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study, ) values were evaluated by considering the number of replications. In this context,
Replication, for the item and ability parameters; mean error, root mean square error, standard
Unidimensional item error of estimates, and for model fit; M,, RMSEA,, and Type I error rates were
response theory models, considered. The number of replications did not seem to influence the model fit, it
Bias estimation, was decisive in Type I error inflation and error prediction accuracy for all IRT
Type I error inflation. models. It was concluded that to get more accurate results, the number of
replications should be at least 625 in terms of accuracy of the Type I error rate
estimation for all IRT models. Also, 156 replications and above can be
recommended. Item parameter biases were examined, and the largest bias values
were obtained from the 3PL model. It can be concluded that the increase in the
number of parameters estimated by the model resulted in more biased estimates.
1. INTRODUCTION

To make sense of human behavior, individuals need to be observed and evaluated accurately.
According to these evaluations, it is important to make decisions about individuals or to direct
them towards their needs in a true way. Therefore, the psychometric properties of the
measurement tools used for evaluations must be at satisfactory levels.

Test theories are used to assess the psychometric properties of measurement tools. Test theories
can be considered as a study area where research is conducted to investigate problems affecting
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psychological measurements and to achieve valid and reliable measurement results by trying to
reduce these problems as much as possible (Crocker & Algina, 1986). In the literature, the
classical test theory and item response theory (IRT) are the most studied theories in the
psychometric area.

Human behavior is the main subject of social sciences. It is very important to measure human
characteristics, which are very variable, validly, and reliably. The measurement of human
behavior is different from the measurements made in natural science. Ideal laboratory
conditions are created to achieve the most accurate results in natural science, but it is very
difficult to apply these in social sciences. One of the best ways to achieve accuracy in social
sciences is through simulation studies. Simulation studies have been used since 1900 as a
solution to statistical problems (Harwell et al., 1996).

IRT has strong assumptions that differ according to dimensionality, linearity, or scoring type
(McDonald, 1982). In cases where the IRT assumptions are not met, the results of the analysis
and estimates will be inaccurate. Monte Carlo (MC) simulation studies provide solutions to the
problems that can be encountered by creating ideal data sets that meet the assumptions required
for IRT (Han, 2007). MC simulation studies are used for many purposes such as the evaluation
of new parameter estimation procedures, comparison of different item analysis programs, and
parameter estimation in multidimensional data sets (Harwell, 1997). MC studies perform
statistical sampling experiments via computers for solutions to statistical problems (Mundform
et al., 2011). How MC studies are structured in IRT (Harwell et al., 1996) is shown in Figure
1.

Figure 1. Steps of a MC Simulation Study in IRT.
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The MC process starts with defining the research question, as seen in Figure 1. When the
research questions defined in psychometry are related to theoretical studies, especially include
comparing different conditions at the same time, a simulation study is inevitable in obtaining
the appropriate data sets. Then, it is important to define the test conditions of the research. These
conditions consist of dependent variables such as item and ability parameters, and independent
variables like test lengths, sample size, or distribution of the sample. After specifying the
experimental design, the item response data are generated by the IRT model which is chosen
by the researchers. Item and ability parameters are estimated from the generated data sets.
Results obtained from different test conditions are compared. This process is replicated R times
and all outcomes are evaluated for answering the research questions using descriptive and
inferential techniques.

One of the important issues to be considered in MC simulation studies is the number of
replications. With insufficient replications, estimations can be inaccurate (Mundform et al.,
2011). Besides, replication is often confused with iteration in the literature. Hence, it is
important to clarify the difference between replication and iteration in simulation studies.
Iteration is defined as a statistical routine. This routine starts with the first estimate and
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continues until a satisfactory estimate, which means the convergence criterion is met, is
obtained by working with some statistical rules on this first estimation (Fu, 2019; Thompson,
2004; 2006).

Iterations are needed for convergence of statistical algorithms (Hair et al., 2019). Some iteration
algorithms which are used for parameter estimation in IRT are: the Broyden-Fletcher-Goldfarb-
Shanno Algorithm, the Bisection Method, the Expectation-Maximization Algorithm, Fisher
Scoring, the Gibbs Sampling Algorithm, the Markov Chain Monte Carlo Algorithm, the
Newton-Gauss Algorithm, and the Newton-Raphson Algorithm (Cai & Thissen, 2014;
Chalmers, 2012; Hanson, 1998; Patsias et al., 2009; Tavares et al., 2004; Thompson, 2009; van
der Linden, 2018; Weismann, 2013).

As for replication, this is defined as the repeated administration of an experiment with selected
changes in parameters or test conditions being made by the researcher (Hair et al., 2019;
Rubinstein, 1981). Replications give an estimate of the stability of the predictions made in
simulation studies (Feinberg & Rubright, 2016). Because the number of replications affects the
accuracy and reliability of parameter estimates (Feinberg & Rubright, 2016), it is stated that the
number of replications is an important factor for statistical results (Kleijnen, 1987; Rubinstein,
1981). These estimations are directly related to the implications to be reached in simulation
studies. When conducting a MC simulation study, it is important to answer the question of how
many replications are needed for accurate estimations. So, the number of replications should be
determined carefully by the researchers. Within the context of unidimensional IRT models,
various studies that are conducted on the MC method with a different number of replications
are given in Table 1.

Table 1. Literature review about the number of replications for unidimensional IRT models.

. Number of

Studies .
Replication

Sheng & Wikle, 2007 10
Roberts et al., 2002 30
Sen etal., 2016 50
Crisan et al., 2017; Lee et al., 2017; Park et al., 2016; Yang, 2007; Zhang, 100
2008
Matlock Cole & Paek, 2017 200
Feinberg & Rubright, 2016 250
Matlock & Turner, 2016 500
Ames et al., 2020; Reise et al., 2011 1000
Baldwin, 2011; Mundform et al., 2011 5000
Babcock, 2011 10000

As is seen from Table 1, the different number of replications ranges between 10 and 10000. It
is usual for a different number of replications to be made in varying test conditions for accurate
parameter estimations by different IRT models. However, it is not clear what the appropriate
number of replications should be under varying test conditions for unidimensional IRT models.
In addition, it is important to determine a sufficient number of replications according to test
conditions that are specified by the researchers. Although simulative studies provide
convenience to theoretical studies, they are time-consuming processes.

To establish a rule for what ideal replication number should be, Feinberg and Rubright (2016)
had provided a formula about replication number, which is given in Equation 1:

(Equation 1)
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where 6 is the standard deviation of the estimated parameter across replications and R is the
number of replications and gy, is the SE of the mean.

According to their formula, they suggested calculating the ideal number of replications by using
the standard deviation of the estimated parameters across replications. To determine the ideal
replication number, firstly, the researchers must replicate data, and secondly, the ideal
replication number must be calculated according to replicated samples’ standard deviation.
Starting replication number will be the determiner of the ideal replication number. This seems
a time-consuming process. Because, firstly, data need to be replicated, and then the ideal
replication number must be calculated. Doing more replication will result in a smaller standard
deviation of replicated samples or vice versa. Hence, the calculation of ideal replication number
according to Feinberg and Rubright (2016) will tend to be smaller due to using that standard
deviation. Large standard deviations will recommend more replications. Lastly, there is no exact
rule about what the ideal standard deviation of replicated samples should be (see for details
Feinberg & Rubright, 2016). Therefore, using Equation 1 does not seem very practical.

In this study, the number of replications required for the most accurate parameter estimations
in various sample sizes and test lengths according to unidimensional IRT models (1PL model,
2PL model, and 3PL model) was determined.

The purpose of the current study is to develop guidelines for the adequate number of
replications in conducting MC simulation studies involving unidimensional IRT models with
different test conditions. Based on this purpose, answers to the following research questions
were sought:

1.How are the estimations of item parameters obtained from varying sample sizes and test
lengths affected by varying numbers of replications?

2.How are the estimations of ability parameters obtained from varying sample sizes and test
lengths affected by varying numbers of replications?

3. How are the estimations of model fit obtained from varying sample sizes and test lengths
affected by varying numbers of replications?

2. METHOD

2.1. Study Design Factors

The purpose of this study is to develop guidelines for the adequate number of replications in
conducting MC simulation studies involving unidimensional IRT models with different test
conditions. According to this aim, different sample sizes and test lengths were studied to
determine the adequate number of replications to obtain more accurate and precise estimations.

In line with this purpose, firstly, studies which implemented unidimensional IRT models and
MC simulation studies were reviewed. According to the literature review (Baldwin, 2011;
Mundform et al., 2011), 5000 was selected as a starting replication number for this study. In
determination of other numbers of replications, the method which Preecha (2004) implemented
in his study was used. Considering this method, if the bias difference between two consecutive
replication numbers is large, this interval should be halved, and the analysis should be repeated.
If not, then the last replication number should be halved, the analysis should be repeated, and
the bias statistics should be calculated.

