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Abstract: There is a great deal of research about item response theory (IRT) 

conducted by simulations. Item and ability parameters are estimated with varying 

numbers of replications under different test conditions. However, it is not clear 

what the appropriate number of replications should be. The aim of the current study 

is to develop guidelines for the adequate number of replications in conducting 

Monte Carlo simulation studies involving unidimensional IRT models. For this 

aim, 192 simulation conditions which included four sample sizes, two test lengths, 

eight replication numbers, and unidimensional IRT models were generated. 

Accuracy and precision of item and ability parameter estimations and model fit 

values were evaluated by considering the number of replications. In this context, 

for the item and ability parameters; mean error, root mean square error, standard 

error of estimates, and for model fit; 𝑀2, 𝑅𝑀𝑆𝐸𝐴2, and Type I error rates were 

considered. The number of replications did not seem to influence the model fit, it 

was decisive in Type I error inflation and error prediction accuracy for all IRT 

models. It was concluded that to get more accurate results, the number of 

replications should be at least 625 in terms of accuracy of the Type I error rate 

estimation for all IRT models. Also, 156 replications and above can be 

recommended. Item parameter biases were examined, and the largest bias values 

were obtained from the 3PL model. It can be concluded that the increase in the 

number of parameters estimated by the model resulted in more biased estimates. 

1. INTRODUCTION 

To make sense of human behavior, individuals need to be observed and evaluated accurately. 

According to these evaluations, it is important to make decisions about individuals or to direct 

them towards their needs in a true way. Therefore, the psychometric properties of the 

measurement tools used for evaluations must be at satisfactory levels.  

Test theories are used to assess the psychometric properties of measurement tools. Test theories 

can be considered as a study area where research is conducted to investigate problems affecting 
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psychological measurements and to achieve valid and reliable measurement results by trying to 

reduce these problems as much as possible (Crocker & Algina, 1986). In the literature, the 

classical test theory and item response theory (IRT) are the most studied theories in the 

psychometric area. 

Human behavior is the main subject of social sciences. It is very important to measure human 

characteristics, which are very variable, validly, and reliably. The measurement of human 

behavior is different from the measurements made in natural science. Ideal laboratory 

conditions are created to achieve the most accurate results in natural science, but it is very 

difficult to apply these in social sciences. One of the best ways to achieve accuracy in social 

sciences is through simulation studies. Simulation studies have been used since 1900 as a 

solution to statistical problems (Harwell et al., 1996).  

IRT has strong assumptions that differ according to dimensionality, linearity, or scoring type 

(McDonald, 1982). In cases where the IRT assumptions are not met, the results of the analysis 

and estimates will be inaccurate. Monte Carlo (MC) simulation studies provide solutions to the 

problems that can be encountered by creating ideal data sets that meet the assumptions required 

for IRT (Han, 2007). MC simulation studies are used for many purposes such as the evaluation 

of new parameter estimation procedures, comparison of different item analysis programs, and 

parameter estimation in multidimensional data sets (Harwell, 1997). MC studies perform 

statistical sampling experiments via computers for solutions to statistical problems (Mundform 

et al., 2011). How MC studies are structured in IRT (Harwell et al., 1996) is shown in Figure 

1. 

Figure 1. Steps of a MC Simulation Study in IRT. 

 

 

 

 

 

 

 

 

The MC process starts with defining the research question, as seen in Figure 1. When the 
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and all outcomes are evaluated for answering the research questions using descriptive and 

inferential techniques. 

One of the important issues to be considered in MC simulation studies is the number of 
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continues until a satisfactory estimate, which means the convergence criterion is met, is 

obtained by working with some statistical rules on this first estimation (Fu, 2019; Thompson, 

2004; 2006).  

Iterations are needed for convergence of statistical algorithms (Hair et al., 2019). Some iteration 

algorithms which are used for parameter estimation in IRT are: the Broyden-Fletcher-Goldfarb-

Shanno Algorithm, the Bisection Method, the Expectation-Maximization Algorithm, Fisher 

Scoring, the Gibbs Sampling Algorithm, the Markov Chain Monte Carlo Algorithm, the 

Newton-Gauss Algorithm, and the Newton-Raphson Algorithm (Cai & Thissen, 2014; 

Chalmers, 2012; Hanson, 1998; Patsias et al., 2009; Tavares et al., 2004; Thompson, 2009; van 

der Linden, 2018; Weismann, 2013). 

As for replication, this is defined as the repeated administration of an experiment with selected 

changes in parameters or test conditions being made by the researcher (Hair et al., 2019; 

Rubinstein, 1981). Replications give an estimate of the stability of the predictions made in 

simulation studies (Feinberg & Rubright, 2016). Because the number of replications affects the 

accuracy and reliability of parameter estimates (Feinberg & Rubright, 2016), it is stated that the 

number of replications is an important factor for statistical results (Kleijnen, 1987; Rubinstein, 

1981). These estimations are directly related to the implications to be reached in simulation 

studies. When conducting a MC simulation study, it is important to answer the question of how 

many replications are needed for accurate estimations. So, the number of replications should be 

determined carefully by the researchers. Within the context of unidimensional IRT models, 

various studies that are conducted on the MC method with a different number of replications 

are given in Table 1. 

Table 1. Literature review about the number of replications for unidimensional IRT models. 

Studies 
Number of 

Replication 

Sheng & Wikle, 2007 10 

Roberts et al., 2002 30 

Sen et al., 2016 50 

Crişan et al., 2017; Lee et al., 2017; Park et al., 2016; Yang, 2007; Zhang, 

2008 

100 

Matlock Cole & Paek, 2017 

Feinberg & Rubright, 2016 

200 

250 

Matlock & Turner, 2016 500 

Ames et al., 2020; Reise et al., 2011 1000 

Baldwin, 2011; Mundform et al., 2011 5000 

Babcock, 2011 10000 

 

As is seen from Table 1, the different number of replications ranges between 10 and 10000. It 

is usual for a different number of replications to be made in varying test conditions for accurate 

parameter estimations by different IRT models. However, it is not clear what the appropriate 

number of replications should be under varying test conditions for unidimensional IRT models. 

