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Abstract

This study is based on the trivial transcription of the vertices of a Boolean N-Dimensional
Hypercube HN into a subset SN of the decimal natural numbers N. Such straightforward
mathematical manipulation permits to achieve a recursive construction of the whole set
N. In this proposed scheme, the Mersenne numbers act as upper bounds of the iterative
building of SN . The paper begins with a general description of the Collatz or (3x+1)
algorithm presented in the SN ⊂ N iterative environment. Application of a defined ad hoc
Collatz operator to the Boolean Hypercube recursive partition of N, permits to find some
hints of the behavior of natural numbers under the (3x+1) algorithm, and finally to provide
a scheme of the Collatz conjecture partial resolution by induction.

1. Introduction

The Collatz or (3x+1) conjecture, (see the work of Lagarias [1] for a comprehensive review and reference [2] for a decade-old discussion of
this problem by several authors), seems that it still has to be proven true since its description around the first third of the last century. More
information on the Collatz conjecture can be easily obtained from reference [3]. Recent advances towards the problem solution can be found
thanks to the insight of Tao in reference [4]. More information on the so-called Collatz or (3x+1)conjecture can be found in references
contained within the previous publications and in the references [5, 6].
Some previous work on the application of N-Dimensional Boolean Hypercubes, HN , has been carried on by the present author. For instance,
to describe some inner structure of vector spaces [7], and discuss several mathematical, physical, biological, and chemical problems, which
can be found in references [8]-[22]. The study of computational multinomial combinatorics for colorings of Hypercubes for all irreducible
representations with applications to non-rigid molecules has been recently published by Balasubramanian [23, 24].
In the present paper, Boolean Hypercubes will be chosen as the cornerstone tool to study the Collatz conjecture, because apparently, no
discussion of this old problem includes the use of the iterative construction of natural numbers in terms of the sequence of decimal numbers,
associated to the 2N binary vertices of an N-Dimensional Boolean Hypercube HN .
It is intriguing that, at least as far as the author knows, no such simple computational-geometric structure has been considered to approach
the Collatz conjecture.
The scheme which this paper will follow consists of the following parts: 1) Firstly, we shall provide the definitions of an appropriate Collatz
algorithm and an ad hoc operator able to be employed in the development of a proof of the (3x+1) problem. 2) Next, it will be discussed
the recursive construction of Boolean Hypercubes and their translation into an iterative buildup of natural numbers. 3) Then, a section will
be devoted to a computational study of the Mersenne numbers from the Collatz algorithm perspective. 4) After this, some extensions of
Mersenne numbers will be studied, and the characteristic behavior of them in front of the (3x+1) problem described. 5) Finally, will be
studied the Collatz conjecture through the perspective of an inductive procedure.

2. The collatz algorithm

It is straightforward to describe the problem associated to the Collatz conjecture. Provided the set of natural numbers:N, then one can expose
any natural number to the simple algorithm:
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Algorithm 1: Collatz or(3x+1)procedure

∀m ∈ N;
I = 0;
De f ine CI [m];
while m > 1;

I = I+1; c← m/2;
if 2∗ c 6= m : m← 3m+1; else : m← c;

When using the Collatz algorithm above, the variable I indicates the number of times (here they will be called Collatz iterations) that the
algorithm has been applied until termination is reached, resulting in reaching the natural unit, bearing a Collatz iteration number I = end.
When such termination occurs, a so-called Collatz orbit has been completed.
The name orbit possibly comes from the generalization of the Collatz conjecture with the chance that the transformation (px+1), being p a
prime number, is used instead of the usual (3x+1) transform. While in this (3x+1)study no never-ending divergence nor loop has been
found, a simple test with p = 5∧ x = 5 yields a closed loop.
Because the sequence of natural numbers, provided until a (3x+1) Collatz iteration completion is reached, has not a closed structure,
perhaps better than naming such a sequence as an orbit, one might call it a complete path. Also, by a partial path, one can understand any
non-terminal sequence of natural numbers originated by the Collatz Algorithm 1. One can simply refer to a path if the context makes it
well-defined, not needing more information.
For example, the complete path, made of seven iterations, generated by Collatz Algorithm 1 applied to the natural number 3 becomes:

Path: {3→ 10→ 5→ 16→ 8→ 4→ 2→ 1}
Iteration : [0 · · · 1 · · · 2 · · · 3 · · ·4 · · ·5 · · ·6 · · ·7] , (2.1)

which can be also imagined as a graph, whose vertices are constituted by the Collatz sequence of natural numbers generated from the
application of Algorithm 1.