After determining the maximum replication number as 5000, bias analyses were performed.
Half of the 5000 replications were taken, and the analyses were re-run for 2500 replications.
This process was performed until the number of replications was 78. Additionally, the minimum
number of replications was determined as 20. In some nonparametric IRT studies, 20 is used as
the minimum number of replications (Sengiil Avsar & Tavsancil, 2017; van Onna, 2004).
Therefore, in this study, the adequacy of 20 replications was also tested.
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Within the scope of this study, a literature review was also done for the test lengths and sample
sizes which are given in Table 2. In IRT studies, there are no exact rules for adequate sample
sizes for accurate and precise estimation (De Ayala, 2009; Kirisci et al., 2001; Reise & Yu,
1990). At this point, it is important to explain what accuracy and precision are.

Accuracy indicates how close the measured values are to known values. For example, if in the
laboratory one measures a given object as 132.2 cm, but the known height is 150 cm, then the
measurement of the given object is inaccurate. In this case, the measurement is not close to the
known value. Precision indicates how two or more measurements are close to each other. Using
the aforementioned example, if one measures a given object ten times, and obtains 132.2 cm
each time, then the measurement of that object is very precise. Any measurement can be very
precise but inaccurate, as described above, while it can also be accurate but imprecise (Baris
Pekmezci & Giilleroglu, 2019).

Sample sizes and test lengths are the other independent variables of this research besides
number of replications and IRT models. In order to determine which sample sizes and test
lengths were commonly used in unidimensional IRT studies, literature was reviewed. The
literature review results are given in Table 2.

Table 2. Literature review about sample sizes and test lengths for unidimensional IRT models.

Studies Sample Size Test Lengths
1PL model 2PL model 3PL model
Lord, 1968 1000 - - 50
Hulin et al., 1982 - - 500/1000 30/ 60
Thissen & Wainer, 1982 1000 2500 -
Goldman & Raju, 1986 250 1000 -
Yen, 1987 - - 1000 10/ 20/40
Patsula & Gessaroli, 1995 - - 1000 20/40
Baker, 1998 - 500 - 50
De La Torre & Patz, 2005 - - 1000 10/30/ 50
Gao & Chen, 2005 - - 500/ 2000 10/ 30/ 60
Yang, 2007 100/500/1000 - - 15/ 30/ 45
Babcock, 2011 - 1000/2500/4000 - 54/62/70
Chuah et al., 2006 - - 500/1000 20
Sahin & Anil, 2017 150/ 250/ 350/ 150/ 250/ 350/ 500/ 150/ 250/ 350/ 10/20/30
500/ 750/ 750/ 1000/2000/ 500/ 750/
1000/2000/ 3000/ 5000 1000/2000/
3000/ 5000 3000/ 5000
Matlock Cole & Paek, 2017 - 1500 3000 20/40
Ames et al., 2020 - 250/500/1000 250/500/1000 10/40

Sample sizes and test lengths differ as can be seen from Table 2. Accordingly, sample sizes are
varied between 150 and 5000, while test lengths are varied between 10 and 70. Minimum
sample size was determined as 500, medium sample sizes were determined as 1000 and 2000,
and maximum sample size was determined as 3000 for this research. Test lengths were selected
as 25 items for short tests and 50 items for long tests for this research.

To begin the simulation, the item difficulty parameters (b), the item discrimination parameters
(a), the item lower asymptote parameters or guess parameters (c), and the ability parameters ()
were chosen according to the literature review. In this study, the b parameters are normally
distributed [b~N(0.50, 1.50)]; the a parameters are uniformly distributed [a~U(1.5, 2.0)], the ¢
parameters are beta distributed [c~Beta(20, 90)], and the ability parameters (6) are normally
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distributed [0~N(0, 1)] (Bahry, 2012; Bulut & Siinbiil, 2017; Cohen et al., 1993; DeMars, 2002;
Feinberg & Rubright, 2016; Jiang et al., 2016; Harwell & Baker, 1991; Mislevy & Stocking,
1989; Mooney, 1997). According to these parameters, dichotomous response patterns were
generated for selected conditions (3x2x4x8), which are shown in Table 3. The generation of the

data sets in the test conditions, determined in the research, by two computers with 2.7 GHz Intel
Core 15 8 GB RAM and 1.8 GHz Turbo Intel Core i7 16 GB RAM took approximately a month.

Table 3. Simulation conditions.

IRT Test Sample Number of Replications
Models lenghts Size
20 78 156 312 625 1250 2500 3000
IPL model 25 items 500 v v 4 v 4 4 v v
1000 v v v v v v v v
2000 v v v v v v v v
3000 v v v v v v v v
50 items 500 v v v v v v v v
1000 v v v v v v v v
2000 v v v v v v v v
3000 v v v v v v v v
2PL model 25 items 500 v v 4 v v v v v
1000 v v v v v v v v
2000 v v v v v v v v
3000 v v v v v v v v
50 items 500 v v 4 4 v v v v
1000 4 v v v v v v v
2000 v v v v v v v v
3000 v v v v v v v v
3PL model 25 items 500 v v 4 v v v v v
1000 v v v v v v v v
2000 v v v v v v v v
3000 v v v v v v v v
50 items 500 v v v v 4 v v v
1000 v v v v v v v v
2000 v v v v v v v v
3000 v v v v v v v v

2.2. Simulating Model Parameters and Item Responses

All parameters were simulated based on the null (ideal) model. Any departure from the null
model can cause misfit or non-fit of the data, therefore; misspecified models are not in the scope
of this research. To simulate dichotomous item responses and estimate the item parameters
based on the unidimensional IRT models, the “itemrecovery” function, which is composite of
R functions and defined by Bulut and Siinbiil (2017), was revised for this study and used. This
function, which generates item parameters, simulates item responses concerning parameters,
estimates the item parameters of related IRT models, and computes bias statistics, was adapted
to the current study. IRT model parameters and model fit values were estimated using the mirt
package (Chalmers, 2012) in R. After all bias statistics had been calculated, the relevant
graphics were drawn by using the lattice package (Sarkar, 2008) in R.
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2.3. Estimation of Model Parameters and Type I Error Rates

The evaluation of the accuracy and precision of item and ability parameter estimations
throughout the replications was carried out via mean error (ME), root mean square error
(RMSE) and standard error of estimates (SE). Mean Error (ME) measures the average
magnitude of the errors. ME is the average of the differences between the model’s predicted

and actual values, where all individual differences have equal weight. ME is given in Equation
2:

= Zl 1Yi — (Equation 2)

where N is the total test length, ¥ is the estimated item parameter for item i (i = /, 2, ..., N),
and yj is the true item parameter for item 7.

RMSE is the square root of the variance of the residuals. It indicates the fit of the model, which
is the closeness of the observed data points to the model’s predicted values. RMSE can range
from 0 to oo and lower values mean better fit. The errors are squared before they are averaged.
RMSE should be used when undesirable large errors exist because, in the calculation, RMSE
gives a relatively high weight to large errors.

RMSE is in the same unit as the response variable and can be interpreted as the variation of
unexplained variance. RMSE is an important criterion of estimation accuracy, and it is
important when the interest is in the model prediction. There is no one best model fit measure;
researchers should choose depending on their objectives, and more than one is often useful.
RMSE is given in Equation 3:

RMSE = J YN i — 9)? (Equation 3)

Standard Error (SE), like standard deviation, is a measure of dispersion. However, while the
standard deviation is a measure of dispersion from sample values, the standard error is a
measure of dispersion from the sampling distribution, which belongs to the population of
interest. SE is the measure of how accurate and precise the sample is. SE is not only a measure
of dispersion and accuracy of the sample statistic but also an important indicator of reliability
of estimation of the population parameter. SE is given in Equation 4:

N ~
SE = 3N, (y — 2220y (Equation 4)

In addition to bias estimation of model parameters, Type I error rates for model fit were
calculated in this study. Glass et al. (1972) emphasize that sampling error contaminates
empirical Type I error and statistical power. Therefore, in comparing Type I error, they highly
recommended taking this sampling error into account. Glass et al. (1972) suggested Equation
5 (Type I error rates) about standard error of a sampling proportion by using the number of

replications as a sample size:
6y = /% (Equation 5)

where R denotes the number of replications, P is the nominal or theoretical Type I error (.05
for this study), and p is the empirical or the observed Type I error. Glass et al. (1972) advise
against considering the difference between a particular observed p value and the theoretical P
value significant, if departure is less than two standard errors of that p.

To estimate accuracy of error rate, the MC variance of an estimate of Type I error rate ( j—% )

was used, where G, is the simulated standard deviation of the p values, and R is the number of
replications.
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3. RESULT / FINDINGS

Findings are given in the order of the research questions. Most parts of the analysis outputs are
given in the Supplementary file due to the excessive number of simulation conditions (in total
192 conditions from Table 3). Only the most remarkable findings are given via figures and
tables in the findings section. For detailed information, the Supplementary file can be reviewed.