In addition, it is important to determine a sufficient number of replications according to test 

conditions that are specified by the researchers. Although simulative studies provide 

convenience to theoretical studies, they are time-consuming processes. 

To establish a rule for what ideal replication number should be, Feinberg and Rubright (2016) 

had provided a formula about replication number, which is given in Equation 1:  

          𝜎𝑀 =
�̂�

√𝑅−1
                            (Equation 1) 
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where �̂� is the standard deviation of the estimated parameter across replications and R is the 

number of replications and 𝜎𝑀 is the SE of the mean. 

According to their formula, they suggested calculating the ideal number of replications by using 

the standard deviation of the estimated parameters across replications. To determine the ideal 

replication number, firstly, the researchers must replicate data, and secondly, the ideal 

replication number must be calculated according to replicated samples’ standard deviation. 

Starting replication number will be the determiner of the ideal replication number. This seems 

a time-consuming process. Because, firstly, data need to be replicated, and then the ideal 

replication number must be calculated. Doing more replication will result in a smaller standard 

deviation of replicated samples or vice versa. Hence, the calculation of ideal replication number 

according to Feinberg and Rubright (2016) will tend to be smaller due to using that standard 

deviation. Large standard deviations will recommend more replications. Lastly, there is no exact 

rule about what the ideal standard deviation of replicated samples should be (see for details 

Feinberg & Rubright, 2016). Therefore, using Equation 1 does not seem very practical.  

In this study, the number of replications required for the most accurate parameter estimations 

in various sample sizes and test lengths according to unidimensional IRT models (1PL model, 

2PL model, and 3PL model) was determined. 

The purpose of the current study is to develop guidelines for the adequate number of 

replications in conducting MC simulation studies involving unidimensional IRT models with 

different test conditions. Based on this purpose, answers to the following research questions 

were sought: 

1. How are the estimations of item parameters obtained from varying sample sizes and test 

lengths affected by varying numbers of replications? 

2. How are the estimations of ability parameters obtained from varying sample sizes and test 

lengths affected by varying numbers of replications? 

3. How are the estimations of model fit obtained from varying sample sizes and test lengths 

affected by varying numbers of replications? 

2. METHOD 

2.1. Study Design Factors 

The purpose of this study is to develop guidelines for the adequate number of replications in 

conducting MC simulation studies involving unidimensional IRT models with different test 

conditions. According to this aim, different sample sizes and test lengths were studied to 

determine the adequate number of replications to obtain more accurate and precise estimations. 

In line with this purpose, firstly, studies which implemented unidimensional IRT models and 

MC simulation studies were reviewed. According to the literature review (Baldwin, 2011; 

Mundform et al., 2011), 5000 was selected as a starting replication number for this study. In 

determination of other numbers of replications, the method which Preecha (2004) implemented 

in his study was used. Considering this method, if the bias difference between two consecutive 

replication numbers is large, this interval should be halved, and the analysis should be repeated. 

If not, then the last replication number should be halved, the analysis should be repeated, and 

the bias statistics should be calculated. 

After determining the maximum replication number as 5000, bias analyses were performed. 

Half of the 5000 replications were taken, and the analyses were re-run for 2500 replications. 

This process was performed until the number of replications was 78. Additionally, the minimum 

number of replications was determined as 20. In some nonparametric IRT studies, 20 is used as 

the minimum number of replications (Şengül Avşar & Tavşancıl, 2017; van Onna, 2004).  

Therefore, in this study, the adequacy of 20 replications was also tested. 
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Within the scope of this study, a literature review was also done for the test lengths and sample 

sizes which are given in Table 2. In IRT studies, there are no exact rules for adequate sample 

sizes for accurate and precise estimation (De Ayala, 2009; Kirisci et al., 2001; Reise & Yu, 

1990). At this point, it is important to explain what accuracy and precision are. 

Accuracy indicates how close the measured values are to known values. For example, if in the 

laboratory one measures a given object as 132.2 cm, but the known height is 150 cm, then the 

measurement of the given object is inaccurate. In this case, the measurement is not close to the 

known value. Precision indicates how two or more measurements are close to each other. Using 

the aforementioned example, if one measures a given object ten times, and obtains 132.2 cm 

each time, then the measurement of that object is very precise. Any measurement can be very 

precise but inaccurate, as described above, while it can also be accurate but imprecise (Barış 

Pekmezci & Gülleroğlu, 2019). 

Sample sizes and test lengths are the other independent variables of this research besides 

number of replications and IRT models. In order to determine which sample sizes and test 

lengths were commonly used in unidimensional IRT studies, literature was reviewed. The 

literature review results are given in Table 2. 

Table 2. Literature review about sample sizes and test lengths for unidimensional IRT models. 

 

Sample sizes and test lengths differ as can be seen from Table 2. Accordingly, sample sizes are 

varied between 150 and 5000, while test lengths are varied between 10 and 70. Minimum 

sample size was determined as 500, medium sample sizes were determined as 1000 and 2000, 

and maximum sample size was determined as 3000 for this research. Test lengths were selected 

as 25 items for short tests and 50 items for long tests for this research. 

To begin the simulation, the item difficulty parameters (b), the item discrimination parameters 

(a), the item lower asymptote parameters or guess parameters (c), and the ability parameters (θ) 

were chosen according to the literature review. In this study, the b parameters are normally 

distributed [𝑏~𝑁(0.50, 1.50)]; the a parameters are uniformly distributed [a~U(1.5, 2.0)], the c 

parameters are beta distributed [𝑐~𝐵𝑒𝑡𝑎(20, 90)], and the ability parameters (θ) are normally 

