)(ﬂ§ )) - éf54)(51) = ( 250342 + {g) Eg‘,g)722> nl/Q(Ké )) (ﬂ§ ) - B1) + op(1)
L} g2
797
= op(1).
The last problem that remains to be solved is that the statistics based on ranks
'['w (B%n)), indeed the variance E}SZ) (Bgn)) depends on the cross-information quantities
Zy(f,9) and Zye(f, g) that are unknown and also depends on the unspecified density g.

We propose here the simplest ones (see [5] and [10])

~(n), A M(") ) A ) A ~ .
S = : (27230 — ALBy + 7 2)
mc<M2n) — (Ml(n))2>
= Zy(f,9) +op(1) (4.8)
and
(n) 3 r(n)y1/2
—~(n A 2 M M n ~ n ~ _ n
Ziop(B) = ) (A1) — AL (B +n2K8Y))

i~ )

= Tye(f,g) +op(1). (4.9)

where ¢ # 0 and d # 0 are arbitrary constants, whose consistency easily results from
asymptotic linearity property (4.6).

We substitute Zy(f, g) and Zyg(f, g) by Aén}(ﬁl) and I¢¢ f(ﬁl) respectively. The rank-
based test statistic is I}(n) (B§n)), with

I}(n) (Br) = (E}EZ) (31))_1/2é}gz) (B1)- (4.10)
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It is easy to verify that the test statistics I}(n) (B1) and I}En) (1) coincide, the following
proposition summarizes the results (follows from a straightforward application of Le Cam’s
third lemma).

Proposition 4.1. Let ﬁgn) satisfy Assumptions (D), let Assumptions (B) and (C) hold,
fix a density f such that f1 € Fa satisfies (A.5). Then, for any g1 € F4, the sequence
of tests rejecting the hypothesis | 9{(() )(gl) whenever Tf (61 ) exceeds the (1 — «)
g1EFA
standard normal quantile z,,
(i) has asymptotic level a,
(ii) 1is, along (B.3)-subsequences, semiparametrically locally asymptotically most pow-
erful unbiased, at asymptotic level o, against alternatives of the form
Uu U P}
B1 072]>0 h1€F¢|s, { ,3170727$f17h1}
(iii) still along (B.3)-subsequences, this test has asymptotic power
. -1/2 Ly,g:42(B1)Lf,9:24(B1)
1= (= (T gaa(B0) 7 (Crgaa(8) - L2520 ) ahere @, as
usual, stands for the standard normal distribution function,
(n)
ﬁl,n_l/zKin)ﬂL;gl,hl.

against P

4.4. The Wilcoxon and van der Waerden test statistics

Particular cases most importantly are the van der Waerden and the Wilcoxon, which
are optimal under normal and logistic densities, respectively.

e The van der Waerden test statistic (normal scores): given for f = ¢, where
Yr (F7H(u) = (@71 (u))2 —land ¢f (F7!(u)) = @ (u) takes the form:

e = Mo {3 (0 () g - g

(Mgn) M( )M2( (n)

I’Lb(i) wdW
- ZZ (¥

(MY — (MM T ppaw =11

33 e (e () - o]

Dl

(s ) =2 (M = (7)) 8 LR (e
T ) Ty

+ Zm(m)z'.(fﬁ — Min) —(m— 1)C(”)2>

jd);vdW

where ib;vdW and fw¢;vdW stand for Z,, f(Bl) and ZA,}M,; f(Bl) respectively (f the
normal density).

e The Wilcoxon test statistic (logistic scores): given for f = ¢, where ¢y (F~! (u)) =
6u(u—1)+ 1 and ¢y (F~! (u)) = 2u — 1 takes the form:
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o(n) . on 2 Ry R 2 )
Tw (B) = s {3;;(N+1) N+1 L)X = M7
(M"Y — M MYV Z g gary n)
BV ORIy ZZ<N+1)[ Xiy = "

))Z¢vdW i=1j=1

R B () (bt

m (M"Y — M M ))<Iw¢vdvv)
12 (M( n) (M(n)) )

M Sm2 ) 1 ()2
+18<mX.. M{" — (m - 1)C™?)

n m n n
(61)? = 3o (ML - ()" +
Lywaw

where ib;W and fw;w stand for f¢;f(31) and fw;f(ﬁl) respectively (f the logistic
density).

