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Abstract: We investigate a viscoelastic plate nonlinear system with degenerate damping terms on a
bounded domain R™ with Dirichlet boundary conditions. The nonlinearities f1(u,v) and f2(u,v) act as
a strong source in the system. Under some restriction on the parameters in the system, we prove the
global existence result of weak solution.
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1  Introduction
This article is concerned with the following a coupled viscoelastic plate equation with degenerate damping terms:

wie + A% — [bwi (t — 5)A%u(s)ds + (|u\k o)) fueP e = fr (u0), (2,) € Q2 % (0,T),

vie + A% — [ wa(t — 5)A%0(s)ds + (|v|9 ) o T o = fo (u0), (2,8) € Q% (0,T), "

w=v=2u =0 _q (z,1) € 992 x (0, T),
U(:r,o):uo(m),Ut(I,O):Ul(I)7 IEQ7
v(x,O)—vo(m)7vt(x,O):vl(:r), 1‘697

where  is a bounded domain in R™ (n > 1) with smooth boundary 9, v is the unit outer normal to 2. The
function f; (.,.): R> — R (i = 1,2) are source and the function w;(.) : R* — R* (i = 1,2) are the kernel
functions and satisfies some conditions to be specified later.

This type problem that is better suited for describing the transverse displacement w of a thin flickering plate
subjected to an internal viscoelastic dissipation. For the last several decades, the mathematical analysis of plate
equations has attracted a lot of attention. The other model regarding (1) is the Petrovsky system related to a plate
model:

t
ur — yAug + A%u — J w(t — s)A2u(s)ds = 0.
0
Rivera et al. [1] studied the asymptotic behaviour of solution with the initial and dynamical boundary conditions.
Alabau-Boussouira et al. [2] studied exponential and polynomial decay results of solutions of this problem under the
memory w decay exponentially and polynomially, respectively in the case v = 0 and with f(u) to be source term.
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Also, Messaoudi [3] studied the plate equation and proved an existence result and studied global solution in case
m > p. Then, blow-up of solutions with nonpositive initial energy and m < p was obtained.

On the orther hand, the evolution equations with degenerate damping are of much interest in material science and
physics. It particularly appears in physics when the friction is modulated by the strains. Our problem has degenerate
damping term. The papers [4]-[5]-[6]- [7]-[8] provide other results on problems involving the degenerate damping
terms.

The outline of the paper is as follows. In section 2, we introduce some assumptions used later in the proof our
results and we mentioned local existence result of Theorem 2. In Section 3, the global solution will be proved.

2 Preliminaries

Throughout this work, we denote |u[; o = ||/l g=(q) » -, = lull Lr (o) and (u,v) = (u,v) 12(q)- In addition, the
following Sobolev embeddings will used often, and occasionally without mention:

@

H3(Q) — LP(Q), for 2 < p < oo, n <4,
HE(Q) < LP(Q), for 2<p < 22 n > 4.

n—4>

To our result, we also use the following assumptions:
(A1) For the nonlinearity in damping, we suppose that p, g > 0, in addition

r>3ifn=1,2,
r=3 ifn=23.

e ug,vg € HZ(Q), u1,v1 € L*(Q).
.

co (Iu™ +Jol"™) < Flu,v) < ex (jul™ o) 3

for all (u,v) € R? and positive constants cq, ¢1. We take f1 (u,v) and fa (u,v) as follows

- r=3 rt1
fi(u,v)=(r+1) [a|u+v|r Yutv)+blul = ulv 2 } ,
fo (u,w) = (r+1) [alu+ ol @tv) + bl T vlul T @
wfy (u,v) 4+ vfo (u,v) = (r +1)F(u,v) V(u,v) € R?,

r+1 bk §

where a, b > 0 are constants and F'(u,v) = a|u+v| " +2bluv| 2 .

(A2) The kernel functions w; € C, (i = 1,2) and satisfy, for s > 0

oo

w;(s) >0, wg(s) <0, J wi(s)ds < 1. 5)
0

Along this work, we use the following notations:
0<pi=1-— fgo wi(t)dr <1,(i=1,2),

(wi 0 D)(t) = [gwi(t —7) [9(t) = I(7)[3 dr, (i = 1,2),
p=min{p1,p2}.

Now, we present the definition of a weak solution to problem (1).