Studies Sample Size Test Lengths 

 1PL model 2PL model 3PL model  

Lord, 1968 1000 - - 50 

Hulin et al., 1982 - - 500/1000 30/ 60 

Thissen & Wainer, 1982 1000 2500 -  

Goldman & Raju, 1986 250 1000 -  

Yen, 1987 - - 1000 10/ 20/40 

Patsula & Gessaroli, 1995 - - 1000 20/40 

Baker, 1998 - 500 - 50 

De La Torre & Patz, 2005 - - 1000 10/30/ 50 

Gao & Chen, 2005 - - 500/ 2000 10/ 30/ 60 

Yang, 2007 100/500/1000 - - 15/ 30/ 45 

Babcock, 2011 - 1000/2500/4000 - 54/62/70 

Chuah et al., 2006 - - 500/1000 20 

Sahin & Anil, 2017 150/ 250/ 350/ 

500/ 750/ 

1000/2000/ 

3000/ 5000 

150/ 250/ 350/ 500/ 

750/ 1000/2000/ 

3000/ 5000 

150/ 250/ 350/ 

500/ 750/ 

1000/2000/ 

3000/ 5000 

10/20/30 

Matlock Cole & Paek, 2017 - 1500 3000 20/40 

Ames et al., 2020 - 250/500/1000 250/500/1000 10/40 
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distributed [θ~𝑁(0, 1)] (Bahry, 2012; Bulut & Sünbül, 2017; Cohen et al., 1993; DeMars, 2002; 

Feinberg & Rubright, 2016; Jiang et al., 2016; Harwell & Baker, 1991; Mislevy & Stocking, 

1989; Mooney, 1997). According to these parameters, dichotomous response patterns were 

generated for selected conditions (3x2x4x8), which are shown in Table 3. The generation of the 

data sets in the test conditions, determined in the research, by two computers with 2.7 GHz Intel 

Core i5 8 GB RAM and 1.8 GHz Turbo Intel Core i7 16 GB RAM took approximately a month. 

Table 3. Simulation conditions. 

IRT 

Models 

Test 

lenghts 

Sample 

Size 

Number of Replications 

   20 78 156 312 625 1250 2500 3000 

1PL model 25 items 500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

50 items 500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2PL model 25 items 500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

50 items 500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3PL model 25 items 500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

50 items 500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2.2. Simulating Model Parameters and Item Responses 

All parameters were simulated based on the null (ideal) model. Any departure from the null 

model can cause misfit or non-fit of the data, therefore; misspecified models are not in the scope 

of this research. To simulate dichotomous item responses and estimate the item parameters 

based on the unidimensional IRT models, the “itemrecovery” function, which is composite of 

R functions and defined by Bulut and Sünbül (2017), was revised for this study and used. This 

function, which generates item parameters, simulates item responses concerning parameters, 

estimates the item parameters of related IRT models, and computes bias statistics, was adapted 

to the current study. IRT model parameters and model fit values were estimated using the mirt 

package (Chalmers, 2012) in R. After all bias statistics had been calculated, the relevant 

graphics were drawn by using the lattice package (Sarkar, 2008) in R. 
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2.3. Estimation of Model Parameters and Type I Error Rates 

The evaluation of the accuracy and precision of item and ability parameter estimations 

throughout the replications was carried out via mean error (ME), root mean square error 

(RMSE) and standard error of estimates (SE). Mean Error (ME) measures the average 

magnitude of the errors. ME is the average of the differences between the model’s predicted 

and actual values, where all individual differences have equal weight. ME is given in Equation 

2: 

𝑀𝐸 =
1

𝑁
∑ y𝑖 − ŷ𝑖

𝑁
i=1                                                   (Equation 2) 

where N is the total test length, ŷj is the estimated item parameter for item i (i = 1, 2, …, N), 

and yj is the true item parameter for item i. 

RMSE is the square root of the variance of the residuals. It indicates the fit of the model, which 

is the closeness of the observed data points to the model’s predicted values. RMSE can range 

from 0 to ∞ and lower values mean better fit. The errors are squared before they are averaged. 

RMSE should be used when undesirable large errors exist because, in the calculation, RMSE 

gives a relatively high weight to large errors.  

RMSE is in the same unit as the response variable and can be interpreted as the variation of 

unexplained variance. RMSE is an important criterion of estimation accuracy, and it is 

important when the interest is in the model prediction. There is no one best model fit measure; 

researchers should choose depending on their objectives, and more than one is often useful. 

RMSE is given in Equation 3: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1                                      (Equation 3) 

Standard Error (SE), like standard deviation, is a measure of dispersion. However, while the 

standard deviation is a measure of dispersion from sample values, the standard error is a 

measure of dispersion from the sampling distribution, which belongs to the population of 

interest. SE is the measure of how accurate and precise the sample is. SE is not only a measure 

of dispersion and accuracy of the sample statistic but also an important indicator of reliability 

of estimation of the population parameter. SE is given in Equation 4:  

𝑆𝐸 =
1

𝑁
∑ ( 𝑦 ̂𝑁

𝑖=1 −  
∑ �̂�𝑁

𝑖=1

𝑁
)2                                     (Equation 4) 

In addition to bias estimation of model parameters, Type I error rates for model fit were 

calculated in this study. Glass et al. (1972) emphasize that sampling error contaminates 

empirical Type I error and statistical power. Therefore, in comparing Type I error, they highly 

recommended taking this sampling error into account.  Glass et al. (1972) suggested Equation 

5 (Type I error rates) about standard error of a sampling proportion by using the number of 

replications as a sample size: 

    �̂�𝑝 = √
(1−𝑃)𝑃

𝑅
                                                         (Equation 5) 

where R denotes the number of replications, P is the nominal or theoretical Type I error (.05 

for this study), and p is the empirical or the observed Type I error.  Glass et al. (1972) advise 

against considering the difference between a particular observed p value and the theoretical P 

value significant, if departure is less than two standard errors of that p. 

To estimate accuracy of error rate, the MC variance of an estimate of Type I error rate ( 
�̂�𝑝

√𝑅
 ) 

was used, where �̂�𝑝is the simulated standard deviation of the p values, and R is the number of 

replications. 
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3. RESULT / FINDINGS 

Findings are given in the order of the research questions. Most parts of the analysis outputs are 

given in the Supplementary file due to the excessive number of simulation conditions (in total 

192 conditions from Table 3). Only the most remarkable findings are given via figures and 

tables in the findings section. For detailed information, the Supplementary file can be reviewed.  

3.1. The Effect of the Number of Replications on Estimation of Item Parameters with 

Varying Sample Sizes and Test Lengths 

Bias estimations of item parameters obtained by examining simulation conditions are given in 

this section. Figure 2, Figure 3, and Figure 4 summarize for RMSE values according to IRT 

models. Besides, ME, RMSE, and SE values are given in the Supplementary file. 