5. Simulation

The objective of this section is to evaluate the performance of the proposed tests at the
asymptotic level o = 5%. Using R-programming, we consider a simulation of N = 2500
independent samples of size nm = 100 % 5 from the model:

}/’LJZ/BO+(61+TZZ)X1]+€Z]7 2217)1007 .]217)5)

where

(a) Po=1and p; = 10,

(b) the Xj;’s are i.i.d. normal (0, 1),

(c) the n;’s are i.i.d. Gaussian with mean zero and standard deviation o, = 0 (for
null hypothesis), = 0.1, 0.15, 0.2, 0.25 or 0.3 (for increasing alternatives),

(d) thee;j’s arei.i.d. with symmetric densities: Gaussian (¢1), logistic (¢1), student(¢s);
with asymmetric densities: skew normal (sN), skew Student t5 (st5)!(both with
skewness parameter value § = 3).

For each replication, we performed the following tests at the asymptotic level a = 5%:

The Likelihood Ratio Test (LRT') on (1.3), the square of Gaussian test based on T, *l(n),

the pseudo-Gaussian test based on T (;l(n), the van der Waerden test based on T i%v, the

Wilcoxon test based on T 8}) and the rank tests based on Student scores with 5 degrees of
(

freedom It:)~ Rejection frequencies are reported in Table 1.
These simulations shows that the Likelihood Ratio test and the square of Gaussian

o(n)

test T ;l(n) coincides. It shows also that the pseudo-Gaussian test T & confirms the good

overall performance. More under asymmetric densities (skew normal and skew-Student),
it shows the superiority of ranking tests over pseudo-Gaussian tests.

ffor a definition of skew-normal and skew-Student densities. See, for details, 2]
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Table 1. Rejection frequencies (out of 2500 replications), for ¢,, = 0 (null hypoth-
esis) and various non-zero values of o, (local alternative hypothesis), with error
distribution that is normal (¢1), logistic (¢1), Student(¢s), skew-normal(sN(3))
and skew-Student (st5(3)) of Likelihood Ratio test, square of the Gaussian test,
the pseudo-Gaussian test, the van der Waerden test, the Wilcoxon test. The sam-
ple size is 500 (n = 100 and m = 5).

g1 Test oy
0 [ 01 Jo015 | 02 [ 025 | 03

LRT | 0.0488 || 0.0968 | 0.1848 | 0.3720 | 0.5780 | 0.7928
(737*)2 | 0.0408 || 0.0924 | 0.1776 | 0.3680 | 0.5884 | 0.7980
¢ | T [0.0548 || 0.1276 | 0.2376 | 0.4328 | 0.6504 | 0.8472
7 10.0584 ][ 0.1588 | 0.2636 | 0.4516 | 0.6624 | 0.8576
70 [ 0.0528 || 0.1424 [ 0.2456 | 0.4324 | 0.6460 | 0.8184
70 10.0516 || 0.1456 | 0.2620 [ 0.4196 | 0.5960 [ 0.7904
LRT ] 0.0480 || 0.1000 | 0.1592 | 0.3080 | 0.4960 | 0.6960
(T™*)2 1 0.0420 || 0.1080 | 0.1620 | 0.3112 | 0.5160 | 0.7040
Lo | T 10.0524 | 0.1340 [ 0.2324 | 0.4252 | 0.6348 | 0.8204
7 10.0520 ][ 0.1344 [ 0.2352 | 0.4328 | 0.6420 | 0.8252
7 10.0560 || 0.1544 | 0.2904 | 0.5016 | 0.6984 | 0.8720
7 10.0532 [ 0.1492 | 0.2840 | 0.4808 | 0.6996 | 0.8692
LRT ] 0.0480 || 0.1092 | 0.1060 | 0.3600 | 0.5680 | 0.7400
(TU*)2 [ 0.0492 || 0.0922 | 0.1860 | 0.3360 | 0.5560 | 0.7440
ts | T 10.0512 | 0.1596 | 0.2864 | 0.4756 | 0.6736 | 0.8464
7™ 10.0532 ][ 0.1684 | 0.3206 | 0.5216 | 0.7196 | 0.8932
7 10.0568 || 0.1808 | 0.3164 | 0.5444 | 0.7520 | 0.9084
7 10.0572 [ 0.1916 | 0.3620 | 0.5604 | 0.7932 | 0.9492
LRT ] 0.0480 || 0.1040 | 0.2020 | 0.3916 | 0.6004 | 0.7764
(TU*)2 [ 0.0424 || 0.1000 | 0.1960 | 0.3660 | 0.5976 | 0.7640
sN@3) [ 7 [0.0512 [ 0.1832 [ 0.3372 [ 0.5388 | 0.7492 | 0.8912
7 1 0.0576 | 0.1932 | 0.3556 | 0.5920 | 0.8048 | 0.9324
7" T 0.0564 || 0.1968 | 0.3456 | 0.5492 | 0.7620 | 0.9196
T 10.0528 || 0.1692 | 0.3028 [ 0.4916 | 0.7232 | 0.8612
LRT ] 0.0484 || 0.1164 | 0.2040 | 0.3464 | 0.5364 | 0.7328
(TU7*)2 [ 0.0496 || 0.1288 | 0.2120 | 0.3532 | 0.5404 | 0.7324
sts(3) | T [ 0.0504 || 0.1656 | 0.2856 | 0.4856 | 0.6932 | 0.8664
7" 1 0.0584 | 0.2348 | 0.4896 | 0.6824 | 0.8932 | 0.9692
70 [0.0524 || 0.2116 | 0.4192 | 0.6428 | 0.8440 | 0.9508
T 10.0516 || 0.2064 | 0.4012 | 0.6244 | 0.8252 | 0.9436