2.1. Collatz conjecture

The final stage or the path completion associated with the essence of the Collatz conjecture, affecting the whole set of natural numbers N,
might be expressed as:

∀m ∈ N : Cend [m] = 1. (2.2)

Also, any natural number n fulfilling:
n ∈ N∧Cend [n] = 1

will be called Collatz compliant.

3. Development of the collatz operator

Collatz Algorithm 1 as defined above might be supposedly constructed by a non-linear operator, which conducts a Collatz path flux from a
starting natural number down to the natural unit. Thus, to discuss and study the behavior of the Collatz compliance of natural numbers it is
interesting to design the structure of a Collatz operator, as follows.

3.1. Definitions

One can formally use the Collatz operator as a symbolic structure, allowing to represent the path evolution under Algorithm 1 applied to
any natural number. It can be obtained via an indeterminate number of Algorithm 1 iterations I. For instance, a partial path of the Collatz
operator could be written like:

∀m ∈ N : CI [m] = mI .

Moreover, using the equation (2.2), then any complete path generated by the Collatz operator can be easily described.
To grasp the meaning of the previous notation which will be used from now on, one might suppose that the basic natural numbers {0,1} are
also Collatz compliant, or:

Cend [0] = 1∧Cend [1] = 1.

3.2. Extension to subsets of natural numbers

If a natural number subset S of cardinality: Card [S] = N is defined as: S⊂ N, then one can define the partial path application of the Collatz
algorithm over such a natural number subset, using as much as I iterations, noting:

CI [S] = SI

and meaning that:
∀s ∈ S : CI [s] = sI ∈ SI .

The application of the Collatz algorithm over a natural number subset as above defined, until the outcome of a Collatz complete path is
reached, could be symbolically expressed with:

C〈end| [S] = 〈1N |,
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where the row vector on the right is defined as the unity vector of dimension N, that is:

〈1N |= (1,1,1, ...,1) .

Therefore, the Collatz conjecture involving the whole natural set can be easily expressed using alternatively the equation:

C〈end| [N] = 〈1∞|. (3.1)

Note that in this case, the iteration subindex indicator: 〈end| must be considered as a vector of dimension N, bearing everyone of ending
number of iterations of each element of the set S, upon application of Collatz algorithm. In the case of equation (3.1), the 〈end| vector has to
be supposed of ∞ dimension.

3.3. Application to natural vector spaces

This scheme, as above described, suggests that if a natural vector space of dimension N: VN (N) is defined (see for more details references
[8,9]) then one can also write an alternative to the above-defined symbolic application of the Collatz algorithm, like:

∀〈s| ∈ VN (N) : C〈end| [〈s|] = 〈1N |;

additionally, considering the natural number set as an infinite-dimensional row perfect vector: 〈N| ∈ V∞ (N), then the Collatz conjecture
could be also rewritten as:

C〈end| [〈N|] = 〈1∞|.

3.4. A trivial property

Here it will be considered an important but trivial property of the symbolic application of the Collatz operator. Suppose now that the Collatz
operator is applied to a natural number, in such a way that after some number of iterations I the result of the generated partial path appears to
be:

∃n ∈ N : CI [n] = mI ∈ N.

If the resulting natural number mI is a priori known to be Collatz compliant, then necessarily the initial number n is Collatz compliant.
Because one can write:

Cend [mI ] = 1⇒Cend [n] = 1.

Such an obvious consequence of the definition of the Collatz operator will be of further use to discuss a possible Collatz conjecture incomplete
demonstration track.

3.5. Powers of 2 as collatz compliant natural numbers

When observing Algorithm 1, it is immediate to consider the powers of 2 as a trivial Collatz compliant set of natural numbers, and thus one
can write:

∀N ∈ N : CN

[
2N
]
= 1. (3.2)

Hence, because of the trivial property discussed in the previous paragraph 3.4, whenever in a Collatz path development, attached to a specific
natural number, there appears a power of 2 in the path sequence, then such an initial natural number is Collatz compliant:

∃P,m,N ∈ N : CP [m] = 2N ⇒Cend [m] = 1.

The path of number 3, as shown in the equation (2.1) is an example of this situation, as at the third Collatz iteration, 24 = 16 is reached.
Powers of 2 transcribed into binary vectors have a leading role in the definition of the vertices of Boolean Hypercubes. Indeed, they
correspond to a binary canonical basis set, see for instance references [10-22], where every vector has one bit 1 in some position of the
Boolean vertex vector and the rest of elements are made by 0 bits.