3.1. The Effect of the Number of Replications on Estimation of Item Parameters with
Varying Sample Sizes and Test Lengths

Bias estimations of item parameters obtained by examining simulation conditions are given in
this section. Figure 2, Figure 3, and Figure 4 summarize for RMSE values according to IRT
models. Besides, ME, RMSE, and SE values are given in the Supplementary file.

When ME, RMSE, and SE values according to item parameters were examined, the same
pattern was seen for all IRT models. Therefore, findings were interpreted in a way that concerns
all IRT models. Increasing the sample size resulted in decreasing RMSE values for b parameters
in all simulation conditions. When the RMSE values were examined in terms of sample sizes
in detail, for all replication numbers, it was seen that the bias differences between samples were
quite large. Contrary to this, when each sample was analyzed within itself, a slight difference
was found in regard to replication number. For example, for the simulation condition with the
1PL model with a test length of 25 items and sample size of 1000, RMSE values obtained from
5000 replications and 78 replications were compared, the difference between them was found
to be 0.001. This indicates that parameter estimation accuracy was mostly affected by sample
size rather than by the number of replications. Results of ME, RMSE, and SE can be seen in
Table 4.

Table 4. Accuracy and precision of b parameters.

IRT Models Test lenghts Bias statistics Number of replications
20 5000

Sample size 500 3000 500 3000
1PL model 25 items ME 0.024 0.007  0.002 0.000
RMSE 0.024 0.055 0.134 0.054

SE 1.496 1.453  1.465 1.457

50 items ME -0.002  -0.003  0.002 0.000

RMSE 0.139 0.053  0.135 0.055

SE 1.510 1.484  1.489 1.483

2PL model 25 items ME -0.01 -0.009  0.008 0.003
RMSE 0.196 0.073  0.191 0.075

SE 1.517 1.479  1.481 1.458

50 items ME 0.037  -0.015 0.009 0.003

RMSE 0.199 0.085  0.190 0.075

SE 1.529 1.479  1.509 1.482
3PL model 25 items ME -0.030  -0.002 -0.050  -0.004
RMSE 0.628 0.228  0.588 0.203

SE 1.731 1.470  1.621 1.463

50 items ME -0.046  -0.005 -0.047  -0.003

RMSE 0.553 0.172  0.519 0.185

SE 1.668 1.450  1.602 1.489

When ME and SE statistics were examined, although the average ME and SE did not change
as much as RMSE values according to the sample size, the highest bias values were observed
in the smallest sample size for both test lengths. Additionally, except for the 3PL model in terms
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of RMSE values, b parameter estimation biases were found to be quite similar for both test
lengths. According to SE values, it can be said that the precision of b parameter estimates were
not much affected by the number of replications. Accuracy and precision of b parameters, which
was obtained with the minimum replication number (20) and the largest sample size (3000),
could not be obtained with the maximum replication number (5000) and the minimum sample
size (500).

For a parameters, bias statistics were examined and interpreted in detail according to both test
lengths. In regard to a parameters, increasing the sample size resulted in decreased bias statistics
(ME, RMSE, SE) for both test lengths except one condition. Estimation of @ parameter accuracy
and precision is directly related with sample size. Accuracy and precision of a parameters,
which was obtained with the minimum replication number (20) and the largest sample size
(3000), could not be obtained with the maximum replication number (5000) and the minimum
sample size (500). Related findings can be seen in Table 5.

Table 5. Accuracy and precision of a parameters.

IRT Models Test lenghts Bias statistics Number of replications
20 5000
Sample size 500 3000 500 3000
2PL model 25 items ME 0.018 0.002 0.022 0.004
RMSE 0.214 0.086 0.215 0.085
SE 0.256 0.167 0.249 0.163
50 items ME 0.003 0.006 0.020 0.003
RMSE 0.215 0.082 0.207 0.082
SE 0.248 0.163 0.244 0.163
3PL model 25 items ME 0.201  0.008 0.179 0.008
RMSE 0.735 0.194 0.649 0.194
SE 0.703  0.229 0.631 0.229
50 items ME 0.168 0.019 0.146 0.016
RMSE 0.592 0.163 0.544 0.168
SE 0.583 0.211 0.538 0.217

Regardless of the sample size, bias statistics (ME, RMSE, SE) were not substantially affected
by the number of replications. For example, for the 2PL model with a test length of 50 items
and sample size of 500, the SE of the a parameters obtained from 5000 replications and 20
replications were compared, and the difference between them was found to be 0.004. Regardless
of the sample size, parameter estimation bias (ME, RMSE, SE) of a parameters were not
affected by the number of replications, as in b parameters. In summary, it was seen that the
sample size had the largest effect rather than the number of replications in the estimation of
both a and b parameters in both test lengths.

For ¢ parameters, bias statistics were examined, and it was seen that as the sample size
increased, SE and RMSE decreased. When the sample size was the largest (3000), the
estimation accuracy and precision obtained with the minimum replication number (20) could
not be obtained with the smallest sample size (500) and maximum replication number (5000).
Related findings can be seen in Table 6. In summary, like the other item parameters (a and b),
sample size had a greater effect on ¢ parameter estimation bias than replication number.

When the effect of test lengths on parameter estimation bias was examined, it was seen that, for
a parameters, increasing the length of the test provided more accurate and precise parameter
estimation in all sample sizes and replication numbers. Increasing the length of the test
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decreased the estimation bias of a parameters. For b parameters, increasing the test lengths
resulted in increased SE. In terms of RMSE values, there was no remarkable change in the
accuracy of b parameter estimations. In general, increasing the test lengths resulted in increased
accuracy and precision of ¢ parameters.

Table 6. Accuracy and precision of ¢ parameters.

IRT Model Test lenghts Bias statistics Number of replications
20 5000
Sample size 500 3000 500 3000
3PL model 25 items ME -0.001 -0.007 0.002 -0.002
RMSE 0.134 0.076 0.141 0.077
SE 0.144 0.082 0.141 0.083
50 items ME 0.001 -0.004 0.004 -0.002
RMSE 0.134 0.072 0.131 0.071
SE 0.134 0.078 0.133 0.078
Figure 2. RMSE values for 1PL model.
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Figure 3. RMSE values for 2PL model.
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Figure 4. RMSE values for 3PL model.
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As a result, it was seen that the sample size had a greater effect rather than the number of
replications in the estimation of item parameters (a, b, and c). The parameter accuracy and
precision obtained with the minimum replication number when the sample size was the largest
could not be obtained with the maximum replication number when the sample size was the
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smallest. When item parameter biases were examined among IRT models, the largest bias
values were obtained from the 3PL model. It can be concluded that the increase in the number
of parameters estimated by the model resulted in more biased estimates.

3.2. The Effect of the Number of Replications on Estimation of Ability Parameters with
Varying Sample Sizes and Test Lengths

Bias estimations of ability parameters (6) obtained by examining simulation conditions are
given in this section. Besides, all bias statistics are given in the Supplementary file. The ability
parameter (6) estimation accuracy and precision did not change much according to test lengths
within all IRT models. Apart from this finding, between all IRT models, some minor differences
occurred in terms of bias statistics.

For the 1PL model, when the bias statistics were inspected in detail, it was seen that in general,
estimation accuracy for 8 parameters increased if sample size was increased. When SE values
were investigated in terms of estimation precision, the largest sample size (3000) and minimum
replication number (20) conditions (0.071 and 0.044, respectively for test lengths 25 and 50
items) were superior to the smallest sample size (500) and maximum replication number (5000)
conditions (0.176 and 0.087, respectively for test lengths 25 and 50 items). In other words,
parameters with the minimum sample size and maximum replication number were not predicted
as accurately as with the large sample size and minimum replication number. Increasing the
sample size would provide more precise 8 parameters. Lastly, when the RMSE values for 0
parameters were analyzed, it can be said that the accuracy of 8 parameters increased as the
sample size was increased.

For the 2PL model, when the RMSE values regarding 6 parameters were examined, it can be
said that the accuracy of 8 parameter estimations increased as sample size was increased for
both test lengths. When the SE statistics were analyzed, it was detected that 8 parameters were
estimated most precisely in the 2000-sample size for both test lengths. When the effects of test
length in the estimation of 8 parameters were examined, there were not seen many differences
in terms of bias statistics.

For the 3PL model, the estimation accuracy of 6 parameters increased with increasing sample
size for both test lengths. In general, regardless of the sample size, the number of replications
did not have a remarkable effect on the accuracy and precision of 8 parameters. However, the
number of replications did have an important effect on the precision of 8 parameter estimations
when for the test length of 50 items and the sample size was 1000. According to findings the
sample size had a greater effect on the estimation accuracy of 6 parameters than the number of
replications for all IRT models.

