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Abstract

In this paper, we consider a class of singular fractional differential equations such that its right hand side has an arbitrary singularity on
certain interval of the real axis. We obtain new results on the existence and uniqueness of solutions using some classical fixed point theorems.
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1. Introduction

The fractional differential equations theory has attracted great attention during the recent years. This is because this new theory arises in
many engineering and scientific disciplines such as mechanics, chemistry, biology, economics, control theory and signal processing, see
[4,5,9, 10, 11]. Many authors investigated the existence and uniqueness of solutions for nonlinear fractional differential equations. We refer
the reader to [1, 2, 3, 6, 7, 8, 12] for further information and applications.

On the other hand, the singular fractional differential problems are quite significant in realistic problems [11, 13, 14]. In [1], Z. Dahmani and
M.Z. Sarikaya considered a Lane-Emden coupled fractional differential equations. They discussed the existence and uniqueness of solutions
and some Ulam stabilities for the following problem:

{ cph (D™ + by gy (1))x) (£) + f1(t,x1 () ,x2 (1)) = hy (¢) ,¢ € [0,1]
DP2(CD% +bogs (1))x2 (1) + fa(t,x1 (1) ,x2 (1)) = ha (1) 1 € [0, 1]

(1.1)
xk(O) = 0, cDakxk(l)+bkgk(l)xk(1):0.k:1,2

where 0 < oy < 1,0 < B < 1, k= 1,2, the derivatives DP and D% are in the sense of Caputo.
In this paper, we are concerned with a class of singular fractional differential equations with an arbitrary singularity Ty € J. So, let us
consider:

{ DPL(EDH 1+ bygy (1))x1 (1) + f1(t,x1 (1), x2 (£) S DMxy (t)) = hy (1), €J 1.2)
DP2 (D% + bygs (1))x2 (1) + fo(t,x1 (1) ,x2 (1) Dy (1)) = ha (1) 1 € '
(1.3)
T
%(0) = o0, fD“kxk(T)+bkgk(T)xk(T):/Gk(r)xk(f)dn k=12 (1.4)
0

where 0 <y, < o4 < 1,0< B <1, k=1,2andt €J:=[0,T],T > 0, the derivatives D« D%and D¥ are in the sense of Caputo. The
functions g : J — {Ip} — R are supposed singular at Ty € J and the functions f; : J x R3 — R and /y : J — R will be specified later.
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2. Fractional Calculus Preliminaries

In this section, we present some preliminaries that we need to prove the main results [10, 14].

Definition 2.1. The Riemann-Liouville fractional integral operator of order a. > 0, for a continuous function f on [0, is defined as:

a ﬁj(; (t_s)ailf(s)ds, o >0,
JEf(t) = o

where T (a0) = [3 e *x% ldx.
Definition 2.2. The Caputo derivative of order & for a function x : [0,e0) — R, which is at least [—times differentiable can be defined as:

D%(t) = ﬁ | /0 t (t— )7 (5)ds = 7D (1), (2.2)

for l—1<oa<l,1eN*.

Lemma 2.3. For o > 0, the general solution of the fractional differential equation D*x(t) = 0 is given by

-1
x(t) = cht-’,
=0

2.3)
wherec; €R, j=0,...]—1,1=[a]+1.
Lemma 2.4. Let o0 > 0. Then
-1
JODx(1) = x(t)+ Y cjt!, 24)
j=0
wherec; €R, j=0,1,..,—1,l=[a]+1.
Lemma 2.5. Letq > p>0andv e L' ([a,b]). Then
DPJy(t) =J9 Py (1),t € [a,b]. (2.5)

Let us now prove the following lemma:

Lemma 2.6. Suppose that (hy)i_; € C(J,R), (fi)i_; € C (J x R*,R)
and consider the problem:

{ cphi (cDal +b1g1 (t))x1 (l‘)+f] (t,x] (I),XQ (I) LDy, (I)) =" (l‘), ted
DP2 (D% 4 bygy (1))x2 (1) + fa(t,x1 (1) ,x2 () CDPxa (1)) = ha (1), tE€J

0<py<oyg<l,0<B <1, k=1,2

associated with the conditions:

x%(0) = 0,k=172
T
DO (T) b (N0 (1) = [ Ge(@)(w)de, k=1,2,
0

Then, 1.2 - 1.4 has a unique solution (x1,x;) (t), such that:

N S N D N it
s = [ iy | rgy ) s 31 (9,22 6) € D () s .