Definition 1. Under the stated assumptions, a pair of functions (u, v) is said to be weak solution of (1) on the interval
[0, T'] provided, if
() u,v € Cu (0,71, H3 (),

(i) ug, vy € Cy ([O,T] ,L2(Q)) ,
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(iid) (u(0),0(0)) = (u®,0”) € HE(Q) x HF (%),
(i) (ue(0), v0(0)) = (u',v") € L2(@) x LA(Q);

(v) and (u,v) satisfies

t t s
<u/ (t) 7‘P>L2(Q) _ <u1, (P>L2(Q) + l {Au(s), A(p>L2(Q) ds — J <lw1 (s — 7)Au(r)dT, A<p> ds

0 L2(Q)
t

+J'<(|u‘k + ‘U|l) |u/(s)‘p71 ul(s)’w>L2(Q) ds

0

t
= [t v 200 ds ©
0

t t s
<U/ (t) ’7‘9>L2(Q) — <U17 19>L2(Q) + J (Av(s), A’L9>L2(Q) ds — J <Jw2(s — 1)Av(7)dT, A19> ds
0 0 ‘0 L2(Q)
t

# [l + 1) T o (0)0) s

0

t
= [t ((5),0(50) . 0) 2 s, @
0

for all test functions ¢, € Ha () and for almost all t € [0,T] .

Theorem 1. (Local Weak Solutions). Assume (Al)-(A2) hold. Then, there exists a unique local weak solution (u,v)
to (1) defined on interval [0, Ty] for some To > 0. Also, the said solution satisfies the energy identity

t 1
B+ 3 | [o1(6) 18w +wale) [ 80(0)?] ds = 5 | [(wh o Au)(e) + (wh o Av)(s)] ds

t t
(@ + o) 6P deds+ [ [ (101 +u(@12) [o/9)] " dods
0Q 0Q
= E(0), ®)
where
1 1 t t
B = 5 (luel?®+loel®) + 5 [(1—j0w1<s>ds> ||Au<t>||2+<1—j0w2(s>ds> 1wl ©)
+% [(w1 © Au)(t) + (w2 © Av)(t)] — L‘z F (u(t),v(t))de.

Proof: We can prove the existence and uniqueness of solutions as well as the regularity through Faedo-Galerkin
method (c.f. [3]-[8]- [9)). O
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3 Gilobal Solution

Theorem 2. (Global Weak Solutions). Let (Al), (A2) hold. Assume further that n=1,2; and r <
min {k + p,l + p,0 + q, 0 + q} . Then, the local weak solution (u,v) given by Theorem 2 is a global solution and
To may be taken arbitrarily large.

Proof: Suppose that (u,v) be a weak solution to the problem (1) defined on interval [0, 7] as given by Theorem 2.
Letn =1,2,

r <min{k+p,l+p,0+q,0+q}

and set

1

Eo (t) = 5 (Il @) l5 + [V ®) 15+ p (18u®)]3 + [ 20)]13))

and

Ei(t)=Ep(t) + J F (u(t),v(t)) dz.
Q
For all ¢ € [0, 7], we will show that the following inequality holds:

t

Eq (t)+J; JQ (|u(3)‘k+|v(s)‘l) ‘u/ (S)|p+1 dxds+J J (|v(s)|9+|u(s)|9) ’U/ (s)‘q+1 dxzds

0JQ

0 0 1 1
< or (1o [ar [ oa ] b
= T( 2797 2797 0797 0,0 ) ( )

where T' > 0 is arbitrary. By recalling (3) and using Poincare’s inequality, we have

co (Il @I + o @I7F) < Lmewmm3q@wmﬁ%wwwﬁD
< C(lau@lzt +lav i) an
Thus,
Bo(t) < By (6) <€ (Bo () + Bo (1)°F ), (12)
and
la @117 + v @751 < OB (). (13)
Moreover, by using (8), we have
t t
Bo(0)+ 5 | [wr(s) 18w + o) [80(o)] s = 5 | [k o Au)(s) + wh o Av)(s)] ds

+J: JQ (\u(s)\k + \v(s)|l) /' (s)["H! dazds+ﬂ JQ (|U(S)|9 L |u(s)|g) 1o ()| dads
t

= EO(O)JFJ

OJQ %F(u(s),v(s))dxds. (14)