When ME, RMSE, and SE values according to item parameters were examined, the same 

pattern was seen for all IRT models. Therefore, findings were interpreted in a way that concerns 

all IRT models. Increasing the sample size resulted in decreasing RMSE values for b parameters 

in all simulation conditions. When the RMSE values were examined in terms of sample sizes 

in detail, for all replication numbers, it was seen that the bias differences between samples were 

quite large. Contrary to this, when each sample was analyzed within itself, a slight difference 

was found in regard to replication number. For example, for the simulation condition with the 

1PL model with a test length of 25 items and sample size of 1000, RMSE values obtained from 

5000 replications and 78 replications were compared, the difference between them was found 

to be 0.001. This indicates that parameter estimation accuracy was mostly affected by sample 

size rather than by the number of replications. Results of ME, RMSE, and SE can be seen in 

Table 4.  

Table 4. Accuracy and precision of b parameters. 

IRT Models Test lenghts Bias statistics Number of replications 

   20 5000 

Sample size   500 3000 500 3000 

1PL model 25 items ME 0.024 0.007 0.002 0.000 

RMSE 0.024 0.055 0.134 0.054 

SE 1.496 1.453 1.465 1.457 

50 items ME -0.002 -0.003 0.002 0.000 

RMSE 0.139 0.053 0.135 0.055 

SE 1.510 1.484 1.489 1.483 

2PL model 25 items ME -0.01 -0.009 0.008 0.003 

RMSE 0.196 0.073 0.191 0.075 

SE 1.517 1.479 1.481 1.458 

50 items ME 0.037 -0.015 0.009 0.003 

RMSE 0.199 0.085 0.190 0.075 

SE 1.529 1.479 1.509 1.482 

3PL model 25 items ME -0.030 -0.002 -0.050 -0.004 

RMSE 0.628 0.228 0.588 0.203 

SE 1.731 1.470 1.621 1.463 

50 items ME -0.046 -0.005 -0.047 -0.003 

RMSE 0.553 0.172 0.519 0.185 

SE 1.668 1.450 1.602 1.489 

When ME and SE statistics were examined, although the average ME and SE did not change 

as much as RMSE values according to the sample size, the highest bias values were observed 

in the smallest sample size for both test lengths. Additionally, except for the 3PL model in terms 
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of RMSE values, b parameter estimation biases were found to be quite similar for both test 

lengths.  According to SE values, it can be said that the precision of b parameter estimates were 

not much affected by the number of replications. Accuracy and precision of b parameters, which 

was obtained with the minimum replication number (20) and the largest sample size (3000), 

could not be obtained with the maximum replication number (5000) and the minimum sample 

size (500).   

For a parameters, bias statistics were examined and interpreted in detail according to both test 

lengths. In regard to a parameters, increasing the sample size resulted in decreased bias statistics 

(ME, RMSE, SE) for both test lengths except one condition. Estimation of a parameter accuracy 

and precision is directly related with sample size. Accuracy and precision of a parameters, 

which was obtained with the minimum replication number (20) and the largest sample size 

(3000), could not be obtained with the maximum replication number (5000) and the minimum 

sample size (500). Related findings can be seen in Table 5.  

Table 5. Accuracy and precision of a parameters. 

IRT Models Test lenghts Bias statistics Number of replications 

   20 5000 

Sample size   500 3000 500 3000 

2PL model 25 items ME 0.018 0.002 0.022 0.004 

RMSE 0.214 0.086 0.215 0.085 

SE 0.256 0.167 0.249 0.163 

50 items ME 0.003 0.006 0.020 0.003 

RMSE 0.215 0.082 0.207 0.082 

SE 0.248 0.163 0.244 0.163 

3PL model 25 items ME 0.201 0.008 0.179 0.008 

RMSE 0.735 0.194 0.649 0.194 

SE 0.703 0.229 0.631 0.229 

50 items ME 0.168 0.019 0.146 0.016 

RMSE 0.592 0.163 0.544 0.168 

SE 0.583 0.211 0.538 0.217 

 

Regardless of the sample size, bias statistics (ME, RMSE, SE) were not substantially affected 

by the number of replications. For example, for the 2PL model with a test length of 50 items 

and sample size of 500, the SE of the a parameters obtained from 5000 replications and 20 

replications were compared, and the difference between them was found to be 0.004. Regardless 

of the sample size, parameter estimation bias (ME, RMSE, SE) of a parameters were not 

affected by the number of replications, as in b parameters. In summary, it was seen that the 

sample size had the largest effect rather than the number of replications in the estimation of 

both a and b parameters in both test lengths.  

For c parameters, bias statistics were examined, and it was seen that as the sample size 

increased, SE and RMSE decreased. When the sample size was the largest (3000), the 

estimation accuracy and precision obtained with the minimum replication number (20) could 

not be obtained with the smallest sample size (500) and maximum replication number (5000). 

Related findings can be seen in Table 6. In summary, like the other item parameters (a and b), 

sample size had a greater effect on c parameter estimation bias than replication number.  

When the effect of test lengths on parameter estimation bias was examined, it was seen that, for 

a parameters, increasing the length of the test provided more accurate and precise parameter 

estimation in all sample sizes and replication numbers. Increasing the length of the test 
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decreased the estimation bias of a parameters. For b parameters, increasing the test lengths 

resulted in increased SE. In terms of RMSE values, there was no remarkable change in the 

accuracy of b parameter estimations. In general, increasing the test lengths resulted in increased 

accuracy and precision of c parameters.  

Table 6. Accuracy and precision of c parameters. 

IRT Model Test lenghts Bias statistics Number of replications 

   20 5000 

Sample size   500 3000 500 3000 

3PL model 25 items ME -0.001 -0.007 0.002 -0.002 

RMSE 0.134 0.076 0.141 0.077 

SE 0.144 0.082 0.141 0.083 

50 items ME 0.001 -0.004 0.004 -0.002 

RMSE 0.134 0.072 0.131 0.071 

SE 0.134 0.078 0.133 0.078 

 

Figure 2. RMSE values for 1PL model. 
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Figure 3. RMSE values for 2PL model. 