3.6. Forbidden partial paths

It appears that some vertices of Collatz partial paths cannot be present if Collatz conjecture in equations (2.2) or (3.1) is accepted as true. For
instance, suppose that:

∃m,n, I,J ∈ N : CI [m] = n∧CI+J [m] = n⇒ ∃̃Cend [m]

Then, if this is the case, Algorithm 1 will enter an unending loop, and Collatz conjecture will be false.
To avoid this kind of situation, if the Collatz conjecture has to be true, the natural number sequence of a complete path generated by
Algorithm 1 must be made in any case by completely different natural elements.
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4. N-dimensional boolean hypercubes and natural number sequences

The concatenation of Boolean Hypercubes (see for more information references [9]-[22]) constitute the fundament where a possible
demonstration of Collatz conjecture will be built. To briefly introduce the useful structure of Boolean Hypercubes, one can start choosing a
set of natural numbers of cardinality 2N : SN . This set might be constructed as the ordered sequence of elements of the natural number subset,
which can be associated with the decimal transcription of the set of 2Nvertices of an N-Dimensional Boolean Hypercube: HN .
Simply, the set SN corresponds to the natural number subset:

SN =
{

m = 0,2N −1 : ∆ = 1
}
=
{

0,1, ...,2N −1
}
,

where the last number in the set SN corresponds to the so-called Mersenne number: µ2 (N) = 2N −1.
At the same time, and generally speaking, any decimal Mersenne number is transcribed into a Boolean vector, a bit string, constituting a
characteristic vertex of an N-Dimensional Boolean Hypercube HN , the binary unity vector of the adequate dimension: 〈1N |= (1,1, ...,1)
made with all its elements as the 1 bit. It can be called the Mersenne vertex of the Boolean Hypercube and might be considered as the farthest
vertex from the Boolean zero vertex: 〈0N |= (0,0, ...,0).
The most interesting property of this kind of partition of the natural numbers is the trait by which the natural number sequences SN resemble
a fractal structure. Indeed, the decimal translation of the 2N+1vertices of an (N+1)-Dimensional Boolean Hypercube HN+1 can be calculated
iteratively, once the sequence SN , attached in turn to a previous N-Dimensional Boolean Hypercube HN is known. This extension can be
obtained just by adding to each member of SN the N-th power of two: 2N .
That is, the above-mentioned recursion involving a Boolean Hypercube structure can be easily written with the following Algorithm:
Algorithm 2: Knowing the Initial Natural Number Subset SN Iterate Towards the Natural Number Sequence SN+1

SN+1 = SN ∪
[
2N ⊕SN

]
≡ SN ∪AN+1

≡
{

0,1, ...,2N −1
}
∪
{

2N ,2N +1, ...,2N+1−1
}

=
{

0,1, ...,2N −1,2N , ...,2N+1−1
} (4.1)

In Algorithm 2 the summation symbol ⊕ means that the power 2N has to be summed to every element of the set SN . Algorithm 2 above
is also revealing a convenient iterative construction of natural numbers. When stepping one dimension up from a known N-Dimensional
Boolean Hypercube HN , obtaining HN+1, the new decimal translation of his bit string vertices can be collected in the set: SN+1. Then
the set SN+1 corresponds to the associated natural numbers, which are the decimal transcription of the Boolean vertices of the new
(N +1)-Dimensional Boolean Hypercube HN+1 in the upgraded sequence.
The natural set SN+1 also can be expressed as the union of two parts. The first one is coincident with the old SN sequence, associated with
the entire set of vertices of the N-Dimensional Boolean Hypercube HN . The second part is the set, which could be called: AN+1, say, just
corresponding to the old set SN , that to each of its elements has been added the value of 2N .
The set AN+1 characterizes the decimal transcription of half the set of vertices of the (N +1)-Dimensional Boolean Hypercube HN+1. It
corresponds to an entirely new set, which is not included in the decimal transcription SN of the Boolean vertices within the initial Boolean
Hypercube HN . From the Boolean point of view one can also write the concatenation:

〈eN+1|= {1}∪〈0N |= (1,0,0, ...,0)

as a new element of the Boolean canonical basis set, then:

HN+1 = HN ∪{〈eN+1|⊕HN} . (4.2)

In the equation (4.2) above, the symbol ⊕ means that the Boolean vector 〈eN+1| is summed to every vertex of the Boolean Hypercube HN .
Of course, the same rule applies when going downwards on the Boolean Hypercube dimension, wherein this case at the end, the sequence:
AN+1 =

[
2N ⊕SN

]
shall be overridden.