After adding the term

Jt LZ %F (u(s),v(s)) dxds = JQ F (u(t),v(t)) de — J

0
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to both sides of (14), we get

t

t
By 0+ 3 | [or(6) 18w +wals) |80 ds = 5 | [k o Au)(o) + (wh o Av)(s)] ds

+J:) jﬂ (|u(8)\k + \v(s)‘l) | (s)]P dmds+J': JQ (|v ) + |u(s)|g) o’ ()| dwds
= E1(0)+ 2J; JQ %F (u(s),v(s)) dzds. (15)

We assume that Wy = Q x (0, ¢) . Our aim is to estimate the last term in (15) therefore we set

Wit = {(z,s) € Wit |u(z,s)| < 1,|v(z,s)| <1},
Wia = {(z,s) € Wi :|u(z,s)| <1,|v(z,s)] > 1},
War = {(z,s) € Wi |u(z,s)| > 1,|v(x,s)] <1},
Was = {(z,s) € Wi |u(z,s)| > 1,|v(z,s)] > 1}. (16)

Firstly, we notice that

9
QJ O P (u(s), v(s))| dads < 2J (1f1 (s o)) || + |2 (s )] [o]) dzdls
w, |08 Wi
< GO+ H®), (17)
where

G = cJ (lal” + ol + ul =" fol ) o | dods

H(t) = CJ (|u|7'+|v|r+|v|%|u\%)’U'|d1:ds. (18)
Wy

We write G (t) = G11 + G12 + Ga1 + Gaz and H (t) = Hy1 + Hi2 + Ha1 + Hag to estimate G (¢) and H (t)
where

Giy (0 = [ (" + ol + 1l ol F) Ju | awy

ij

r—=1 il .
Hij (t) = CJ (\u|r+|v|r+|v| 7 Jul 2 )|v’{dWij, i,j=1,2. (19)

ij

Firstly, we get

G (t)

IN

CJ ‘u/ (s)|dW11 Sé\Wt|+05J ’ul (s)!Qqu
Wi w-

11

IN

t
8 [Wi| +05JE1 (s)ds, (20)
0

for some 6 > 0. In addition, in this paper |W¢| denotes the Lebesgue measure of W;. Likewise,

t
Hyp (t) <6 |We| + ngEl (s)ds. 21
0
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We have

G <C|  (lu@I + o +u T o)) [ ()] dWas. @)
Waz
Since u, v > 1 on Wag, the first two terms in G2 (t) are estimated in the same way. With m = ;:ff and noting that
r—m= %, then we have

J ‘U (S)'T |u/ (S)} dW22 S (J ‘U (S)|’r‘+l dW22> p+1 (J |’U (S)ll |u/ (S)|p+1 dW22) p+1 7 (23)
W22 W22 W22

where by using Holder’s inequality and assumption r < [ + p and |v| > 1 on Wa2 in (23).Then, by using Young’s
inequality, we get

t
CJ o ()] [ (3)| dWaz < EJ o ()| o ()" dedis + CGJ By (s) ds, 24)
Wasz W, 0

t

where € > 0 that will be chosen later. Likewise, we obtain

t
CJ lu(s)]" }u/ (s)‘ dWaa < eJ lu (s)|]c ’u/ (s)}pJrl dxds + C’CJ Eq (s)ds. (25)
Wa2 Wi 0

t
We use (24)-(25) to estimate the last term in (22) as follows:

J ()T o () F o ()| Wz < EJ () [o ()] dvdis
Was W,

t

t
—i—eJ v (s)\l ‘u' (s)|erl dxds + ZCEJ Eq (s)ds. (26)
Wy 0
Therefore, it follows from (24)-(26) that

t
Gas (1) SQ&J Ju (s)[F o (s)[PH dxds+2ej v (s)|" |u/ (s)|p+1dxds+4C’€J Ei(s)ds. (27
Wi W, 0

t t

Likewise, we get

t
Has (1) < 2EJ o ()] | ()] deds + zeJ fu (s)]2 |0 ()| 7+ dads +4CEJ By (s)ds.  (28)
Wy Wy 0