 

Figure 4. RMSE values for 3PL model. 

 

As a result, it was seen that the sample size had a greater effect rather than the number of 

replications in the estimation of item parameters (a, b, and c). The parameter accuracy and 

precision obtained with the minimum replication number when the sample size was the largest 

could not be obtained with the maximum replication number when the sample size was the 
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smallest. When item parameter biases were examined among IRT models, the largest bias 

values were obtained from the 3PL model. It can be concluded that the increase in the number 

of parameters estimated by the model resulted in more biased estimates. 

3.2. The Effect of the Number of Replications on Estimation of Ability Parameters with 

Varying Sample Sizes and Test Lengths 

Bias estimations of ability parameters (𝜃) obtained by examining simulation conditions are 

given in this section. Besides, all bias statistics are given in the Supplementary file. The ability 

parameter (𝜃) estimation accuracy and precision did not change much according to test lengths 

within all IRT models. Apart from this finding, between all IRT models, some minor differences 

occurred in terms of bias statistics.  

For the 1PL model, when the bias statistics were inspected in detail, it was seen that in general, 

estimation accuracy for 𝜃 parameters increased if sample size was increased. When SE values 

were investigated in terms of estimation precision, the largest sample size (3000) and minimum 

replication number (20) conditions (0.071 and 0.044, respectively for test lengths 25 and 50 

items) were superior to the smallest sample size (500) and maximum replication number (5000) 

conditions (0.176 and 0.087, respectively for test lengths 25 and 50 items). In other words, 𝜃 

parameters with the minimum sample size and maximum replication number were not predicted 

as accurately as with the large sample size and minimum replication number. Increasing the 

sample size would provide more precise 𝜃 parameters. Lastly, when the RMSE values for 𝜃 

parameters were analyzed, it can be said that the accuracy of 𝜃 parameters increased as the 

sample size was increased. 

For the 2PL model, when the RMSE values regarding 𝜃 parameters were examined, it can be 

said that the accuracy of 𝜃 parameter estimations increased as sample size was increased for 

both test lengths. When the SE statistics were analyzed, it was detected that 𝜃 parameters were 

estimated most precisely in the 2000-sample size for both test lengths. When the effects of test 

length in the estimation of 𝜃 parameters were examined, there were not seen many differences 

in terms of bias statistics. 

For the 3PL model, the estimation accuracy of 𝜃 parameters increased with increasing sample 

size for both test lengths. In general, regardless of the sample size, the number of replications 

did not have a remarkable effect on the accuracy and precision of 𝜃 parameters. However, the 

number of replications did have an important effect on the precision of 𝜃 parameter estimations 

when for the test length of 50 items and the sample size was 1000. According to findings the 

sample size had a greater effect on the estimation accuracy of 𝜃 parameters than the number of 

replications for all IRT models. 

3.3. The Effect of the Number of Replications on Estimation of Model Fit with Varying 

Sample Sizes and Test Lengths 

Model fit statistics (𝑀2 and 𝑅𝑀𝑆𝐸𝐴2) were evaluated for all IRT models. 𝑀2 and 

𝑅𝑀𝑆𝐸𝐴2 statistics are given respectively in Figure 5 and Figure 6 for all IRT models. 

According to 𝑀2 values, increasing the test length did not show improvement on the model fit. 

Additionally, when 𝑅𝑀𝑆𝐸𝐴2 values were examined for the 1PL model, the best model fit was 

seen in the largest sample size for both test lengths.  For both the 2PL model and 3PL model, 

increasing the test length resulted in decreased/poor model fit in terms of 𝑀2 values. Although 

not much change was seen, 𝑅𝑀𝑆𝐸𝐴2 values decreased to some extent regardless of the sample 

size for both the 2PL model and 3PL model. Lastly, it was also detected that regardless of the 

sample size, the number of replications had no effect on model fit values for both test lengths 

for all IRT models. 
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Figure 5. 𝑀2 values for all IRT models. 

 

Figure 6. 𝑅𝑀𝑆𝐸𝐴2 values for all IRT models. 

 

In addition to these findings, Type I error inflation rates were calculated according to Glass et 

al. (1972), and these are presented in Appendix A, Appendix B, and Appendix C. The difference 

between a particular empirical alpha (p) value and the nominal alpha (P) value was indicated 

as significant if departure was two standard errors of p. When Type I error inflation rates are 

examined in Appendix A, it is seen that Type I error inflation was only seen at 20 replications 

for the 1PL model in all sample sizes and test lengths. Also, when test length of 50 items, 78 

replications were enough for actual model fit interpretations for the sample sizes 500 and 1000.  
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For the 2PL model, Type I error inflation, given in Appendix B, was only seen at 20 replications 

for the test length of 25 items in all sample sizes except when the sample size was 3000. When 

the sample size was 3000, Type I error inflation was seen at 78 replications also. Type I error 

inflation was seen at only 20 replications in all sample sizes for the test length of 50 items. 

For the 3PL model, in all sample sizes and test lengths Type I error inflation was seen at 20 

replications. Additionally, Type I eror inflations, given in Appendix C, were seen at 78 

replications in both 500 and 3000 sample sizes for the test length 25 items.  For the test length 

50, Type I error inflation was 78 replications in only 2000 sample sizes. In summary, Type I 

error rates were not affected except at 20 and 78 replications for all IRT models.  

Accuracy of error rate estimation and confidence intervals of empirical alpha (p), given in 

Appendices (A, B, and C), were examined and the same results were achieved for all IRT 

models. It is important to underline the finding that accuracy of error rate estimation did not 

change according to either test length or sample size and was affected more by the replication 

number. The lowest accuracy of error rate was seen at 20 replications for the 1PL model, and 

at 20 and 78 replications for both the 2PL model and 3PL model. Lastly, the largest confidence 

interval of empirical alpha (p) was seen in the smallest replication number, and that is important 

in terms of supporting inferences about accuracy.  

The main concern of this study is determining a suitable replication number for simulations 

different test conditions. When test conditions which are determined in this research are 

considered, findings show that the number of replication effects Type I error inflation. Type I 

error inflation was seen at 20 and 78 replications. In general, it can be thought that 156, 312, or 

625 replications may enough for avoiding Type I error inflation (see Supplementary file for 

details). However, other factors, such as item parameter estimation and model fit considered 

together, it is suggested that at least 625 replications should be performed in terms of Type I 

error rates. 