5. Mersenne numbers and their extensions

5.1. Mersenne numbers and their twins

As one can easily see, the Mersenne numbers become important when, as discussed in the previous section 4, this kind of partition and
iterative construction of natural numbers via Boolean Hypercubes is considered. Mersenne numbers mark the end of the recursive sequences,
associated with the decimal transcription of the vertices of the Boolean Hypercubes.
Also, Mersenne numbers might appear when other kinds of natural numbers are studied. For instance, the so-called perfect numbers, which
can be defined as:

p2 (N) = 2N ·
(

2N+1−1
)
= 2N ·µ2 (N +1) . (5.1)

Perfect numbers, from the Collatz conjecture and Algorithm 1 viewpoint, iterate in the same manner as the associated Mersenne number.
That is, one can write:

Cendp [p2 (N)]≡Cendµ
[µ2 (N +1)] ,

because the multiplicative term 2N in the equation (5.1), being even, transforms into the unit after N Collatz iterations, as previously discussed
in the equation (3.2). Thus, this is the same as to consider that:

endp = endµ +N.
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At the same time, one can observe the trivial extension of the Mersenne numbers (here will be named twin Mersenne numbers), corresponding
to the second term (the first one is 2N , which is Collatz compliant) in the sequence AN =

[
2N ⊕SN

]
defined in the equation (4.1):

v2 (N) = 2N +1. (5.2)

Thus, these new numbers: the Mersenne twins (5.2), are defined in this way. Then, it can be easily deduced that:

µ2 (N)ν2 (N) = 22N −1 = µ2 (2N) .

5.2. Mersenne twins and base 3 Mersenne-like numbers

It is easy to prove the Collatz path connection between Mersenne numbers and similar powers of 3. For instance, using the symbol CI [µ2 (N)]
to indicate the application of the Collatz algorithm at the I-th iteration. That is, a partial path made of I-th iterations, then one can write:

C1 [µ2 (N)] = 3 ·2N −3+1 = 3 ·2N −2→
C2 [µ2 (N)] = 3 ·2N−1−1→
C3 [µ2 (N)] = 32 ·2N−1−3+1 = 32 ·2N−1−2→
C4 [µ2 (N)] = 32 ·2N−2−1→ ...
C2N [µ2 (N)] = 3N −1 = µ3 (N)

(5.3)

Meaning that, after a partial path containing a finite number of 2N iterations, any Mersenne number submitted to the Collatz Algorithm 1
converges to an equivalent number:

µ3 (N) = 3N −1,

providing a Mersenne-like number associated with a base 3 instead of 2. Note that µ3 (N)are even natural numbers.
This result implies that the number of iterations needed to complete the respective paths can be related by:

end2 = end3 +2N.

Unfortunately, it cannot be shown the same property with the numbers defined in the equation (5.2), that is, one has in general:

CK [ν2 (N)] 6= 3N +1 = ν3 (N) .

However, one can study the Mersenne twins with even and odd powers of the base 2, in such a way that:

1. N = 2n.

Then one can write the Mersenne twin as:
ν2 (N) = ν2 (2n) = 4n +1 = ν4 (n)

and the Collatz algorithm transforms the base 4 number into:

C [ν2 (2n)] =C [ν4 (n)] = ν3 (n) .

A particular case of Mersenne twins of this kind are the so-called Fermat numbers, which can be written as:

ν2

(
2N
)
= 22N

+1

but one can easily write:

ν2

(
2N
)
= ν4

(
2N−1

)
→C

[
ν4

(
2N−1

)]
= ν3

(
2N−2

)
= 32N−2

+1

1. N = 2n+1.

Then one can also write:
ν2 (N) = ν2 (2n+1) = 2 ·4n +1 = η4 (n)

thus, it is easy to see that in this case the Collatz algorithm transforms the number η4 (n) in a similar manner as in case a):

C [η4 (n)] = 2 ·3n +1 = η3 (n) .