3.3. The Effect of the Number of Replications on Estimation of Model Fit with Varying
Sample Sizes and Test Lengths

Model fit statistics (M, and RMSEA,) were evaluated for all IRT models. M, and
RMSEA, statistics are given respectively in Figure 5 and Figure 6 for all IRT models.
According to M, values, increasing the test length did not show improvement on the model fit.
Additionally, when RMSEA, values were examined for the 1PL model, the best model fit was
seen in the largest sample size for both test lengths. For both the 2PL model and 3PL model,
increasing the test length resulted in decreased/poor model fit in terms of M, values. Although
not much change was seen, RMSEA, values decreased to some extent regardless of the sample
size for both the 2PL model and 3PL model. Lastly, it was also detected that regardless of the
sample size, the number of replications had no effect on model fit values for both test lengths
for all IRT models.
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Figure 5. M, values for all IRT models.
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Figure 6. RMSEA, values for all IRT models.
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In addition to these findings, Type I error inflation rates were calculated according to Glass et
al. (1972), and these are presented in Appendix A, Appendix B, and Appendix C. The difference
between a particular empirical alpha (p) value and the nominal alpha (P) value was indicated
as significant if departure was two standard errors of p. When Type I error inflation rates are
examined in Appendix A, it is seen that Type I error inflation was only seen at 20 replications
for the 1PL model in all sample sizes and test lengths. Also, when test length of 50 items, 78
replications were enough for actual model fit interpretations for the sample sizes 500 and 1000.
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For the 2PL model, Type I error inflation, given in Appendix B, was only seen at 20 replications
for the test length of 25 items in all sample sizes except when the sample size was 3000. When
the sample size was 3000, Type I error inflation was seen at 78 replications also. Type I error
inflation was seen at only 20 replications in all sample sizes for the test length of 50 items.

For the 3PL model, in all sample sizes and test lengths Type I error inflation was seen at 20
replications. Additionally, Type I eror inflations, given in Appendix C, were seen at 78
replications in both 500 and 3000 sample sizes for the test length 25 items. For the test length
50, Type I error inflation was 78 replications in only 2000 sample sizes. In summary, Type I
error rates were not affected except at 20 and 78 replications for all IRT models.

Accuracy of error rate estimation and confidence intervals of empirical alpha (p), given in
Appendices (A, B, and C), were examined and the same results were achieved for all IRT
models. It is important to underline the finding that accuracy of error rate estimation did not
change according to either test length or sample size and was affected more by the replication
number. The lowest accuracy of error rate was seen at 20 replications for the 1PL model, and
at 20 and 78 replications for both the 2PL model and 3PL model. Lastly, the largest confidence
interval of empirical alpha (p) was seen in the smallest replication number, and that is important
in terms of supporting inferences about accuracy.

The main concern of this study is determining a suitable replication number for simulations
different test conditions. When test conditions which are determined in this research are
considered, findings show that the number of replication effects Type I error inflation. Type I
error inflation was seen at 20 and 78 replications. In general, it can be thought that 156, 312, or
625 replications may enough for avoiding Type I error inflation (see Supplementary file for
details). However, other factors, such as item parameter estimation and model fit considered
together, it is suggested that at least 625 replications should be performed in terms of Type I
error rates.

4. DISCUSSION and CONCLUSION

The purpose of the current study was to determine the required number of replications for the
most accurate and precise parameter estimations in conducting MC simulation studies involving
unidimensional IRT models. In line with research purpose, different sample sizes and different
test lengths were defined as test conditions besides the number of replications.

The first major finding was that neither the test length nor the replication numbers had an effect
on item parameter estimation accuracy and precision for all IRT models. On the contrary, the
sample size had the largest effect rather than the number of replications in estimation of item
parameters. It can be concluded that when the sample is large, even with the smallest number
of replications, item parameters can be estimated with adequate precision and accuracy.

Consistent with the current research, Hulin et al. (1982) showed that in the studies of item bias
which place emphasis on accuracy, large numbers of items were not necessarily needed.
However, they recommended using large samples to obtain accurate item parameter estimates.
Besides, they proved that a sample size of 500 for the 2PL model and 1000 for the 3PL model
was needed, but also underlined that the more accurate results appeared with a sample size of
2000. Also, consistent with the present study, Ames et al. (2020) found that difficulty
parameters had smaller mean bias as sample size was increased for the 2PL. model. However,
contrary to the present study, they found that increasing the sample size increased the mean bias
of discrimination parameters.

When item parameter biases were examined among IRT models, the largest bias values were
obtained from 3PL model. It can be concluded that the increase in the number of parameters
estimated by the model resulted in more biased estimates.
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The study also showed that the best way to increase estimation accuracy of 8 parameters was
to increase the sample size. Contrary to this, 8 parameters were most precisely estimated among
other samples only with 2000 for the 2PL model and 3000 for the 3PL model, and increased
test length had no effect on estimation precision like the 1PL model. For the 2PL model and
3PL model, only sample size had an effect on estimation in terms of estimation accuracy of 6
parameters. The largest sample size had a larger effect on estimation accuracy than the number
of replications in both test lengths for all IRT models. This is also consistent with the findings
of Hulin et al. (1982), who reported that ability estimates were less accurate in small sample
sizes for the 3PL model.

The second major finding was that although the number of replications did not seem to have an
effect on the model fit, it was decisive in Type I error inflation and error prediction accuracy
for all IRT models. Besides, the most determining factor in model fit was the sample size and
long tests had relatively better fit values than short tests. This finding is consistent with that of
Schumacker et al. (1994), who found no differences between Rasch item and ability fit statistics
based on the number of replications, and the Type I error rates were close to expected values.
In accordance with the present study, they recommended being more sensitive to the sample
size and test length.

The most obvious finding to emerge from this study was that the sample size had the most
important effect on estimation bias for both item parameters and model fit statistics. However,
the number of replications was found to be effective on Type I error inflation. Generally, when
the number of replications is 20 and 78, Type I error inflation was seen much as per other
conditions. When all test conditions determined in this study, especially the acccuracy of error
rate estimate were evaluated together, accuracy of error rate estimate was seen too close to zero
for 625 replications. Besides, also 156 replications and above can be recommended but if the
researchers want to get more accurate results, should perform at least 625 replications.

The present study investigated the effect of replication number on the estimation of item and
ability estimations and model fit statistics in the MC method based on unidimensional IRT
models. It was concluded that the number of replications was not a very impressive factor in
the test conditions determined in this study for unidimensional IRT models. In particular, it is
seen that sample size is the most effective factor in the estimation of the item and ability
parameter and model fit. However, it was concluded that the number of replications is effective
in estimating Type I error inflation and accuracy of error rate estimate. In general, as a
conclusion of this study, when studying with unidimensional IRT models, it is highly
recommended that researchers use large samples instead of studying with small samples and
excessive replications.

This study showed that an increase in the number of parameters estimated by the model resulted
in increased bias. Therefore, it should be taken into consideration that the adequate number of
replications would differ in multi-dimensional models because of increasing estimations of the
number of parameters. Similarly, since this study focused on IRT models used with
dichotomous items, similar studies could be carried out with polytomous items. All simulations
and analyses were performed according to the null (ideal) model. Further research can focus on
determining the ideal replication number for misfit data. Due to the fact that it is a simulation
study, it is suggested that new studies are conducted on the same condition for generalizations.
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6. APPENDIX

Baris-Pekmezci & Sengul-Avsar

6.1. Appendix A

Table Al. Type [ error rate and accuracy of error estimate from 25 items for 1PL model.

Accuracy of

Suple  Nomberof byl Enpiteldtie 0725, pas, oo
estimate

3000 5000 0.493 0.443 0.486 0.499 0.000
2500 0.502 0.452 0.493 0.511 0.000

1250 0.515 0.465 0.503 0.527 0.000

625 0.495 0.445 0.478 0.512 0.001

312 0.488 0.438 0.463 0.512 0.002

156 0.493 0.443 0.459 0.528 0.003

78 0.485 0.435 0.436 0.535 0.006

20 0.515 0.465 0.418 0.613 0.025

2000 5000 0.497 0.447 0.491 0.503 0.000
2500 0.489 0.439 0.480 0.497 0.000

1250 0.501 0.451 0.489 0.514 0.000

625 0.501 0.451 0.483 0.518 0.001

312 0.502 0.452 0.478 0.527 0.002

156 0.497 0.447 0.462 0.532 0.003

78 0.464 0.414 0.415 0.513 0.006

20 0.521 0.471 0.424 0.619 0.025

1000 5000 0.496 0.446 0.490 0.502 0.000
2500 0.495 0.445 0.486 0.504 0.000

1250 0.499 0.449 0.486 0.511 0.000

625 0.488 0.438 0.476 0.501 0.000

312 0.481 0.431 0.464 0.499 0.001

156 0.489 0.439 0.465 0.514 0.002

78 0.470 0.420 0.435 0.505 0.003

20 0.508 0.458 0.458 0.557 0.006

500 5000 0.491 0.441 0.484 0.497 0.000
2500 0.495 0.445 0.486 0.504 0.000

1250 0.491 0.441 0.478 0.503 0.000

625 0.507 0.457 0.490 0.525 0.001

312 0.527 0.477 0.502 0.552 0.002

156 0.490 0.440 0.455 0.525 0.003

78 0.434 0.384 0.385 0.484 0.006

20 0.508 0.458 0.411 0.605 0.025
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Table A2. Type I error rate and accuracy of error estimate from 50 items for 1PL model.