6. Real data analysis

In this section, we illustrate an application of the usual likelihood ratio test (LRT), the

pseudo-Gaussian test T° (;l(n), and the van der Waerden test I;%)/ in a real dataset. Our
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study is related to a growth curve (Longitudinal data, where individuals are repeatedly
measured over time) problem from dentistry. The original data set is from ([23]) available,
under the name "Orthodont", in the packages Ime4 and nlme in R ([3,22]). The Orthodont
data has measurement on the distance (y) (in millimeters) between two positions on the
skull (the center of the pituitary and the pterygomaxillary fissure), taken every two years
from 8 until age (x) 14 (i.e. at the ages 8, 10, 12, and 14), on 16 males and 11 females.
This distance was measured four times for each of the 27 subjects (individual children).
In this example, we are interest on the random slope for the simple linear mixed model
with equal intercepts. Consider here:
Yij :ﬁ0+(ﬁl+nz)xz] +5ij fO?" 7= 1,...,27 and j: 1,...,4 (61)

with

e [y and (; are, respectively, the fixed effects for the intercept and the slope,

® &5~ N(O,O’Q),

® 7); ~ N(0,0’%)
We will use the likelihood ratio test (LRT), the pseudo-Gaussian test T(;l(n), and the van
der Waerden test T ;g:,?, to test the null hypothesis JHy : 0727 = 0, versus the alternative
Hy - 072] > 0, comparing a fitted full-model (6.1) with the parameter of interest (i.e:
random-slope) having (p; = 4) estimable parameters and a fitted model having (p2 = 3)
estimable parameters without the parameter of interest (i.e.: reduced model, without
random-slope)

yij:ﬁo—l-ﬁll‘ij—{—éij for i=1,...,27 and j=1,...,4. (6.2)

Note that if the calculated value of LRT, T (;1(") , and I;Eg/l), is larger than the critical value
of the chi-squared distribution with (p; — p2 =1) degrees of freedom, and the normal dis-
tribution respectively, the parameter of interest should be retained in the model. At the

usual significance level (o« = 5%), the following table presents the result:

Test || Calculated value | critical value
LRT 64.08381 Y2(1) = 3.84
75" 8.112118 Z., = 1.644854
) 8352332 | Z, — 1.644854

The observed values of the statistical tests are LRT= 64.08381 (p-value=1.192 x 10~1°),

750 = 8.112118 (p-value 2.487 x 1071%) and T34y}, = 8.352332 (p-value=3.346 x 10~17),
shows that the three tests lead to the same conclusion, namely that Jy should be rejected
at the usual significance levels. The results suggest the proposed test appears to be more
powerful than LR test, for detecting the random slope. This conclusion agrees with the
results of the permutation tests, described in [8] and applied in the orthodontic data, for
testing the intercept and/or slope random effects in linear growth curve model. Recall
that, the permutation test is obtained by conditioning with respect to the order statistic.
Whereas invariance arguments lead to rank-based tests, unbiasedness arguments thus lead
to permutation tests. In choosing between the two tests, we prefer rank test for detecting

the random slope.