Some numerical calculations have been performed on several ν2 (N) and ν3 (N)numbers. It has been found that the number of iterations to
complete the Collatz paths might vary with varying the power N:

Cendν2
[ν2 (N)]∧Cendν3

[ν3 (N)]→ endν3 > endν2 ,

that is, the number of iterations to arrive at the completion of Collatz Algorithm 1 appears reversed to the case of Mersenne numbers µ2 (N)
and µ3 (N).
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5.3. Computational tests over Mersenne primes

Numerical tests over Mersenne numbers with powers yielding prime numbers, which can be obtained from the list posted in reference [25],
prove that several prime Mersenne numbers containing an exceptionally large number of digits are Collatz compliant. The same occurs with
their twins.
Of course, the number of Collatz iterations is increasing with the digits of the Mersenne prime and his twin, subject to the Collatz Algorithm
1, as Table 1 indicates.
The interest of the associated Mersenne numbers of base 3, µ3 (N), which is apparent from the equation (5.3), has raised the curiosity to
test them numerically from Collatz Algorithm 1 point of view. As a result, all have been found Collatz compliant, but differing from the
Mersenne numbers µ2 (N), yielding a lesser number of iterations towards Collatz completion. The difference between the complete path
iterations happened to be systematically equal to 2N, as a consequence of the demonstrated property shown in the equation (5.3).
Table 1 has not been augmented with exponents larger than the displayed in the table, because while the information of first elements was
obtained in a reasonable time, the last one has taken several days to complete the Collatz path, using a desktop computer with an i7 processor.
Every element of the tested sample of prime Mersenne numbers, as shown in Table 1, corresponds to a Collatz Algorithm 1 starting on a
natural number containing an exceptionally large set of decimal figures.

N #Iterations µ2 (N) #Iterations ν2 (N)

44497 598067 317327
86243 1158876 618898
216091 2906179 1562363
756839 10197081 5486483
859433 11568589 6209600
2976221 40055567 21532695
3021377 40663017 21846558
6972593 93778449 50464352

Table 1: Values of the Power N of assorted prime Mersenne numbers, µ2 (N), see reference [25], and their twin numbers, ν2 (N), and the necessary Collatz
iterations to obtain complete paths

Collatz Algorithm 1 has been also tested for the same assorted exponents employed in the Mersenne sequence, but on the numbers ν2 (N),
and after this also on ν3 (N) numbers, which were also computed with the same powers as those of Table 1, to study if the 2N rule of the
equation (5.3) was also fulfilled in these cases. Results of the termination iterations of ν2 (N) within the Collatz Algorithm 1 can be also
seen in Table 1.

5.4. Equal iteration numbers on complete path of collatzAlgorithm 1

Due to the earlier mentioned Collatz connection between Mersenne numbers and the powers of base 3, also, as already commented, the twin
of µ3 (N), ν3 (N) has been tested for the same exponents as those shown in Table 1. The result was intriguing because, without exception, it
has been found the same number of iterations on both twins, obtained with the exponents of Table 1, to complete the Collatz Algorithm 1.
That is, it was found:

Cendµ
[µ3 (N)] =Cendν

[ν3 (N)]→ endµ = endν . (5.4)

Such a result was unexpected; thus, an extra search was performed to shed as much light as possible into such a peculiarity, its possible
extension, and the possibility that this was a general feature of these numbers.
At the light of the obtained results, one could test the conjecture that the twin pairs {µ3 (N) ,ν3 (N)} possessed the property described in the
equation (5.4) for any value of the power N. Alternatively, one could consider that the results were obtained just by chance and that the tested
twins have shown this property because only the limited number of powers of Table 1 were used.
Now one must stress that even if the iteration termination numbers become equal in these twins of base 3, this does not preclude that the
iterative sequences of Collatz paths become the same. In fact, for both twins, Collatz Algorithm 1 already starts differently, because: µ3 (N)
and ν3 (N) are both different even natural numbers. It is interesting to obtain the result of the product of both twins for any power:

µ3 (N)ν3 (N) =
(

3N −1
)(

3N +1
)
= 32N −1 = µ3 (2N) (5.5)

which yields the same result that the Mersenne twins of base 2.

5.5. Numerical tests to search for equal iteration numbers in complete paths of base 3 Mersenne twins

To test the possibility of the presence of the property of equal terminating iterations in a large range of powers, a numerical prospection has
been made for the twin pairs of base 3, {µ3 (N) ,ν3 (N)} using powers lying in the interval

{
2, ...,8192 = 213}.