4. DISCUSSION and CONCLUSION 

The purpose of the current study was to determine the required number of replications for the 

most accurate and precise parameter estimations in conducting MC simulation studies involving 

unidimensional IRT models. In line with research purpose, different sample sizes and different 

test lengths were defined as test conditions besides the number of replications. 

The first major finding was that neither the test length nor the replication numbers had an effect 

on item parameter estimation accuracy and precision for all IRT models. On the contrary, the 

sample size had the largest effect rather than the number of replications in estimation of item 

parameters. It can be concluded that when the sample is large, even with the smallest number 

of replications, item parameters can be estimated with adequate precision and accuracy.  

Consistent with the current research, Hulin et al. (1982) showed that in the studies of item bias 

which place emphasis on accuracy, large numbers of items were not necessarily needed. 

However, they recommended using large samples to obtain accurate item parameter estimates. 

Besides, they proved that a sample size of 500 for the 2PL model and 1000 for the 3PL model 

was needed, but also underlined that the more accurate results appeared with a sample size of 

2000. Also, consistent with the present study, Ames et al. (2020) found that difficulty 

parameters had smaller mean bias as sample size was increased for the 2PL model. However, 

contrary to the present study, they found that increasing the sample size increased the mean bias 

of discrimination parameters.  

When item parameter biases were examined among IRT models, the largest bias values were 

obtained from 3PL model. It can be concluded that the increase in the number of parameters 

estimated by the model resulted in more biased estimates. 



Int. J. Assess. Tools Educ., Vol. 8, No. 2, (2021) pp. 423–453 

 437 

The study also showed that the best way to increase estimation accuracy of 𝜃 parameters was 

to increase the sample size. Contrary to this, 𝜃 parameters were most precisely estimated among 

other samples only with 2000 for the 2PL model and 3000 for the 3PL model, and increased 

test length had no effect on estimation precision like the 1PL model. For the 2PL model and 

3PL model, only sample size had an effect on estimation in terms of estimation accuracy of  𝜃 

parameters. The largest sample size had a larger effect on estimation accuracy than the number 

of replications in both test lengths for all IRT models. This is also consistent with the findings 

of Hulin et al. (1982), who reported that ability estimates were less accurate in small sample 

sizes for the 3PL model. 

The second major finding was that although the number of replications did not seem to have an 

effect on the model fit, it was decisive in Type I error inflation and error prediction accuracy 

for all IRT models. Besides, the most determining factor in model fit was the sample size and 

long tests had relatively better fit values than short tests. This finding is consistent with that of 

Schumacker et al. (1994), who found no differences between Rasch item and ability fit statistics 

based on the number of replications, and the Type I error rates were close to expected values. 

In accordance with the present study, they recommended being more sensitive to the sample 

size and test length.  

The most obvious finding to emerge from this study was that the sample size had the most 

important effect on estimation bias for both item parameters and model fit statistics. However, 

the number of replications was found to be effective on Type I error inflation. Generally, when 

the number of replications is 20 and 78, Type I error inflation was seen much as per other 

conditions. When all test conditions determined in this study, especially the acccuracy of error 

rate estimate were evaluated together, accuracy of error rate estimate was seen too close to zero 

for 625 replications. Besides, also 156 replications and above can be recommended but if the 

researchers want to get more accurate results, should perform at least 625 replications.  

The present study investigated the effect of replication number on the estimation of item and 

ability estimations and model fit statistics in the MC method based on unidimensional IRT 

models. It was concluded that the number of replications was not a very impressive factor in 

the test conditions determined in this study for unidimensional IRT models. In particular, it is 

seen that sample size is the most effective factor in the estimation of the item and ability 

parameter and model fit. However, it was concluded that the number of replications is effective 

in estimating Type I error inflation and accuracy of error rate estimate. In general, as a 

conclusion of this study, when studying with unidimensional IRT models, it is highly 

recommended that researchers use large samples instead of studying with small samples and 

excessive replications. 

This study showed that an increase in the number of parameters estimated by the model resulted 

in increased bias. Therefore, it should be taken into consideration that the adequate number of 

replications would differ in multi-dimensional models because of increasing estimations of the 

number of parameters. Similarly, since this study focused on IRT models used with 

dichotomous items, similar studies could be carried out with polytomous items. All simulations 

and analyses were performed according to the null (ideal) model. Further research can focus on 

determining the ideal replication number for misfit data. Due to the fact that it is a simulation 

study, it is suggested that new studies are conducted on the same condition for generalizations. 
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6. APPENDIX 

6.1. Appendix A 

Table A1. Type I error rate and accuracy of error estimate from 25 items for 1PL model. 

 

 

Sample 

size 

Number of 

Replication 

Empirical 

alpha (p) 

Empirical alpha (p)-

nominal (P) alpha 
p-2�̂�𝑝 p+2�̂�𝑝 

Accuracy of 

error rate 

estimate 

3000 5000 0.493 0.443 0.486 0.499 0.000 

2500 0.502 0.452 0.493 0.511 0.000 

1250 0.515 0.465 0.503 0.527 0.000 

625 0.495 0.445 0.478 0.512 0.001 

312 0.488 0.438 0.463 0.512 0.002 

156 0.493 0.443 0.459 0.528 0.003 

78 0.485 0.435 0.436 0.535 0.006 

20 0.515 0.465 0.418 0.613 0.025 

2000 5000 0.497 0.447 0.491 0.503 0.000 

2500 0.489 0.439 0.480 0.497 0.000 

1250 0.501 0.451 0.489 0.514 0.000 

625 0.501 0.451 0.483 0.518 0.001 

312 0.502 0.452 0.478 0.527 0.002 

156 0.497 0.447 0.462 0.532 0.003 

78 0.464 0.414 0.415 0.513 0.006 

20 0.521 0.471 0.424 0.619 0.025 

1000 5000 0.496 0.446 0.490 0.502 0.000 

2500 0.495 0.445 0.486 0.504 0.000 

1250 0.499 0.449 0.486 0.511 0.000 

625 0.488 0.438 0.476 0.501 0.000 

312 0.481 0.431 0.464 0.499 0.001 

156 0.489 0.439 0.465 0.514 0.002 

78 0.470 0.420 0.435 0.505 0.003 

20 0.508 0.458 0.458 0.557 0.006 

500 5000 0.491 0.441 0.484 0.497 0.000 

2500 0.495 0.445 0.486 0.504 0.000 

1250 0.491 0.441 0.478 0.503 0.000 

625 0.507 0.457 0.490 0.525 0.001 

312 0.527 0.477 0.502 0.552 0.002 

156 0.490 0.440 0.455 0.525 0.003 

78 0.434 0.384 0.385 0.484 0.006 

20 0.508 0.458 0.411 0.605 0.025 
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Table A2. Type I error rate and accuracy of error estimate from 50 items for 1PL model. 