Accuracy of

Suple  Nomberof Byl Enpiteldtie 025, pas, oo
estimate

3000 5000 0.505 0.455 0.498 0.511 0.000
2500 0.504 0.454 0.496 0.513 0.000

1250 0.499 0.449 0.487 0.511 0.000

625 0.501 0.451 0.483 0.518 0.001

312 0.480 0.430 0.455 0.505 0.002

156 0.464 0.414 0.429 0.499 0.003

78 0.526 0.476 0.477 0.575 0.006

20 0.464 0.414 0.367 0.562 0.025

2000 5000 0.502 0.452 0.496 0.508 0.000
2500 0.501 0.451 0.492 0.510 0.000

1250 0.500 0.450 0.488 0.513 0.000

625 0.507 0.457 0.490 0.524 0.001

312 0.506 0.456 0.481 0.530 0.002

156 0.510 0.460 0.475 0.545 0.003

78 0.558 0.508 0.509 0.608 0.006

20 0.411 0.361 0.313 0.508 0.025

1000 5000 0.491 0.441 0.484 0.497 0.000
2500 0.498 0.448 0.489 0.506 0.000

1250 0.505 0.455 0.492 0.517 0.000

625 0.499 0.449 0.482 0.517 0.001

312 0.477 0.427 0.452 0.502 0.002

156 0.523 0.473 0.488 0.558 0.003

78 0.426 0.376 0.376 0.475 0.006

20 0.539 0.489 0.441 0.636 0.025

500 5000 0.486 0.436 0.480 0.492 0.000
2500 0.483 0.433 0.474 0.491 0.000

1250 0.489 0.439 0.476 0.501 0.000

625 0.489 0.439 0.471 0.506 0.001

312 0.487 0.437 0.462 0.511 0.002

156 0.491 0.441 0.456 0.526 0.003

78 0.516 0.466 0.466 0.565 0.006

20 0.445 0.395 0.348 0.543 0.025
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6.2. Appendix B

Table B1. Type [ error rate and accuracy of error estimate from 25 items for 2PL model.

Sample

Number of

Empirical

Empirical alpha (p)-

Accuracy of

size Replication alpha (p) nominal (P) alpha ~ ” 20p P20y eersrg;lif
3000 5000 0.496 0.446 0.490 0.502 0.000
2500 0.500 0.450 0.491 0.508 0.000
1250 0.493 0.443 0.481 0.506 0.000
625 0.519 0.469 0.502 0.536 0.001
312 0.496 0.446 0.472 0.521 0.002
156 0.476 0.426 0.441 0.511 0.003
78 0.528 0.478 0.478 0.577 0.006
20 0.453 0.403 0.356 0.550 0.025
2000 5000 0.499 0.449 0.493 0.505 0.000
2500 0.492 0.442 0.483 0.501 0.000
1250 0.490 0.440 0478 0.502 0.000
625 0.475 0.425 0.457 0.492 0.001
312 0.489 0.439 0.465 0.514 0.002
156 0.483 0.433 0.448 0.518 0.003
78 0.501 0.451 0.452 0.551 0.006
20 0.325 0.275 0.228 0.423 0.023
1000 5000 0.489 0.439 0.483 0.495 0.000
2500 0.486 0.436 0.477 0.494 0.000
1250 0.502 0.452 0.490 0.515 0.000
625 0.511 0.461 0.494 0.529 0.001
312 0.490 0.440 0.465 0.514 0.002
156 0.487 0.437 0.452 0.522 0.003
78 0.509 0.459 0.460 0.558 0.006
20 0.502 0.452 0.405 0.599 0.025
500 5000 0.491 0.441 0.485 0.498 0.000
2500 0.486 0.436 0.477 0.495 0.000
1250 0.476 0.426 0.463 0.488 0.000
625 0.477 0.427 0.459 0.494 0.001
312 0.496 0.446 0.472 0.521 0.002
156 0.452 0.402 0.417 0.487 0.003
78 0.451 0.401 0.402 0.500 0.006
20 0.545 0.495 0.447 0.642 0.025
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Table B2. Type I error rate and accuracy of error estimate from 50 items for 2PL model.

Accuracy of

Suple  Nomberof Byl Enpieldtie 025, s, oo
estimate

3000 5000 0.490 0.440 0.483 0.497 0.000
2500 0.491 0.441 0.482 0.500 0.000

1250 0.485 0.435 0.473 0.497 0.000

625 0.483 0.433 0.466 0.500 0.001

312 0.515 0.465 0.490 0.540 0.002

156 0.455 0.405 0.420 0.490 0.003

78 0.513 0.463 0.464 0.562 0.006

20 0.419 0.369 0.322 0.516 0.025

2000 5000 0.483 0.433 0.477 0.489 0.000
2500 0.478 0.428 0.469 0.487 0.000

1250 0.467 0.417 0.454 0.479 0.000

625 0.476 0.426 0.459 0.494 0.001

312 0.509 0.459 0.484 0.533 0.002

156 0.428 0.378 0.393 0.463 0.003

78 0.492 0.442 0.443 0.541 0.006

20 0.531 0.481 0.433 0.628 0.025

1000 5000 0.481 0.431 0.475 0.487 0.000
2500 0.470 0.420 0.461 0.479 0.000

1250 0.480 0.430 0.468 0.492 0.000

625 0.474 0.424 0.457 0.491 0.001

312 0.522 0.472 0.497 0.547 0.002

156 0.512 0.462 0.477 0.547 0.003

78 0.510 0.460 0.461 0.559 0.006

20 0.379 0.329 0.282 0.476 0.024

500 5000 0.471 0.421 0.465 0.478 0.000
2500 0.471 0.421 0.463 0.480 0.000

1250 0.478 0.428 0.466 0.490 0.000

625 0.477 0.427 0.460 0.495 0.001

312 0.516 0.466 0.492 0.541 0.002

156 0.513 0.463 0.478 0.548 0.003

78 0.476 0.426 0.427 0.525 0.006

20 0.426 0.376 0.329 0.524 0.025
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6.3. Appendix C

Table C1. Type I error rate and accuracy of error estimate from 25 items for 3PL model.

Sample

Number of

Empirical

Empirical alpha (p)-

Accuracy of

size Replication alpha (p) nominal (P) alpha ~ ” 20p P20y eersrg;lif
3000 5000 0.517 0.467 0.510 0.523 0.000
2500 0.519 0.469 0.510 0.527 0.000
1250 0.517 0.467 0.504 0.529 0.000
625 0.527 0.477 0.510 0.544 0.001
312 0.491 0.441 0.466 0.515 0.002
156 0.530 0.480 0.495 0.565 0.003
78 0.498 0.448 0.448 0.547 0.006
20 0.445 0.395 0.348 0.543 0.025
2000 5000 0.514 0.464 0.508 0.520 0.000
2500 0.510 0.460 0.501 0.519 0.000
1250 0.518 0.468 0.505 0.530 0.000
625 0.500 0.450 0.483 0.518 0.001
312 0.533 0.483 0.508 0.558 0.002
156 0.511 0.461 0.476 0.546 0.003
78 0.499 0.449 0.450 0.549 0.006
20 0.564 0.514 0.467 0.662 0.025
1000 5000 0.523 0.473 0.517 0.530 0.000
2500 0.530 0.480 0.521 0.539 0.000
1250 0.515 0.465 0.502 0.527 0.000
625 0.531 0.481 0.513 0.548 0.001
312 0.543 0.493 0.518 0.567 0.002
156 0.525 0.475 0.490 0.560 0.003
78 0.518 0.468 0.469 0.568 0.006
20 0.531 0.481 0.434 0.629 0.025
500 5000 0.531 0.481 0.524 0.537 0.000
2500 0.526 0.476 0.517 0.535 0.000
1250 0.519 0.469 0.507 0.532 0.000
625 0.521 0471 0.503 0.538 0.001
312 0.539 0.489 0.515 0.564 0.002
156 0.501 0.451 0.466 0.536 0.003
78 0.552 0.502 0.502 0.601 0.006
20 0.467 0.417 0.369 0.564 0.025
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Table C2. Type I error rate and accuracy of error estimate from 50 items for 3PL model.