Results revealed that there exists a large percentage of base 3 twin numbers bearing equal Collatz iteration termination numbers. Base 3
twins possess in the tested interval above an abundant number of twins having the same terminal iteration numbers. The results yielded
around 93% of the total tested twins within the above interval.
Unfortunately, this property is not a general one, as 7% of base 3 twins do not possess the property of possessing complete paths with
equal iteration numbers. Even bearing this curious property, the Collatz complete paths appear essentially different in both twins but arrive at
the terminal completion unit at the same iteration time. Then, as the percent of equal iterations to reach complete paths in the studied power
range is so high, no wonder that the small sample of base 3 twins of Table 1 present all of them the same complete path iteration numbers.
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Contrarily to the base 3 case, the true Mersenne twin numbers: {µ2 (N) ,ν2 (N)} both in Table 1 and also studied within the power interval:
{2−8192} do not present at all coincident Collatz Algorithm 1 complete path termination iteration numbers, although all of them are
Collatz compliant. This was also a remarkable result in full contrast with the already discussed base 3 twins.

5.6. Mersenne-like twin pairs involving prime number base

One must note here that while Mersenne twins are odd, base 3 twins are even, and perhaps the equal iteration numbers shown in base 3 twins
is due to this kind of odd-even startup of the Collatz Algorithm 1.
The property of the equation (5.5) can be extended to any base number, as one can straightforwardly write:

µB (N)νB (N) =
(

BN −1
)(

BN +1
)
= B2N −1 = µB (2N) (5.6)

A property that might be related to the behavior of these Mersenne prime twins concerning Algorithm 1.
Tests performed with several even number bases show the same behavior as Mersenne twins: none or a scarce number of equal termination
iterations of Collatz paths.
However, tests on prime or odd number bases provided a similar behavior as the base 3 results. Many powers show equal Collatz complete
paths termination iterations. When the number of powers in a tested sample increases, this produces an increase of twins’ percent possessing
equal termination iterations.
Table 2 shows the results of complete path Collatz iterations coincidences in several prime bases, calculated in a sample of powers contained
within the interval: {2−8192}.

B 3 5 7 11 13 17 19 23 29 31 37 41 43 47
% 93 95 91 95 96 92 96 93 96 92 96 96 96 93

Table 2: Percentages of coincident Collatz iterations to reach the complete path using the fourteen first prime base twins {µB (N) ,νB (N)} computed with the
powers in the interval{2−8192}.

From Table 2 one can conclude that the percentages fluctuate with the prime base number, but these fluctuations keep the amount of equal
terminating iterations for twins on several bases greater than 90%, with an average of 94% of tested cases. This means that there is a high
chance to find out odd base twins with equal terminating iterations within a large set of powers.
This might explain the results found when calculating Table 1. Several previous tests have shown a clear trend of obtaining larger percentages
of equal Collatz complete path iterations as the set of tested power range increases.
This can be illustrated by the base 7 behavior, which provides, in the power range {2−1024}, a 77% of equal termination iterations, but
in the power range {2−2048}, the obtained results deliver 83%, while in the power range {2049−4096} this percentage rises to 92%.
The value for this base 7 presented in Table 2, corresponds to a raising percentage, weighted by the increasing trend associated with larger
exponents.

5.7. Numerical proof of Collatz conjecture

One must also mention that the results of Table 2 can also be considered as a large sample test (around 160,000 elements) of Collatz
Algorithm 1 convergence, obtained within a large interval of natural numbers:

{(
32±1

)
→
(
478192±1

)}
.

In all the studied cases included in this paper, no Collatz Algorithm 1 cyclic loops or divergences associated with any tested natural number
appeared. Statistically speaking, the obtained numerical results look like one can safely accept Collatz conjecture as true, at least from a
computational point of view.

6. On trying to prove Collatz conjecture

Besides the already shown computational results, one might attempt to prove the Collatz conjecture. This could be tested by using the
recursive structure of the natural number set. That is, constructing Boolean Hypercube using concatenation and afterward transforming the
Boolean Hypercube vertices into natural numbers, as earlier discussed in section 4 and as shown in Algorithm 2.