Now, we estimate G;; for ¢ # j. By noting that w < 1 and v > 1 on W12, we have

i
G12 (1) §5|Wt\+05j E1 (s) ds+CJW v (s)|" | (s)] dW12. (29)
0 12

Again, since v > 1 on W12, then by recalling (24), we have

t
G2 (t) < 6|Wi| + (Cs + CE)J Eq (s)ds+ EJ |v (s)\l }ul (s)|erl dxds. (30)
0 Wi

We estimate Ho; by repeating the same steps in (29)-(30) with switching » and v, using m = ;_TIZE’ and using the
fact that » < 6 + p and |u| > 1 on Waj. One easily has

t
Hoay (t) <6 |Wi|+ (Cs + CE)J E;(s)ds+ eJ |v (s)|0 |’U/ (s)!qJrl dzds. 31
0

t
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The estimates for Go; and Hj9 are similar and they are omitted. Indeed, we have

¢
S |Wi| + (Cs + CE)J Eq (s)ds + €J lu (s)[* |/ (s)’pJrl dxds, (32)
0 W,

t

G (1)

IA

His (t)

IN

t
S |Wi| + (Cs + C’e)J Eq (s)ds+ eJ lu(s)]? v/ (5)‘q+1 dxds.
0

Wy
By combining (18)-(21), (27)-(28), and (30)-(32), we obtain
t
G +H@E) < 66Wil+ Cg,ej By (s)ds + 3eJ (lu )+ o)) |o ()" dds
0 Wy
t3e[ (0N +1u ) [ 0)|" dads, 33)
Wy
By choosing € > 0 small enough and from (15), (16) and (33), we have
t t
B0+ 3 | [or(6) 18w +wnls) 18] ds = 5 | [k o Au)(e) + (wh o Av)(s)] ds
t t
+ceJ' J (|u (s)|k + |v (s)|l) |u/ (s)|p+l dxds + CEJ J (\v (s)\e +u (s)|g) |v/ (5)|q-"_1 dxds
Q 0JQ

t
< BL0)+ 08IWil+ Co | Er(9)ds (34)
0

for some constant ¢ > 0. By applying Gronwall’s inequality, 1 (t) < (E1 (0) + 68 |W;|) e“t, where positive
constant C'. Lastly, (34) yields to the following inequality

t t
By 0+ 5 | [or(s) 18w +was) 18] ds = 5 | [k o Au)(o) + (wh o Av)(s)] ds
¢ / +1 t 4 +1
] ], (P @) W @ dsas+ | [ (10 + fu@)12) [ (9] s
< Cr(E1(0) + 66 |Wi), G35

where (35) is valid for all 0 < ¢t < T, where T is being arbitrary. Hence, the proof is complete. g

The second result establishes an answer to the global existence of weak solutions without the condition r <
min {k +p,l+p,0 +q,0+q}.

r o, r—1
Theorem 3. (Global Small Solutions). Let (A1), (A2) hold. Assume that T (0) > 0 and >0 (EQV) = <,

where cq is a positive constant that depends on v and Q). Then, the said solution (u,v) in Theorem 2 is a global
solution and Ty may be taken arbitrarily large.

Proof: The proof of Theorem 4 will be conclude after we prove the following lemma. For the simplicity, we reminding

i 2 ¢ 2
r@ = (1*J0w1(5)d8)|\Au(t)H +(1*Lw2(8)d8)llﬁv(t)ll

+2 (w1 © Au)(t) 4+ (w2 © Av)(t)] — 4 J F(u(t),v(t))dz.
Q
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Lemma 1. Let (u,v) be the solution to the problem (1) defined on [0, T| established in Theorem 2. Assume further
r—1

r o4 r—1
that T (0) > 0 and 42760 (@) * <1, where co > 0 is a constant. Then, T (t) > 0 on [0,T] and for all t €

[0, T, the following inequality holds:

3 (1 @7 + 1 @)7) + & (18u@I? + 180@)7) + [ Fa(®), v (6) da

Q
t t
k l p+1 0 q+1
+J J (e ()1 + o ()I') |u ()" dwds +J J (Io )+ Ju ()12) [/ (5)|""" dods
0Ja 0Ja
< 2E(0), (36)

where T' > 0 is arbitrary.
Proof: Similar as the proof in (Theorem 1.6, [9] and Theorem 2.3, [8]) we can prove the lemma. O

4 Conclusion

As far as we know, there is not any global existence results in the literature known for plate viscoelastic equation
with degenerate damping terms. Our work extends the works for some viscoelastic plate wave equations treated in
the literature to the plate viscoelastic wave equation with degenerate damping terms.
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