Accuracy of

Suple  Nomberof Byl Enpieldtie 025, s, oo
estimate

3000 5000 0.512 0.462 0.506 0.518 0.000
2500 0.516 0.466 0.507 0.524 0.000

1250 0.495 0.445 0.482 0.507 0.000

625 0.510 0.460 0.492 0.527 0.001

312 0.505 0.455 0.480 0.530 0.002

156 0.494 0.444 0.459 0.529 0.003

78 0.455 0.405 0.406 0.504 0.006

20 0.421 0.371 0.324 0.519 0.025

2000 5000 0.515 0.465 0.509 0.521 0.000
2500 0.521 0.471 0.512 0.530 0.000

1250 0.521 0.471 0.509 0.534 0.000

625 0.521 0.471 0.503 0.538 0.001

312 0.493 0.443 0.469 0.518 0.002

156 0.522 0.472 0.487 0.557 0.003

78 0.549 0.499 0.499 0.598 0.006

20 0.593 0.543 0.496 0.691 0.025

1000 5000 0.512 0.462 0.505 0.518 0.000
2500 0.520 0.470 0.511 0.529 0.000

1250 0.522 0.472 0.510 0.535 0.000

625 0.519 0.469 0.501 0.536 0.001

312 0.528 0.478 0.503 0.552 0.002

156 0.507 0.457 0.472 0.541 0.003

78 0.498 0.448 0.449 0.548 0.006

20 0.575 0.525 0.477 0.672 0.025

500 5000 0.526 0.476 0.520 0.532 0.000
2500 0.520 0.470 0.511 0.528 0.000

1250 0.541 0.491 0.528 0.553 0.000

625 0.508 0.458 0.490 0.525 0.001

312 0.513 0.463 0.488 0.537 0.002

156 0.542 0.492 0.507 0.577 0.003

78 0.592 0.542 0.543 0.642 0.006

20 0.501 0.451 0.403 0.598 0.025
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# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

Sample.size
3000
3000
3000
3000
3000
3000
3000
3000

Sample.size
2000
2000
2000
2000
2000
2000
2000
2000

Sample.size
1000
1000
1000
1000
1000
1000
1000
1000

sample.size

500
500
500
500
500
500
500
500

# of item
25
25
25
25
as
25
25
25

# of item
as
25
25
25
25
as
25
25

# of item
25
25
25
25
a5
25
25
25

# of item
a5
25
25
25
25
as
25
25

me.b
0.000
0.000
0.000
-0.002
-0.001
-0.002
0.006
0.007
me.h
0.001
0.000
0.001
0.000
-0.001
-0.001
-0.001
-0.001
me.b
0.001
0.001
0.003
0.001
0.000
-0.002
0.003
0.010
me.h
0.002
0.001
0.003
0.001
0.002
-0.003
-0.006
0.024

se.b
1.457
1.456
1.453
1.460
1.492
1.449
1.439
1.453
se.b
1.456
1.461
1.458
1.442
1.446
1.457
1.445
1.486
se.b
1.461
1.466
1.461
1.456
1.481
1.437
1.501
1.462
se.b
1.465
1.463
1.460
1.460
1.441
1.491
1.491
1.496

rmse.b
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.055
rmse.b
0.067
0.067
0.067
0.066
0.066
0.066
0.064
0.063
rmse.h
0.095
0.095
0.095
0.093
0.085
0.091
0.096
0.106
rmse.b
0.134
0.134
0.134
0.136
0.136
0.135
0.135
0.147

me.theta
0.000
0.000
0.000
0.001
0.001
0.002
-0.004
-0.002
me.theta
0.000
0.000
0.000
0.000
0.002
0.002
-0.002
0.002
me.theta
0.000
0.000
-0.002
0.000
0.002
0.002
-0.001
-0.010
me.theta
0.001
0.001
0.001
0.002
0.001
0.002
0.007
-0.014

se.theta
0.055
0.056
0.055
0.053
0.055
0.049
0.061
0071
se.theta
0062
0.061
0.063
0.061
0.057
0.054
0.060
0.047
se.theta
0073
0.074
0.078
0073
0.065
0071
0.078
0.116
se.theta
0176
0175
0173
0176
0.183
0174
0.143
0.228

rmse.theta
0.014
0.015
0.015
0.015
0.015
0.016
0.014
0.021
rmse.theta
0018
0.018
0.018
0.017
0.017
0016
0.015
0.014
rmse.theta
0.025
0.026
0.025
0.025
0024
0.026
0.027
0.035
rmse.theta
0036
0.036
0.035
0.036
0.037
0036
0.032
0.043

M2
299.673
298.717
297.623
299.390
289014
299.200
300.422
297.788

M2
289.386
300.012
298.774
298.672
298.688
289.054
304.377
296.433

M2
299.406
299.449
295.915
300.639
299 650
301.334
298.567
297.865

M2
289756
299.393
299.465
298.152
297.027
209.843
305.010
298.669

M2.p

0.433
0502
0515
0.435
0.488
0.433
0.485
0515
M2.p

0.497
0.489
0501
0501
0502
0.497
0.464
0521
M2.p

0.496
0.485
0.433
0.481
0489
0470
0508
0521
M2.p
0491
0.435
0.491
0507
0527
0.480
0.434
0508

RMSEA.2
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

RMSEA.2
0.003
0.003
0.003
0.003
0.002
0.003
0.003
0.002

RMSEA.2
0.004
0.004
0.004
0.004
0.004
0.004
0.003
0.003

RMSEA.2
0.005
0.005
0.005
0.005
0.004
0.006
0.006
0.005

Log-Likelihood
-38193.147
-38237.706
-38204.417
-38236.766
-37967.818
-38197.122
-38496.120
-38182.517

Log-Likelihood
-25477.162
-25457.807
-25454.042
-25528.717
-25480.706
-25528.210
-25325.638
-25350.219

Log-Likelihood
-12730.860
-12711.550
-12700.168
-12739.327
-12687 958
-12823.181
-12605.717
-12561.626

Log-Likelihood

-6355.279
-6366.520
-6363.194
-6360.802
-6390.473
-6330.255
-6306.223
-62809.242

Eg.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

Eg.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.045

Eg.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

Eg.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

empirical-nominal alpha

0.443

0.452

0.4585

0.445

0.438

0.443

0.435

0.4585
empirical-nominal alpha

0.447

0.439

0.451

0.451

0.452

0.447

0.414

0.471
empirical-nominal alpha

0.446

0.445

0.438

0.431

0.439

0.420

0.458

0.471
empirical-nominal alpha

0.441

0.445

0.441

0.457

0.477

0.440

0.384

0.458

-2
0.486
0.493
0.503
0.478
0.453
0.459
0.436
0.418

0.491
0.480
0.489
0.483
0.478
0.452
0.415
0.424

0.450
0.486
0.476
0.454
0.465
0.435
0.458
0.424

D.484
0.486
0.478
0.490
0.502
0.455
0.385
0.411

0.499
0.511
0.527
0.512
0.512
0.528
0.535
0.613

0.503
0.497
0.514
0518
0.527
0.532
0513
0.5619

0.502
0.504
0.501
0.499
0514
0.505
0.557
0.619

0.457
0.504
0.503
0524
0.552
0.525
0.484
0.505

accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011



# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

Sample.size
3000
3000
3000
3000
3000
3000
3000
3000

sample size
2000
2000
2000
2000
2000
2000
2000
2000

Sample.size
1000
1000
1000
1000
1000
1000
1000
1000

Sample.size

500
500
500
500
500
500
500
500

#of item
50
50
50
50
50
50
50
50

#of item
50
50
50
50
50
50
50
50

#of item
50
50
50
50
50
50
50
50

#of item
50
50
50
50
50
50
50
50

me.b

0.000
0.000
0.001
-0.001
-0.001
0.001
0.002
-0.003
me.b

0.000
0.001
0.002
0.000
0.000
0.002
0.001
-0.015
me.b

-0.001
0.000
0.001
-0.001
0.002
-0.002
-0.001
-0.013
me.b

0.002
0.003
0.002
0.004
0.001
0.002
-0.001
-0.002

se.b
1483
1.480
1.477
1481
1477
1473
1473
1.484
se.b
1478
1476
1.485
1480
1479
1.450
1.477
1.467
se.b
1.482
1.4592
1.484
1.485
1.485
1.489
1.483
1.484
se.b
1489
1.487
1483
1.480
1.489
1.485
1521
1510

rmse.b
0.055
0.055
0.054
0.055
0.055
0.054
0054
0.053
rmse.b
0.067
0.067
0.067
0.067
0.067
0.068
0.066
0.067
rmse.b
0.095
0.096
0.085
0.095
0.095
0.085
0.093
0.098
rmse.b
0.135
0.135
0.135
0.133
0.135
0.135
0.138
0.139
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me.theta
0.000
0.000
0.000
0.001
0.001
-0.001
-0.001
0.004
me.theta
0.000
0.000
-0.001
0.001
0.002
-0.002
-0.001
0.013
me.theta
0.002
0.000
0.000
0.001
-0.001
0.004
0.002
0.013
me.theta
0.000
-0.001
0.001
-0.001
0.002
0.001
0.002
0.009

se.theta
0.056
0.056
0.058
0.053
0.053
0.061
0.061
0.044
se.theta
0123
0.123
0.126
0123
0.056
0.118
0.126
0.030
se.theta
0.145
0.074
0.072
0.071
0.073
0.064
0.069
0.054
se.theta
0.087
0.089
0.085
0.090
0.091
0.087
0.082
0.066

rmse.theta
0.015
0.014
0.015
0.015
0.015
0.014
0.015
0.012
rmse.theta
0.018
0.018
0.018
0.018
0.017
0.017
0.019
0.021
rmse.theta
0.025
0.026
0.025
0.026
0.023
0.024
0.027
0.034
rmse.theta
0.036
0.036
0.036
0.035
0.040
0.037
0.033
0.034

