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1 Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers. The concept of convergence of a sequence of
real numbers has been extended to statistical convergence independently by Fast [14] and Schoenberg [35].

The concept of 2-normed spaces was initially introduced by Géhler [18, 19] in the 1960’s. Since then, this concept has been studied by many
authors. Giirdal and Pehlivan [23] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical
convergence in 2-normed spaces. Giirdal and Agik [24] investigated Z-Cauchy and Z*-Cauchy sequences in 2-normed spaces. Sarabadan and
Talebi [33] studied statistical convergence and ideal convergence of sequences of functions in 2-normed spaces. Arslan and Diindar [1, 2] inves-
tigated the concepts of Z-convergence, Z*-convergence, Z-Cauchy and Z*-Cauchy sequences of functions in 2-normed spaces. Futhermore, a
lot of development have been made in this area (see [9, 25, 28, 32, 34, 36, 38-40]).

The idea of rough convergence was first introduced by Phu [29] in finite-dimensional normed spaces. In [29], he showed that the set LIM" z;
is bounded, closed, and convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough
convergence and other convergence types and the dependence of LIM"z; on the roughness degree 7. In another paper [30] related to this
subject, he defined the rough continuity of linear operators and showed that every linear operator f : X — Y is r -continuous at every point
x € X under the assumption dimY < oo and r > 0 where X and Y are normed spaces. In [31], he extended the results given in [29] to
infinite-dimensional normed spaces. Aytar [6] studied of rough statistical convergence and defined the set of rough statistical limit points of a
sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar [7]
studied that the r-limit set of the sequence is equal to the intersection of these sets and that r-core of the sequence is equal to the union of these
sets. Recently, Diindar and Cakan [11, 12] introduced the notion of rough Z-convergence and the set of rough Z-limit points of a sequence and
Diindar [13] studied the notions of rough convergence, Zo-convergence and the sets of rough limit points and rough Z»-limit points of a double
sequence. Arslan and Diindar [3, 4] introduced some concepts of rough convergence in 2-normed spaces. Also, Arslan and Diindar [5] studied
rough statistical convergence in 2-normed spaces.

In this paper, we studied the concepts of rough statistical cluster point and rough statistical limit point of a sequence in 2-normed space
and investigate some properties of these concepts. Also, we obtain an ordinary statistical convergence criteria associated with rough statistical
cluster point of a sequence in 2-normed space. We note that our results and proof techniques presented in this paper are analogues of those
in Aytar’s [8] paper. Namely, the actual origin of most of these results and proof techniques is them papers. The following our theorems and
results are the extension of theorems and results in [8].

Now, we recall the concept of 2-normed space, rough convergence and some fundamental definitions and notations (See [1-8, 10, 15-17,
20-27, 29-33, 37-40]).

Let r be a nonnegative real number and R™ denotes the real n-dimensional space with the norm ||.||. Consider a sequence z = (z,) C R™.

The sequence x = (zr,) is said to be r-convergent to L, denoted by xr, L provided that

Ve>0,Ine eN: n>ne = ||lzn — L <r+e.

The set
LIM 'z := {L € R" : 2p, — L}

is called the r-limit set of the sequence z = (zr,). A sequence x = (zr) is said to be r-convergent if LIM"z # (). In this case, 7 is called the
convergence degree of the sequence = = (xn). For r = 0, we get the ordinary convergence.
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Let K be a subset of the set of positive integers N, and let us denote the set {k € K : k < n} by Ky,. Then the natural density of K is given
by
0(K) := lim M,
n—oo n
where | K| denotes the number of elements in Kp,. Clearly, a finite subset has natural density zero and we have 6(K¢) = 1 — 6(K), where
K€ :=N\ K is the complement of K. If K1 C Ko, then §(K1) < §(K2).

A sequence z = () is said to be r-statistically convergent to L, denoted by xr, =, provided that the set {n € N : ||z, — L|| > r + ¢}

has natural density zero for e > 0; or equivalently, if the condition st — lim sup ||zn — L|| < r is satisfied. In addition, we can write =, =L
if and only if, the inequality ||zn — L|| < r + € holds for every ¢ > 0 and almost all n.

Here r is called the statistical convergence degree. If we take » = 0, then we obtain the ordinary statistical convergence.

In general, the rough statistical limit of a sequence x = () may not be unique for roughness degree > 0. So we have to consider the
so-called r-statistical limit set of the sequence x, which is defined by

st—LIMz:={Le€ X :zp = L}.

The sequence z is said to be r-statistically convergent provided that st — LIM"x # (.
Let r > 0. The vector A € X is called the r-statistical cluster point of the sequence = (zr) provided that

d{neN:||lzn — Al <7 +¢}) #0,

for every € > 0. We denote the set of all r-statistically cluster points the sequence x by I'},.

Let r > 0. The vector v € X is called the r-statistical limit point of the sequence z = (zr,), provided that there is a nonthin subsequence
(zny,) of (zn) such that for every € > 0 there exists a number ko = kq() € N with ||zn, — v|| <r+eforall k > ko. We denote the set of
all r-statistical limit points the sequence = by AZ.

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on X is a function ||-,-|| : X x X — R which satisfies the
following statements:
As an example of a 2-normed space we may take X = R? being equipped with the 2-norm ||z, y|| := the area of the parallelogram based

on the vectors x and y which may be given explicitly by the formula

lz,yll = |z1ye — z2p1]; @ = (x1,22),y = (y1,92) € R

In this study, we suppose X to be a 2-normed space having dimension d; where 2 < d < oo. The pair (X, ||-, ||) is then called a 2-normed
space.
A sequence x = () in 2-normed space (X, ||-, -||) is said to be convergent to L in X if lim ||lzn — L, z|| = 0, for every z € X. In such
n—oo

a case, we write lim xn, = L and call L the limit of (xn).
n— oo

Let (xn) be a sequence in (X, ||.,.|]|]) 2-normed linear space and r be a non-negative real number. x = (z,) is said to be rough convergent

(r-convergent) to L denoted by x, ”—UT Lif

Ve>0,Inc e N:n>n. = |lzn — L, z|| <r+e (1)

or equivalently, if
limsup ||[xn — L, 2| <7, 2)

forevery z € X.