 

 

 

 

 

Sample 

size 

Number of 

Replication 

Empirical 

alpha (p) 

Empirical alpha (p)-

nominal (P) alpha 
p-2�̂�𝑝 p+2�̂�𝑝 

Accuracy of 

error rate 

estimate 

3000 5000 0.505 0.455 0.498 0.511 0.000 

2500 0.504 0.454 0.496 0.513 0.000 

1250 0.499 0.449 0.487 0.511 0.000 

625 0.501 0.451 0.483 0.518 0.001 

312 0.480 0.430 0.455 0.505 0.002 

156 0.464 0.414 0.429 0.499 0.003 

78 0.526 0.476 0.477 0.575 0.006 

20 0.464 0.414 0.367 0.562 0.025 

2000 5000 0.502 0.452 0.496 0.508 0.000 

2500 0.501 0.451 0.492 0.510 0.000 

1250 0.500 0.450 0.488 0.513 0.000 

625 0.507 0.457 0.490 0.524 0.001 

312 0.506 0.456 0.481 0.530 0.002 

156 0.510 0.460 0.475 0.545 0.003 

78 0.558 0.508 0.509 0.608 0.006 

20 0.411 0.361 0.313 0.508 0.025 

1000 5000 0.491 0.441 0.484 0.497 0.000 

2500 0.498 0.448 0.489 0.506 0.000 

1250 0.505 0.455 0.492 0.517 0.000 

625 0.499 0.449 0.482 0.517 0.001 

312 0.477 0.427 0.452 0.502 0.002 

156 0.523 0.473 0.488 0.558 0.003 

78 0.426 0.376 0.376 0.475 0.006 

20 0.539 0.489 0.441 0.636 0.025 

500 5000 0.486 0.436 0.480 0.492 0.000 

2500 0.483 0.433 0.474 0.491 0.000 

1250 0.489 0.439 0.476 0.501 0.000 

625 0.489 0.439 0.471 0.506 0.001 

312 0.487 0.437 0.462 0.511 0.002 

156 0.491 0.441 0.456 0.526 0.003 

78 0.516 0.466 0.466 0.565 0.006 

20 0.445 0.395 0.348 0.543 0.025 
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6.2. Appendix B 

Table B1. Type I error rate and accuracy of error estimate from 25 items for 2PL model. 

 

 

 

Sample 

size 

Number of 

Replication 

Empirical 

alpha (p) 

Empirical alpha (p)-

nominal (P) alpha 
p-2�̂�𝑝 p+2�̂�𝑝 

Accuracy of 

error rate 

estimate 

3000 5000 0.496 0.446 0.490 0.502 0.000 

2500 0.500 0.450 0.491 0.508 0.000 

1250 0.493 0.443 0.481 0.506 0.000 

625 0.519 0.469 0.502 0.536 0.001 

312 0.496 0.446 0.472 0.521 0.002 

156 0.476 0.426 0.441 0.511 0.003 

78 0.528 0.478 0.478 0.577 0.006 

20 0.453 0.403 0.356 0.550 0.025 

2000 5000 0.499 0.449 0.493 0.505 0.000 

2500 0.492 0.442 0.483 0.501 0.000 

1250 0.490 0.440 0.478 0.502 0.000 

625 0.475 0.425 0.457 0.492 0.001 

312 0.489 0.439 0.465 0.514 0.002 

156 0.483 0.433 0.448 0.518 0.003 

78 0.501 0.451 0.452 0.551 0.006 

20 0.325 0.275 0.228 0.423 0.023 

1000 5000 0.489 0.439 0.483 0.495 0.000 

2500 0.486 0.436 0.477 0.494 0.000 

1250 0.502 0.452 0.490 0.515 0.000 

625 0.511 0.461 0.494 0.529 0.001 

312 0.490 0.440 0.465 0.514 0.002 

156 0.487 0.437 0.452 0.522 0.003 

78 0.509 0.459 0.460 0.558 0.006 

20 0.502 0.452 0.405 0.599 0.025 

500 5000 0.491 0.441 0.485 0.498 0.000 

2500 0.486 0.436 0.477 0.495 0.000 

1250 0.476 0.426 0.463 0.488 0.000 

625 0.477 0.427 0.459 0.494 0.001 

312 0.496 0.446 0.472 0.521 0.002 

156 0.452 0.402 0.417 0.487 0.003 

78 0.451 0.401 0.402 0.500 0.006 

20 0.545 0.495 0.447 0.642 0.025 
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Table B2. Type I error rate and accuracy of error estimate from 50 items for 2PL model. 