7. Conclusion

For testing randomness in the linear mixed models, we propose a test statistics valid
for a large class of densities rather than the likelihood ratio test which is restricted to the
Gaussian one. Those tests are constructed using Le Cam methodology, their performance
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are remarkably high compared to the conventional ones.

The simulations, based on the rejection frequency, for different tests, guarantee the good
performance of the proposed tests. It also appears that skewed and heavy-tailed densities
signficantly improves the superiority of rank tests over the Likelihood ratio procedure.

A real example of longitudinal data is used to illustrate the behavior of the new test.
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Appendix A. Proof of Proposition 2.1

The proof of 2.1 is to ensure that the six conditions (Conditions 1.2 to 1.7) in Lemma 1
[26] are satisfied, the only delicate one actually is condition (1.2). This condition is a direct
result (see Lemma 2 Swensen) of the quadratic mean differentiability in the neighborhood

of any (fo, B1,72,0).
N 1/2
(Bo, B1, 0%, 0) q,}}é?ﬂhoﬁjg;z];fl (v) = {# Je Il fi (% (yj = Bo — Prw; — 0’#]%‘)) h(’l)dT/} :

with y = (y1, 92, ..., ym) € R™.

Quadratic mean differentiability is established in the following lemma.

Lemma A.1. Let assumptions (B) and (C) hold and fix fi € Fa. Define, for y € R™,

m
1/2 _ L 12 y; — Bo — Pz,
Doy, 02,0:02 ) = 90 180.81,02,0:f1 (%) Zl O ( o ’
j:

m
1/2 N Y yj — Bo — i, n)
D g, 5,020, (W) = 90 180.81,02.0:11 W) > o5 ((, Ky g,

j=1

1/2 _ 1 oap yi — Bo — bz yj — Bo — Brx;
Do2d5y, 51,0205 ¥) = 55 U 0200 W) 2 [(J on\7— ) 1>

1

<

and

m
1/2 1 oap Z Yyji = Bo—Aaj o
D0'721q5075170'270'721§f1 (y)‘a%zo = 452 0ot 0 (y)[ v (U N
i=1

+§:§:¢ﬁ (yj - 5(27— 51%‘) b5, (yl - 500— 511171) LUj.’I:l]-

j=11
l
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Then as t, s, v, andr — 0,

2
. | 1/2 1/2 1/2 — 4
(@) J {qﬁwt,ﬁﬁs,o%v,r?;ﬁ(y)qﬂo+t,ﬂ1+s,02+v,0;f1( ) = Do25 s s o, o2:51 )03—0} dy = ofr’),

Dﬁoqﬂéﬁl U20f1(y) 2
) 1/2 1/2
(i) f {qﬁé-ﬁﬁﬁsozﬂoh( )= G 2 0, (¥) — (£:5,0) Dﬁlqﬁém o2.0:, (%) } dy = o(|l(t, s, 0)|*)
1/2

Doz 98,81,02,0:f1 (v)

1/2
(“z) f [D02q6é+t B1+s,02+v 0'777f1( )|a,2]=0 - Da“]ﬁé B1,02,02; fl( )02—01 dy = 0(1) and

Dﬁoqgé 81,02,0;f1 (y)
Dﬁlqﬁé 51020, Y
Dyegl?, oo
D Qqeézm 02025 Wiz =0

=

1/2

2
: 1/2
(ZU) f |:q‘3(/)+t,ﬁ1+s,02+v77‘2;f1 (y) - qlgo,‘gl’g{():fl (y) - (t, 5,0, TZ) :| dy = O(H(tv 5, U, 7‘2),‘ ‘2)

Proof. (i) Let zj =y; — (Bo+1t) — (81 + s)xj and z := (21, 22, ..., 2m)’, the left part
of point (i) shall take the following form:

1/2 m 1/2
TN 1 24
[T PR A . WA
) ) . 1/2
 4(0? +0) { (02 4 v)m/2 Jl:[l fi <(02 +JU)1/2> }
wal <02+v)1/2) T +Zz¢f1 (W) b5 <(02+v)1/2) TiT ] dz

7j=1 j=1 l=1
l#j

which is equivalent to

m 1/2 m 1/2 o (m 1/2
/Rm[{/RjHlf(zj —rn:zj)h(ﬂ)dn} - {jHlf(zj)} -1 {Hf(zj)}

J=1
m m m 2
Sy () a2 4303 65 () 6 (1) 2 ] da.
j=1 j=1i=1
I#j

In order to prove (i), it is thus sufficient to establish differentiability in quadratic
mean with respect to r2. This quadratic mean differentiability property, however,
is somewhat nonstandard, as it involves the second-order derivatives of the product

( ﬁ f(z) ) As in Akharif and Hallin (2003), the proof is decomposed into three
j=1
parts.
(@) ¥* = La(y) == JgGza(ny)h(n) dn ,with G..(n,y) = ,Hlf(zg' — xjyn) is
]:

absolutely continuous in a right-neighborhood of y = 0 with a.e. derivative

XU T Y AD SR | R
15

Ms

P

j=1

f (=i = wjwn) f (20 — wrwn)zjan [T f(zs — wwn) | nPhin) dy dw.

s=1
s#l
s#J

Al
A
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We obtain
Leo) = 1(0) = [ (G0 9) = G, 0)) )y

_ / /y (0, b) db h(n) dn

B / / Goa(n,8) = Gaa (0, 0)) db h(n)dn
+ / / G- (1,0)db h(n)dn (A.3)

_//bo/i n,w) dw db h(n) dn

a?2
= 71/ /G”n, (n) dy dw da,

=

where
. m ..
Goa(nw) =" f(zj — zywn)zin’ H flz — xywn)
=1 l#]
m m m
Z > f(z5 — mjwn) f(z — mwn)zjam?® [] f(zs — zswn).
7j=11=1 s=1
1#j S#l
s#£7

The value (A.2) of the a.e. derivative for y > 0 follows. At y = 0, the right
derivative is defined as the limit, as y — 0, of (L, »(y) —1...(0))/%?, for which
(A.3) yields 0/0. Applying L’Hospital’s rule,

[zfzj Jnle £ 30" Fep feagan [ o)

j=1ll=1 s=1
z;eJ 1#£5 s;él'
s#j

(b) Tt follows that y2 s s, .(y) == [lzﬂf,;(y)]l/2 is absolutely continuous in a neigh-
borhood of y = 0, with a.e. derivative

1 & N
=0 [Jp G-(n; ) (n) dn]
L’Hospital’s rule at y = 0 yields
$2,2(0 ): <H f(ZJ)) Zf( ) Hf(zl)+ > Zf(zj)f(zl)xjxl H f(zs)
=t l#] =t ll§71 5;&%
s#]
Consequently, for all z
lim [s,..(y) — 8,.2(0)] /y* = 5...(0). (A.5)
y—0
(¢) The partial quadratic mean differentiablity property to be proved takes the
form :
1 2
?513% - {y2 [$22(y) — 522(0)] — 32790(0)} dz = 0. (A.6)

From (b) abov,

]

I
/N
@w‘ —
N—

V)
/N
s

o

»

N

8

—~
>
~—

R

>
N—
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for all z. Fubini’s theorem and (A.4) yield

[ ba) - saton) s < LAO/; (V) ey (AT)

=my/ olFi VDA (A8)

with 7 ; defined (2.1). From the continuity assumption in (C.2), this latter
quantity converges, as y — 0, to Z7 ,(f;0)/16 = [pm ($..2(0))* dz, which
together with (A.7), entails that

imowp [ L a) a0} o5 [ @ (a9)

y—0 ) m

In view of Theorem V.1.3 of H4jek and Sidék (1967), (A.5) and (A.8) jointly
imply (A.6). This completes the proof of (i).
(73) The problem here reduces to the classical case of linear models considered by [26].
(7i7) First note that, as t,s — 0,

1/2 1/2 2.
/m {D 248y+t,81 45,02 4v 03,»f1( )|‘772;:0 o Do%q/80751:0'2»0'%§f1 (y)\o%:(]} dy = o(1).