If (1) holds, L is an r-limit point of (xy ), which is usually no more unique (for » > 0). So, we have to consider the so-called r-limit set (or
shortly 7-limit) of () defined by

LIMSz ;= {L € X : zp, Hr L}. 3)

The sequence () is said to be rough convergent if LIM5x # (). In this case, r is called a convergence degree of (zr ). For r = 0 we have the
classical convergence in 2-normed space again.
Let (X, ]|.,-||) be a 2-normed space. A sequence = = (xn) in X said to be rough statistically convergent (r2 st-convergent) to L, denoted

by zn, rost L, provided that the set {n € N : ||z, — L, z|| > 7 + £} has natural density zero, for every £ > 0 and each nonzero z € X; or

equivalently, if the condition st — limsup ||xn — L, z|| < r is satisfied. In addition, we can write n, Mmst L, if and only if, the inequality
|lzn — L, || < r 4 € holds almost all n.

In this convergence, r is called the statistical convergence degree. For » = 0, rough statistically convergence coincides with ordinary
statistical convergence.

In general, the rough statistical limit of a sequence x = (z,,) may not be unique for the roughness degree r > 0. So, we have to consider
the so-called r-statistically limit set of the sequence « in X, which is defined by

Il

st —LIM5z :={L € X : xp, rost L} “)

The sequence x is said to be r-statistically convergent provided that st — LIM5x # 0.
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1.1  Main Results

In this section, we introduce the concept of rough statistical cluster points and rough statistical limit points of a sequence in 2-normed spaces.
Also, we show that r — Fi is closed and also,

rfAigrfl"%

for a sequencex = (xn).

Definition 1. Let v > 0. The vector A\ € X is called the rough statistical cluster point of the sequence © = (xn) if for everye > 0and z € X
d{neN:|lxn—Az|| <r+4e}) #0.
We denote the set of all rough statistical cluster points of the sequence x in 2-normed space X by
r— 1"326.
Here, if we take » = 0, then we obtain the notion of ordinary statistical cluster point. It is clear that
ri -T2 Cry— I3,

forry < ra.

Aytar proved that the set I';, is closed. We will show that the set r-I'2 is closed, for each r > 0.

Theorem 1. Let x = (xy,) be a sequence in 2-normed space X. Then, for every r > 0, the set r—F% is closed.

Proof: Let
T — Fi #0
and consider a sequence
y=(yn) Cr—T3
such that
lim yn, = L.

n—oo
Let us show that
d{neN:|lzn — L, z|| <r+e})#0
foreverye > Oand z € X.

Fix € > 0. Since

nlgmoo yn =1L,
there exists an ng = ng(e) € N such that
e
lyn — L2l < 5.

for all n > ng and every z € X. Fix mg such that mg > ng. Then, we have

€
mo T 5
[ymo — L, 2l < 5

for every z € X. Let m be any point of the set
€
{nGN: lzn — ymo, 2| < T+ 5}

Since
5
Hl’m—ymg,ZH <T+57
we have
lzm — Lz < lzm — Ymo, 2[| + [[ymo — L, 2|
< r+£+£
2 2
= r+e¢
and so,

me{neN:|zn—L,z|| <7 +e},
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for every z € X. Hence, we have
€
{nGN: |Zn — Ymo, 2|| <r+§} C{neN:|zn—L,2z|| <r+e} Q)

Since
6({n6N: lzn — Ymo, 2|l <7+ %}) #0
by (5), we get
0{n€eN:|lzn — L,z|| <7 +e}) #0,
for every z € X. Therefore, we have
Ler—T2

We note that if we let
Aer—T2,
then for every z € X,
0{n:|len — Azl <r+e}) #0.

By the statistical analogue of Bolzano-Weierstrass Theorem (see [37], Theorem 2), the subsequence (), c 4 has a statistical cluster point,
where

A={n:fan—Az2] <13,

for every z € X. If we denote this statistical cluster point by v then we have

A=zl <7
Therefore, we have that if
Ner—T2,
then there exists a vector
verT;
such that
A=,z <

We know that the sequence = = (zr,) need not be statistically convergent in order that the inclusion
2 T
r—I% Cst— LIMyx
holds, but this sequence must be statistically convergent in order that the converse inclusion holds.

Definition 2. Let r > 0. The vector «y in 2-normed space X is called the rough statistical limit point of the sequence © = (xn) in X, provided
that there is a nonthin subsequence (y,,) of (xn) such that for every € > 0 there exists a number ko = ko(c) € N with

|Zn, — v, 2| <r+e,
forevery z € X and all k > kq. We denote the set of all rough statistical limit points of the sequence x = (xn) by
r— Ag.
Now we present a result which characterizes the set r-A2. The proof is immediate by definitions.

Proposition 1. We have
yET— A%

if and only if there exists a nonthin subsequence (Tn, ) of (xn) such that

limsup ||zn, —7, 2| < T,
k—oo

forevery z € X.

Theorem 2. Let x = (xp) be a sequence in 2-normed space X. Then we have

T—Aigr—Fi.
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Conclusion

We gave definitions of rough statistical cluster point and rough statistical limit point of a sequence in 2-normed space. Our results include that
for a sequence & = (), 7 — I'2 is closed and also,

2
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