6.1. Some preliminary considerations

Under the extensive computational tests to show the Collatz compliance of the natural numbers, as it has been already commented, no natural
number checked in the described numerical tests have shown cyclic or divergent Collatz Algorithm 1 behavior. In the sampling of the
commented properties in section 5.7 above no exception to overall convergence has been found.
Nevertheless, these previous computational-experimental findings, as many others described in reference [26], and still ongoing tests, see
reference [27] for example, by themselves do not prove the Collatz conjecture. However, they can be surely taken as tentative evidence of the
general Collatz compliance of the natural number set as a whole.
Another comment one can put forward is the obtained logical fact showing that, considering some natural numbers made as powers of some
natural number base B: BN , the number of Collatz Algorithm 1 iterations increases as the base number B grows keeping the same exponent,
and also the number of Collatz Algorithm 1 iterations increases when keeping the base number constant and increasing the exponent.
Therefore, it seems a bit useless to try a systematic search of Collatz compliance using as much as a possibly large set of natural numbers.
Like the computational endeavor promoted in reference [27], which constitutes a web page dedicated to the (3x+1) problem, studied via a
large computing effort. As it seems that, according to the recent study of Tao [4], it is sufficient to consider some numeric sequences, which
can be associated with the Collatz compliance problem.
This is the case of Mersenne numbers µ2 (N), or the ν2 (N), µ3 (N) and ν3 (N) numbers when studied with large power sequences.
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Also, in the twin sequences {µB (N) ,νB (N)} with the first ten prime natural numbers chosen as a base B, the iteration numbers to reach the
complete path of the Collatz Algorithm 1 could be huge, as huge are the natural powers tested, which can be of the order of 108000or greater.
In these cases of extremely large natural numbers submitted to Collatz Algorithm 1 testing, no cyclic nor convergence problems have been
encountered, except the challenging sizable amount of computing time needed to finish the Collatz complete paths using a standard desktop
CPU computer.

6.2. Are Mersenne numbers collatz compliant?

It has been demonstrated, see the equation (5.3), that Collatz Algorithm 1 applied to Mersenne numbers, becomes equivalent to the
transformation providing a partial path via 2Niterations:µ2 (N)→ µ3 (N), into Mersenne-like numbers with base 3.
Thus, the Collatz compliance problem of Mersenne numbers is equivalent to the compliance of the Mersenne-like numbers of base 3. The
numbers µ3 (N) as already commented are even though. Therefore, if it can be proven that even natural numbers are Collatz compliant, then
this will also show that odd true Mersenne numbers µ2 (N) are Collatz compliant.

6.3. Collatz compliance

When trying to understand the general case of the Collatz Algorithm 1 application to any natural number, the iterative construction shown in
the equation (4.1) can be recalled as an adequate step to develop a test of possible inductive proof of the Collatz conjecture.
Hence, if one has found that at some Boolean Hypercube dimension step N, all the elements of the transcribed natural number sequence SN
have been found Collatz compliant; that is, supposing that:

∀m ∈ SN →Cend [m] = 1

or using a more compact notation as previously noted:

C〈end| [SN ] = 〈12N |.

Assuming moving one step further, with the natural transcription of the vertices of a Boolean Hypercube of dimension N +1, then one
can study from the Collatz Algorithm 1 the behavior of the elements of the additional set, which truly conform the transcribed augmented
natural number set SN+1as described in the equation (4.1).
Proving that the elements of the set: AN+1 =

[
2N ⊕SN

]
are Collatz compliant, then the Collatz compliance of any natural number set,

constructed in the way proposed in this work, leads to consider Collatz conjecture to be inductively proved.

6.4. Collatz compliance of natural even numbers

Moreover, the set AN+1 can be divided into the two disjoint sets of even: EN+1 and odd ON+1 elements, that is:

AN+1 = EN+1
⋃

ON+1⇐ EN+1
⋂

ON+1 = /0. (6.1)

Now, one can easily prove that all the even elements of the set EN+1, after the first Collatz iteration, they transform into elements of the set
SN , which have been supposedly considered as Collatz compliant.
Indeed, one can write a trivial sequence:

∀mN+1 ∈ EN+1∧∀k ∈ SN−1 : mN+1 = 2N +2k→
C1 [mN+1] = 2N−1 + k = mN ∈ SN →
CendN [mN ] = 1→CendN+1 [mN+1] = 1

(6.2)

The sequence in the equation (6.2) demonstrates that all the even numbers EN+1 contained in the set AN+1 are Collatz compliant. This is so
since, after iteration 1, the resultant number in the partial path belongs to the previous step set of natural numbers, and it could be considered
by hypothesis Collatz compliant. Then, using the property of section 3.4, the even numbers contained in the set EN+1 are Collatz compliant.
Thus, the induction proof apparently might permit to deduce that the whole set of natural even numbers are Collatz compliant.
However, the induction proof appears incomplete. Because it doesn’t use the whole natural set AN+1 contained in the equation (6.1), but just
the even elements EN+1, and lacks to include the odd number set ON+1, which is necessary to deduce in the next induction step that even
numbers are Collatz compliant.
Thus, it is not possible within the present analysis by induction to deduce that all even numbers are Collatz compliant.
One can use instead, this potential property as a new conjecture.
Conjecture 1: Partial Collatz compliance
”All even natural numbers are Collatz compliant”.
As one can write the natural number set as the union of even and odd numbers:

N= E∪O∧E∩O= /0,

the induction procedure result, performed over the even numbers whole set could be now conjectured to behave as:

∀e ∈ E→Cend [e] = 1,
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6.5. Collatz compliance of Mersenne numbers

The Conjecture 1 about partial Collatz compliance of the even natural numbers is sufficient to deduce that Mersenne numbers are Collatz
compliant, even if they are odd natural numbers. As it has been commented in section 5.2.
Recalling equation (5.3), one can easily write:

C2N [µ2 (N)] = µ3 (N) ∈ EN+1→Cend [µ3 (N)] = 1→Cend [µ2 (N)] = 1,

showing that any Mersenne number is Collatz compliant.
One can also consider the results shown in Table 2, as an indirect computational proof of the Collatz compliance of even numbers, besides of
the curious property of twin Mersenne numbers, having a large probability to converge in the same number of iterations but via different
paths. One must keep in mind, though, that computational behavior, even if consistent over a large set of even Mersenne twins, constructed
with base prime numbers, cannot be a complete proof of Conjecture 1.
This is like this because it cannot be discarded that perhaps does exist a unique natural even number, which is not Collatz compliant and has
not yet computationally found. Although, besides the huge computational effort of reference [27], there are also contemporary attempts to
set up a proof of the Collatz conjecture by computational means [28]. Perhaps they are a pair of useless efforts.

6.6. Collatz compliance of odd natural numbers

Thus, there is only left to try if it is possible to make use of Conjecture 1 that if true, one can demonstrate that the elements of the odd
subset ON+1 are also Collatz compliant. That is, only the natural numbers in the sequence:

∀mN+1 ∈ON+1∧∀k ∈ SN−1 : mN+1 (k) = 2N +(2k+1) (6.3)

need to be considered now, once the even natural numbers E are supposedly Collatz compliant.
Then, the first iteration of Collatz Algorithm 1 applied to the numbers belonging to the odd set ON+1 of AN+1, generally represented by the
equation (6.3), will yield:

C1 [mN+1 (k)] = 3mN+1 (k)+1
= 3 ·2N +3 ·2k+4 = 2 ·

(
3 ·2N−1 +3 · k+2

)
∈ E (6.4)

which yields an even number. Then one can also write:

C2 [mN+1 (k)] = 3 ·2N−1 +3 · k+2 =
(

2N +2N−1 +2k+2
)
+ k

therefore, one can see that further application of Collatz Algorithm 1 will depend on the odd or even nature of the number k ∈ SN−1.
The equation (6.4) can be seen as demonstrating that odd numbers in ON+1 are Collatz compliant if and only if all the whole set of even
natural numbers can be compliant. Conjecture 1 can again be invoked to write, as it is the case to be true:

∀o ∈O→Cend [o] = 1,

which allows to finally write the Collatz conjecture:
∀n ∈ N→Cend [n] = 1.

7. Conclusion

A large set of numerical experiments reported here have yielded no natural number presenting compliance problems when tested with Collatz
Algorithm 1. The set of examples tested has been mainly focused on Mersenne numbers, Mersenne-like, and related number sets, bearing
diverse base and powers.
With odd base numbers and for a large range of powers Mersenne-like twins appear which follow, in a percentage larger than 90%, different
paths to completion, but present the same number of Collatz iterations to achieve the respective complete paths.
The number of numerical experiments has been sufficiently large and varied allowing to say that Collatz conjecture holds from the statistical
point of view. However, this is an inconclusive proof of the conjecture.
After using the recursive building of the whole natural number set, provided by the Boolean Hypercube concatenation and the following
Boolean vertex transcription into decimal numbers, it has been tested if it was possible to construct a general inductive proof of the Collatz
compliance of the whole natural number set.
Results indicate that one can reach an incomplete verification of the Collatz conjecture by an inductive proof, based on a recursive construction
of natural numbers. But even if this attempt was inconclusive, it leads to a new partial Conjecture 1 involving just the even natural numbers.
The attempted proof even incomplete sheds light on the fact that, if the whole set of even natural numbers can be proved Collatz compliant,
then the whole natural set is compliant.
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