 

 

 

 

 

Sample 

size 

Number of 

Replication 

Empirical 

alpha (p) 

Empirical alpha (p)-

nominal (P) alpha 
p-2�̂�𝑝 p+2�̂�𝑝 

Accuracy of 

error rate 

estimate 

3000 5000 0.490 0.440 0.483 0.497 0.000 

2500 0.491 0.441 0.482 0.500 0.000 

1250 0.485 0.435 0.473 0.497 0.000 

625 0.483 0.433 0.466 0.500 0.001 

312 0.515 0.465 0.490 0.540 0.002 

156 0.455 0.405 0.420 0.490 0.003 

78 0.513 0.463 0.464 0.562 0.006 

20 0.419 0.369 0.322 0.516 0.025 

2000 5000 0.483 0.433 0.477 0.489 0.000 

2500 0.478 0.428 0.469 0.487 0.000 

1250 0.467 0.417 0.454 0.479 0.000 

625 0.476 0.426 0.459 0.494 0.001 

312 0.509 0.459 0.484 0.533 0.002 

156 0.428 0.378 0.393 0.463 0.003 

78 0.492 0.442 0.443 0.541 0.006 

20 0.531 0.481 0.433 0.628 0.025 

1000 5000 0.481 0.431 0.475 0.487 0.000 

2500 0.470 0.420 0.461 0.479 0.000 

1250 0.480 0.430 0.468 0.492 0.000 

625 0.474 0.424 0.457 0.491 0.001 

312 0.522 0.472 0.497 0.547 0.002 

156 0.512 0.462 0.477 0.547 0.003 

78 0.510 0.460 0.461 0.559 0.006 

20 0.379 0.329 0.282 0.476 0.024 

500 5000 0.471 0.421 0.465 0.478 0.000 

2500 0.471 0.421 0.463 0.480 0.000 

1250 0.478 0.428 0.466 0.490 0.000 

625 0.477 0.427 0.460 0.495 0.001 

312 0.516 0.466 0.492 0.541 0.002 

156 0.513 0.463 0.478 0.548 0.003 

78 0.476 0.426 0.427 0.525 0.006 

20 0.426 0.376 0.329 0.524 0.025 
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6.3. Appendix C 

Table C1. Type I error rate and accuracy of error estimate from 25 items for 3PL model. 

 

 

 

Sample 

size 

Number of 

Replication 

Empirical 

alpha (p) 

Empirical alpha (p)-

nominal (P) alpha 
p-2�̂�𝑝 p+2�̂�𝑝 

Accuracy of 

error rate 

estimate 

3000 5000 0.517 0.467 0.510 0.523 0.000 

2500 0.519 0.469 0.510 0.527 0.000 

1250 0.517 0.467 0.504 0.529 0.000 

625 0.527 0.477 0.510 0.544 0.001 

312 0.491 0.441 0.466 0.515 0.002 

156 0.530 0.480 0.495 0.565 0.003 

78 0.498 0.448 0.448 0.547 0.006 

20 0.445 0.395 0.348 0.543 0.025 

2000 5000 0.514 0.464 0.508 0.520 0.000 

2500 0.510 0.460 0.501 0.519 0.000 

1250 0.518 0.468 0.505 0.530 0.000 

625 0.500 0.450 0.483 0.518 0.001 

312 0.533 0.483 0.508 0.558 0.002 

156 0.511 0.461 0.476 0.546 0.003 

78 0.499 0.449 0.450 0.549 0.006 

20 0.564 0.514 0.467 0.662 0.025 

1000 5000 0.523 0.473 0.517 0.530 0.000 

2500 0.530 0.480 0.521 0.539 0.000 

1250 0.515 0.465 0.502 0.527 0.000 

625 0.531 0.481 0.513 0.548 0.001 

312 0.543 0.493 0.518 0.567 0.002 

156 0.525 0.475 0.490 0.560 0.003 

78 0.518 0.468 0.469 0.568 0.006 

20 0.531 0.481 0.434 0.629 0.025 

500 5000 0.531 0.481 0.524 0.537 0.000 

2500 0.526 0.476 0.517 0.535 0.000 

1250 0.519 0.469 0.507 0.532 0.000 

625 0.521 0.471 0.503 0.538 0.001 

312 0.539 0.489 0.515 0.564 0.002 

156 0.501 0.451 0.466 0.536 0.003 

78 0.552 0.502 0.502 0.601 0.006 

20 0.467 0.417 0.369 0.564 0.025 
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Table C2. Type I error rate and accuracy of error estimate from 50 items for 3PL model. 

 

  

Sample 

size 

Number of 

Replication 

Empirical 

alpha (p) 

Empirical alpha (p)-

nominal (P) alpha 
p-2�̂�𝑝 p+2�̂�𝑝 

Accuracy of 

error rate 

estimate 

3000 5000 0.512 0.462 0.506 0.518 0.000 

2500 0.516 0.466 0.507 0.524 0.000 

1250 0.495 0.445 0.482 0.507 0.000 

625 0.510 0.460 0.492 0.527 0.001 

312 0.505 0.455 0.480 0.530 0.002 

156 0.494 0.444 0.459 0.529 0.003 

78 0.455 0.405 0.406 0.504 0.006 

20 0.421 0.371 0.324 0.519 0.025 

2000 5000 0.515 0.465 0.509 0.521 0.000 

2500 0.521 0.471 0.512 0.530 0.000 

1250 0.521 0.471 0.509 0.534 0.000 

625 0.521 0.471 0.503 0.538 0.001 

312 0.493 0.443 0.469 0.518 0.002 

156 0.522 0.472 0.487 0.557 0.003 

78 0.549 0.499 0.499 0.598 0.006 

20 0.593 0.543 0.496 0.691 0.025 

1000 5000 0.512 0.462 0.505 0.518 0.000 

2500 0.520 0.470 0.511 0.529 0.000 

1250 0.522 0.472 0.510 0.535 0.000 

625 0.519 0.469 0.501 0.536 0.001 

312 0.528 0.478 0.503 0.552 0.002 

156 0.507 0.457 0.472 0.541 0.003 

78 0.498 0.448 0.449 0.548 0.006 

20 0.575 0.525 0.477 0.672 0.025 

500 5000 0.526 0.476 0.520 0.532 0.000 

2500 0.520 0.470 0.511 0.528 0.000 

1250 0.541 0.491 0.528 0.553 0.000 

625 0.508 0.458 0.490 0.525 0.001 

312 0.513 0.463 0.488 0.537 0.002 

156 0.542 0.492 0.507 0.577 0.003 

78 0.592 0.542 0.543 0.642 0.006 

20 0.501 0.451 0.403 0.598 0.025 
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7. SUPPLEMENTARY FILE  

7. 1. Supplementary File for 1PL Model  
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7. 2. Supplementary File for 2PL Model  
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7. 3. Supplementary File for 3PL Model  
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