For the perturbation of o2, let zj = y; — Po — Prxj for j =1,2,...,m, we have

2
L 1/2 1/2
Qo2 = /m {D" 7980+t,81+s, o2+v,08 fl( )|"%:0 _D‘T%qﬁoyﬁlyor"ﬂ%;ﬁ (y)|”%:0} dy

- v 12 (Y5 = Bo— Bz
_/Rm {4(02 + v)(m+4)/4 [Hf ( (02 +v)1/2 )

Jj=1

Z —Bo— B Z -8 —Bo— B
[ by, <y] =12 1/12133) 22 + 2 : o (yj 4 0) 1/12171) b (yl(g2iv)1/12xl> xjml]
j=1 1=1

L#£]

= i — Bo — Prx;
4(c?) ('m+4)/4 H (02)1/2

2
[ZQ/) <W> +Zz¢f1 <021/§1%) b5 (W) xm]} dy

j=1 1=1
L#£j

L 1/2 Zj
:/RM{AWH)(MW[HW (W)]

lz%‘l <02+U)1/2> i + ZZQM (UQ_H))UQ> b5 ((JQ_H))I/Q> x]xz]

j=1 1=1
l#j

4(0?) m+4)/4 [Hfl/? ( o? UQ)]
[th< 1/2>xJ+ZZ¢f1( o2 1/2)¢f1 (@?1/2)111'1:1]} dz

j=1 1=1
I#j
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m

l 1 1 1/2 Zj _iﬁ 1 1/2(@)
4| (o2 +v) (02 +o)1/4’t (02 +v)1/2 a2 gl/271 o

j=1 j=1

lg (02 +v 1/2) x5 + Zz¢fl <(<72+U)1/2) o (W) xgxz]

Jj=1 1=

X lzi/)fl ((UQ_HW> z} + qujfl ((024'?1)1/2) b8 (W) %5511

=t j=1 1=1
1#j
1|2 ]-_[1 (02 + )1/t L2 ((02 +]U)1/2> - ;1_[1 ci2h (;7)
j= s
- 2 m m N .
X |\Z;’(/)f1 ((0'2-|—J1))1/2> l'? + z:llz;d)fl <(O.2+J,U)1/2) o (W) ZL‘j:L‘l‘|
j= Pl
1]
Ti lHl(Uz)l/4 - (cj)]{z; [%1 <(0_2+Jv)1/2> —tn (;)]x;"
j= =
2
Zl z
+;; [fbfl ((0'2 +v)1/2> bf ((02+v)1/2> o (ﬁ) (o1 ( )]x]xl}} dz
1#j
(Ql +Q2 +Q3)
where

— 1 M 1/2 zj
Ql = /,Yl{ Hl U2+U 1/471 ((0’2+’l})1/2

[Z¢fl <0.2_|_,01/2> Z:Z: ( o2 +U)1/2> o ((0-2 _ilv)l/2> ijl‘|} dz,
15
B 1| 1 1 1/2 Z; _ 1 L e Z
< _/R {4‘72[1_‘[(02-1-1))1/4 ' <(az+v)1/2) et ("”

02+v 02

[Zwﬁ ( 1/2>mj +lelzl¢f1 ( 02+U 1/2) on ((0'2 _ilv)l/z):cj:cz}} dz,
1#5
and
1 - 1 1/2 (%) - 22 3
QS::/RM{W[EW /( )HZ::[ (W>—¢h(g)]m

ii [cﬁh (Uij)l/Q> n ((02;«'2})1/2) bf (%J) o (?)]x]xl}} dz.
o
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Clearly, Q1 = 0([(02 + )7t — o722 (Iw(fl)J:Q + Z3(f1)(m(z)? - ﬁ))) which
implies that @1 = o(1), as v — 0.