M2
1223140
12323545
1224342
1223 860
12326.967
1229901
1220230
1232012

M2
1223924
1223.882
1223874
12322 493
1222136
1222925
1213061
1242775

M2
1235421
1225135
1222830
1224304
1227370
1220.446
1237 680
1214549

M2
1236638
1223561
1224014
1217.708
1227775
1217750
1231873
1231.039

M2.p
0.505
0.504
0.4399
0501
0.480
0.464
0526
0.464
M2.p
0502
0.501
0.500
0507
0.506
0.510
0.558
0411
M2.p
0.491
0.498
0.505
0.499
0.477
0.523
0.426
0539
M2.p
0.486
0.483
0.489
0.489
0.487
0.431
0516
0.445

RMSEA.2
0.001
0.001
0.002
0.001
0.002
0.002
0.001
0.002

RMSEA.2
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.003

RMSEA.2
0.003
0.003
0.003
0.003
0.003
0.002
0.003
0.002

RMSEA.2
0.004
0.004
0.004
0.004
0.004
0.004
0.003
0.004

Log-Likelihood
-74852.745
-74894.242
-75013.808
-74771.204
-74905.122
-75123.100
-74769.185
-75245.604

Log-Likelihood
-49959.8323
-49988.694
-49928.566
-49963.840
-49932.391
-49758.711
-50088.217
-50266.496

Log-Likelihood
-249532.975
-24924722
-24938.207
-24908.186
-24949.250
-24928.376
-24993.260
-24920.461

Log-Likelihood
-12468.483
-12437.121
-12424.144
-12376.198
-12461.296
-12340.218
-12380.931
-12343.249

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.0459

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.0459

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

empirical-nominal alpha

0455

0.454

0.449

0451

0.430

0414

0476

0414
empirical-nominal alpha

0452

0451

0.450

0457

0.456

0.460

0508

0361
empirical-nominal alpha

0.441

0.448

0.455

0.449

0.427

0473

0376

0.489
empirical-nominal alpha

0.436

0.433

0.439

0.439

0.437

0.441

0.466

0.395

-2
0.498
0.496
0.487
0.483
0.455
0.429
0.477
0.367

'
P

0.496
0.492
0.488
0.450
0.481
0.475
0.509
0.313

'
P

0.484
0.489
0.492
0.482
0.452
0.488
0.376
0.441

'
P

0.480
0.474
0.476
0.471
0.462
0.456
0.456
0.348

0511
0.513
0.511
0518
0.505
0.499
0575
0.562

0.508
0.510
0.513
0524
0.530
0.545
0.508
0.508

0.497
0.506
0.517
0.517
0.502
0.558
0.475
0.636

0.492
0.491
0.501
0.506
0511
0.526
0.565
0543

accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011



7. 2. Supplementary File for 2PL. Model

Baris-Pekmezci & Sengul-Avsar

# of replication
5000
2500
1250
B25
312
158

78
20

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

samplesize #ofitem mea

3000 a5
3000 25
3000 a5
3000 a5
3000 25
3000 25
3000 25
3000 25
samplesize # of item
2000 25
2000 25
2000 25
2000 25
2000 25
2000 25
2000 25
2000 25
Samplesize # of item
1000 25
1000 25
1000 5
1000 5
1000 a5
1000 a5
1000 a5
1000 a5
samplesize # of item
500 25
500 a5
500 a5
500 25
500 25
500 25
500 25
500 25

0.004
0.004
0.004
0.004
0.005
0.003
0.003
0.002
me.a
0.005
0.004
0.005
0.004
0.002
0.006
0.002
0.002
me.a
0.010
0.010
0.012
0.010
0014
0.009
0.016
0.007
me.a
0.022
0.022
0.022
0.025
0.022
0.029
0.029
0.0177

se.a
0.163
0.162
0.162
0.164
0.162
0.164
0.162
0.167

0.172
0.172
0.172
0.172
0.170
0.175
0.171
0.161

0.155
0.155
0.198
0.201
0.198
0.201
0.198
0.207

0.249
0.248
0.249
0.250
0.251
0.249
0.244
0.256

rmse.a
0.085
0.085
0.085
0.086
0.085
0.085
0.086
0.086
rmse.a
0.105
0.105
0.105
0.104
0.105
0.108
0.102
0.102
rmse.a
0.145
0.145
0.149
0.150
0.148
0.147
0.148
0.150
rmse.a
0.215
0.215
0.216
0.217
0.216
0.220
0.212
0.214

me.b

0.003
0.003
0.002
0.004
0.005
0.000
-0.002
-0.009
me.b

0.003
0.004
0.005
0.003
0.004
0.004
0.002
0.007
me.b
0.005
0.004
0.004
0.008
0.001
0.010
-0.002
-0.002
me.b
0.008
0.009
0.010
0.009
0.005
0.008
0.007
-0.01

se.b
1458
1.457
1465
1.469
1.462
1.467
1.451
1.479
se.b
1.483
1.482
1.460
1.443
1.467
1.484
1.451
1.482
se.b
1470
1.468
1463
1.460
1.466
1.467
1.440
1458
se.b
1481
1.480
1484
1.497
1.466
1464
1.472
1517

rmse.b me.theta

0.075 -0.001
0.075 -0.001
0.076 0.000
0.076 -0.001
0.076 -0.001
0.074 0.000
0.076 0.002
0.073 0.003
rmse.b me.theta
0.092 0.000
0.094 -0.001
0.094 -0.002
0.091 | -0.001
0.0%4 -0.001
0.057 -0.001
0.088 -0.002
0.087 -0.003
rmse.b me.theta
0.132 -0.001
0.132 0.000
0.132 0.000
0,137 -0.002
0.133 0.001
0.133 -0.005
0.129 0.004
0.139 0.002
rmse.b me.theta
0.191 0.000
0.191 -0.001
0.191 -0.001
0.193 0.001
0.193 0.002
0.204 0.002
0.191 0.002
0.196 0.005

se.theta
0.110
0111
0114
0114
0112
0.109
0.111
0.095
se.theta
0.061
0.062
0.064
0.061
0.062
0.061
0.061
0.061
se.theta
0.146
0.148
0.145
0.145
0.143
0154
0.162
0.125
se.theta
0.087
0.087
0.086
0.084
0.084
0.075
0.087
0.066

rmse.theta
0.014
0.014
0.015
0.014
0.014
0.014
0.013
0.013
rmse.theta
0.018
0.018
0.018
0.018
0.018
0.018
0.016
0.015
rmse.theta
0.025
0.025
0.025
0.026
0.027
0.027
0.030
0.021
rmse.theta
0.036
0.036
0.035
0.036
0.037
0.034
0.032
0.036

M2
275.439
275.0509
275.7612
273.6207
275.6247
277.8721
2721231
2739572
M2
275.122
275.495
275.768
277.118
275991
276.621
275.571
287.456
M2
275917
276.2027
2747629
2737744
2759167
276.600
273579
274.042
M2
275.819
276.222
277.128
276.863
274.879
279.230
279.297
270.278

M2.p
0.496
0.500
0.493
0.519
0.496
0.476
0.528
0.453
M2.p
0.499
0.492
0.490
0.475
0.489
0.483
0.501
0.325
M2.p
0.489
0.486
0.502
0.511
0.450
0.487
0.509
0.502
M2.p
0.491
0.486
0.476
0.477
0.496
0.452
0.451
0.545

RMSEA.2
0.002
0.002
0.002
0.002
0.002
0.003
0.002
0.003

RMSEA.2
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.004

RMSEA.2
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

RMSEA.2
0.005
0.006
0.006
0.006
0.006
0.006
0.006
0.005

Log-Likelihood
-35127.778
-35152.720

-35107.61051

-35123.35379

-35110.32823

-35033.99359

-35076.88341
-35204.453

Log-Likelihood
-23400.047
-23421.335
-23418.543
-23474.757
-23415.020
-23351.905
-23463.769
-23384.685