With regard to )2, we have

j=1
Jj—1 1 m .
s V5B . N s V- -
X H (02 4 v)1/4 1 ((024—1})1/2) H (o2)1/4 1 (a)
k=1 k=i 11
m m m 2
Zj 2 25 2 , p
X Zd)fl CEDEE +Zz¢fl CZt0)i2 b5 o ) T z
=1 j=1 I=1
’ T
= — 1/2 Zj _ 172 (%5
[ {5 [t (i) - o ()
j=1 I=
j—1 1 m .
Zl 2 1/2 2k 172 Zi
X g ((02—6-1;)1/2)351 (02 4 v)1/4 1 <(Jz+v)1/2> H (02)1/4 1 (a)}
=1 k=j+1
1 m m m 1 1/2 Zj 1 1/2 24 2
+@Z;lz;t ~ (02 +v)1/47! ((02+v)1/2 ISV RR! (;) ¢n W
J= = =
tH£L

Jj—1 m 2
2t 1 1/2 2k 1 1/2 (2K
X of ((02 +v)1/2> xlm’/H (02 +v)1/4 1 ((02 +v)1/2> kH (o2)1/471 (;) dz
= =j

k=1 1
<C1(Q:z + Q3)
where
. 1 | &K & 1 12 zj 1 107
: /R{W{z;; (0% +v)/a ((02-}-1))1/2 Tz <a>
j=1 1=
—1 m 2
< 2 m2j 1 1/2 2k H 1 1/2 (Zi) dz
f1 (02+v)1/2 lkil (02+v)1/4 1 (02+v)1/2 X ) (02)1/4 1 o
and
2. 1 T e 1 1/2 Zj . 1 1/2 (%5 Zl
e {33ttt ()~ st (2) o )
R™ 1= = t;l
j—1 m 2
X ¢ S ]1—[ L 1/2 Zk H L gz dz
f1 (a2+v)1/2 1t (02+v)1/4 1 (02+v)1/2 (02)1/4 1 o '
k=1 k=j+1

To show that Q2 = o(1) as v — 0, it is clearly sufficient to prove that Q3 and Q3
are o(1). We begin with @}, which is bounded by A(Q' + Q12 + Q3?), where A is some
positive constant.
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x ﬁ ﬁ 1/2 (%) }de (A.10)

5u—In )1/2 u—In o y1/2 u—In o y1/2
< Al/ {6%[ l (1+02) ]f11/2 (6 l (1+U2> )wfl (6 l (1+02> )
R

2
—e T f2 (), () } du,

A o LY e PR
j=1
j-1 1 m 1 . 2
1/2 ?k 1/2 ( 2k
U o (<+>/>H el (J} & (A1)

k=1 =3

2
§A2/ {¢fl (eufln(l+:f2)1/2> —wfl (eu)} eufl (eU) du,
R
@ = / | {22

j—1 m 2
2 2 1 1/2 2k 1 1/2 (Zi)
Yp <(02+v)1/2) zp X (02 +0v)1/4 1 ((02—1—1))1/2) H (02)1/4 1 P dz
k=1 k=j

=j+1

2
Liu—in v 1/ u—In v 1/ 1, w J—
<A3/{6é[ (14 25)1%) g1/2 (e In(1+25)! 2) — e 1% (e )} du x Ty, (f1)22.
R
(A.12)

As e%“fll/Q (e"), e%“fll/2 (") Yy, () and 9y, (e*) are square integrable, quadratic mean
continuity implies that the integrals in (A.10), (A.11) and (A.12) are o(1) as h — 0.
In the same way, it is easily shown that:

2

oy <B l [ b g (et g () o e o ()
R
— U7ln(1+i)1/2 u 2 u u _
) To(m+ [ {on (7 OT) “op @) ) e () du x To(f)7
R

v v 2 J—
+ / {6%[”4"“*?)1/2]1011/2 (eufln(HTQ)l/Q) - e%“fll/2 (e") } du x IZ(f1)(m(z)* — xz)] .
R
(A.13)

Since e%“fll/2 (e"), e%“fll/2 (") @p (e") and ¢y, (e*) are square integrable, then (A.13) is
o(1) as h — 0.



Optimal tests for random effects in linear mixed models 1211

With regard to Q3, note that Q3 < D(Q3 + Q3) where

R ”Q(J)ij;[wh@jg)m)wh(g)]x;}}lz

Jj=1

<Dy / Lg (502 ) gy (@)} e (o) du=o1), as h—0,
R

and

on (2)on <:>]w}}lz

< D, / {¢f1 <e1‘_l"(l+?vf)l/2> — s (") }Qeufl (e")du=o0(1), as h — 0.
R

Since vy, (") and ¢y, (e*) are square integrable. This completes the proof of Lemma A.1,
and therefore, that of Proposition 2.1. O