Log-Likelihood
-11688.028

-11687.15335

-11697 04832

-11725.39484

-11702 90608
-11687.921
-11754 848
-11755.487

Log-Likelihood

-5838.883
-5836.567
-5834.162
-5820.697
-5848.041
-5861.134
-5856.085
-5753.086

Eq.5
0.003
0.004
0.006
0.009
0012
0017
0.025
0.049

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.045

Eq.5
0.003
0.004
0.006
0.009
0012
0.017
0.025
0.049

Eq.5
0.003
0.002
0.006
0.009
0.012
0.017
0.025
0.049

empirical-nominal alpha

0.446

0.450

0.443

0.469

0.446

0.426

0.478

0.403
empirical-nominal alpha

0.449

0.442

0.440

0.425

0.439

0.433

0.451

0.275
empirical-nominal alpha

0.439

0.436

0.452

0.461

0.440

0.437

0.459

0.452
empirical-nominal alpha

0.441

0.436

0.426

0.427

0.446

0.402

0.401

0.495

-2
0.450
0.491
0.481
0.502
0.472
0.441
0.478
0.356

0.493
0.433
0.478
0.457
0.465
0.448
0.452
0.228

0.483
0.477
0.430
0454
0.465
0.452
0.460
0.405

0.485
0.477
0.463
0.459
0.472
0.417
0.402
0.447

0.502
0.508
0.506
0.536
0,521
0.511
0577
0.550

0.505
0501
0.502
0.492
0514
0518
0551
0423

0.485
0.454
0.515
0529
0514
0522
0.558
0.599

0.498
0.485
0.488
0.494
0521
0.487
0.500
0.642

accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011



# of replication
4232
2500
1250
625
312
156

78
20

# of replication
5000
2500
1350
625
313
156

78
o

# of replication
5000
2500
1250
625
312
156

78
20

# of replication
5000
2500
1250
625
312
156

78
20

Ssamplesize # of item

3000 50
3000 50
3000 50
3000 50
3000 50
3000 50
3000 50
3000 50
Sample.size # of item
2000 50
2000 50
2000 50
2000 50
2000 50
2000 50
2000 50
2000 50
samplesize # of item
1000 50
1000 50
1000 50
1000 50
1000 50
1000 50
1000 50
1000 50
samplesize # of item
500 50
500 50
500 50
500 50
500 50
500 50
500 50
500 50

me.a
0.003
0.003
0.003
0.004
0.003
0.003
0.000
0.006
me.a
0.005
0.005
0.005
0.003
0.006
0.008
0.000
0.004
me.a
0.010
0.009
0.010
0.008
0.010
0.007
0.003
0.011
me.a
0.020
0.021
0.018
0.020
0.020
0024
0.021
0.003

0.163
0.163
0.162
0.164
0.163
0.164
0.166
0.163

0172
0.172
0.172
0171
0.172
0.172
0.171
0.165

0.198
0.198
0.197
0.198
0.199
0.196
0.196
0.196

0.244
0.244
0.243
0.244
0.244
0.245
0.242
0.248

rmse.a
0.082
0.081
0082
0.082
0.082
0.081
0.083
0.082
rmse.a
0100
0.100
0.100
0100
0.102
0.100
0.100
0.097
rmse.a
0.143
0144
0.143
0.143
0144
0.141
0.141
0.146
rmse.a
0.207
0.207
0206
0.207
0.206
0208
0210
0215

me.b
0.003
0.004
0.004
0.002
0.002
-0.001
-0.002
-0.015
mehb
0.005
0.005
0.004
0.007
0.010
0.003
-0.005
0.006
me.b
0.004
0.005
0.007
0.001
0.005
0.011
-0.003
-0.018
me.b
0.009
0.011
0.011
0.003
0.004
0.004
0.009
0.037

seb
1.482
1.485
1.485
1491
1.476
1.482
1.493
1.478
seb
1.483
1.481
1.482
1484
1.499
1.478
1.455
1.473
se.b
1481
1.491
1.488
1.495
1.495
1.486
1.498
1.411
se.lb
1.509
1.507
1.507
1.505
1.488
1510
1516
1528
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rmse.b me.theta

0.075 -0.001
0.074 -0D.002
0.074 -0.001
0.075 -0.001
0.076 -0.001
0.075 0.002
0.078 0.002
0.085 0.008
rmse.b me.theta
0.081 -0.002
0.091 -0.002
0.092 -D.002
0.081 -0.003
0.094 -0.004
0.090 0.000
0.093 0.003
0.085 -0.004
rmse.b me.theta
0.131 0.000
0.130 | -0.001
0.131 -0.002
0.130 0.002
0.133 -0.001
0.127 -0.003
0.131 0.002
0.126 0.012
rmse.b me.theta
0.180  -o.L001
0.152 -D.002
0.1582 -0.002
0.190 0.003
0.187 0.002
0.181 0.001
0.189 -0.001
0.199 -0.017

se.theta
0.110
0.110
0111
0.112
0.111
0.109
0.096
0.144
se.theta
0.062
0.062
0.061
0.067
0.070
0.057
0.053
0.061
se.theta
0.146
0.145
0.149
0.143
0.145
0.146
0.143
0.128
se.theta
0.087
0.089
0.083
0.076
0.082
0.080
0.086
0.122

rmse.theta
0.014
0.014
0.015
0.014
0.014
0.015
0.013
0.020
rmse.theta
0.018
0.018
0.018
0.018
0.018
0.018
0.020
0.016
rmse.theta
0.025
0.025
0.025
0.025
0.026
0.022
0.027
0.027
rmse.theta
0.026
0.037
0.037
0.035
0.036
0.037
0.033
0.033

M2
1176.523
1176.306
1177.651
1178.235
1172.113
1184222
1172677
1152.958

M2
1177.890
1178.677
1180.331
1179.662
1173.844
1185.645
1173.769
1171665

M2
1178.332
1180.073
1178.503
1179.117
1171933
1173.195
1173711
1154.550

M2
1180.094
11759.945
1179.010
1179.340
1172.148
1173.253
1179.763
1186.695

M2.p
0.49

0.491
0.485
0.483
0.515
0.455
0.513
0.419
M2.p
0.483
0.478
0.4567
0.476
0.509
0.428
0.492
0.531
M2.p
0.481
0.470
0.480
0.474
0522
0.512
0.510
0.379
M2.p
0.471
0.471
0.478
0.477
0.516
0.513
0.476
0.426

RMSEA.2
0.002
0.002
0.002
0.002
0.001
0.002
0.002
0.002

RMSEA.2
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.001

RMSEA.2
0.003
0.003
0.003
0.003
0.003
0.002
0.003
0.004

RMSEA.2
0.004
0.004
0.004
0.004
0.004
0.003
0.004
0.005

Log-Likelihood
-67642.223
-67603.514
-67678.284
-67532975
-67731.533
-67716.637
-67576.411
-67489.537

Log-Likelihood
-45105.882
-45114.507
-45107.194
-450835 287
-44964 306
-45051.152
-45380.808
-45367.346

Log-Likelihood
-22521.258
-22533 647
-22511.257
-22520.228
-22480 886
-22530.435
-22478.467
-22841.478

Log-Likelihood
-11231.536
-11228.371
-11242 831
-11244.709
-11243 590
-11216526
-11173.218
-11300.04%

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

Eq.5
0.003
0.004
0.006
0.009
0.012
0.017
0.025
0.049

empirical-nominal alpha

0.440

0.441

0.435

0.433

0.465

0.405

0.463

0.368
empirical-nominal alpha

0.433

0.428

0.417

0.426

0.459

0.378

0.442

0.481
empirical-nominal alpha

0.431

0.420

0.430

0.424

0472

0.462

0.460

0.328
empirical-nominal alpha

0.421

0.421

0.428

0.427

0.466

0.463

0.426

0.376

-2
0.483
0.482
0.473
0.466
0.490
0.420
0.464
0.322

0.477
0.468
0.454
0.458
0.434
0.393
0.443
0.433

0.475
0.461
0.468
0.457
0.497
0.477
0.461
0.282

0.465
0.463
0.466
0.460
0.492
0.478
0.427
0.328

2
0.497
0.500
0.497
0.500
0.540
0.430
0.562
0.516

0.489
0.487
0.479
0.454
0.533
0.463
0.541
0.628

0.487
0.479
0.492
0.491
0.547
0.547
0.559
0.476

0.478
0.480
0.430
0.495
0.541
0.548
0.525
0.524

accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011
accuracy of error rate estimate
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.011



7. 3. Supplementary File for 3PL. Model

Baris-Pekmezci & Sengul-Avsar

#of raplication
5000
2500
1250
825
312
158

78
20

#of replication
5000
2500
1251
625
312
158

72
20

#of replication
5000
2500
1250

625
312
158
78
20

#of replication
5000
2500
1250

625
312
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