1

)% ! q o, T o Bl
- T b0+ ey G (O ()~ ekt (T LR 0(®) o (2).12 (0 Dy (9)] ) = 1.2,

Proof. We begin by applying Lemma 2.4 to 1.2. We can write:

_ )Pt .
%k)(hk (s)ds— fi(s,,x1 (s), %2 (5) S D¥oxy (s)) s — &,

(0% + bugy () () = [ 2
0

where k=1,2, k€ R, and 0 < B < 1.
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By the same lemma, it yields that

! )%~ 1T BA 1
()= [ [ s s) s il () (9. D () s
0 0 2.7

Lo ol k1o /
fg%bkgkmxk(r)dr oy -k,

where k = 1,2 and ckeR.
Thanks to Lemma 2.5 and using the conditions 1.4 we obtain the values of ¢* and k. Substituting the last assertion in 2.7 we obtain 2.6. The
proof of Lemma 2.6 is thus completed. O

Now, let us introduce the Banach space (X x X, || (x1,%2)]|x «x)» With:
X:={x:xeC(U,R),*D'xeC(J,R)},
endowed with the norm:

Gersx2)lxex = max (161 [l D" 21 [luo s (122 ]lee 1D 21 00) 5 [l o0 = e (@)
te.

3. Formulation of Hypotheses

We begin by introducing the following hypotheses:
(H\) : There exist nonnegative constants (uk)j, j=1,2,3;k=1,2, such that for all # € J and all (x1 ,x27x3) , (y1,y2,¥3) € R3, we have:

3
’f/c(t7xlax2,x3)7fk(t7ylay27y3)} < Z(,U,k)]’Xjny‘
j=1
3
< LY -l Le= max {(ue)}-
= =1...
3.1
(H,) : For each k = 1,2, the functions f; : J x R> — R and / : J — R are continuous.
(H3) : The functions Gy, : J — R are continuous and ||G||., = sup|Gi(t)| = G,k =1,2.
teJ
(Hy) : The functions gy : J — {Tp} — R are continuous on J — {Ty} and singular at Ty, i.e.: ll_t)n; gk (1) = +oo,k=1,2.
0
(Hs) : For each k = 1,2, there exists 4,0 < Az < 0o < 1, wy(t) = (t — To)™gx(¢) is continuous on J and ||wgl|., = Sup |wy (1) =
el

Sup |(t — To) gy (1) = My
teJ

(Hg) : The functions f; : J X R3 — R and Ay : J — R are bounded respectively by S and Ry, i.e.:
For k = 1,2, there exist S > 0,V € J,Yu € R3, | fi(t,u)| < Sy and there exist R, > 0,Vr € J, | (t)| < Ry

Also, we set the following quantities:

T %+Br T %+Bx (1 —A) Gy
’ . . 7]{ _ o — A Tk (X“rl
We @ =3L <r(cxk+ﬁk+1) T g ) T |b"|M"F (ou—Ae+1) (T =To) * (o +1) =
. T %Y+ Br T %= YetBr I'(1—2) a
. M) o Ve~
We o =30k <r<akyk+ﬁk+1> F ey ) Mg e (T T0)
G

n T Y+ (3.2)
C(og —%+1)

and

(SR (5P A } N
et |”k‘Mkr<(17Mk1)>((t2—T0)“‘ K (o - Ty) %)

o Gy (zak+1 tak+1)+(5k+Rk)(a‘+ﬁk fak+ﬁk)
C(og+1)\? ! Ty +1)T(B+1) '

(3.3)
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3.1. Existence and Uniqueness of Solutions

The following main result is based on Banach contraction principle. We prove the following theorem:

Theorem 3.1. Assume that (H;),_, , 5 are satisfied. Then, the system 1.2 - 1.4 has a unique solution on J provided that

W = max{W,W,}<1, k=12
34
Proof. We will proceed in two steps:
Stepl: Define the nonlinear operator 7 : X x X — X X X by
T(XI,XQ) (I) = (T] (X],XZ) (I),Tz (XI,XZ)(I‘)), t € J, 3.5)
where, for all k = 1,2,
Tjc (x1,x2) (1) =
P i N Gt R
g (&) ({ 0N [ (s) = fr(s,,x1 (5),x2 (5) ,“ D¥xy (s5))]dsdT
(3.6)

ro o1 oy, r
_({ %bkgk(’c)xk(’f)d’[—i- ng)({Gk (1) (7)dT

e r 7)™ .
~ FarD) Of TF & [hk() Si(7,,x1 (1) %2 (1) ,“ D¥xg (7)) ]d7.

We need to prove that T is contractive. For all r € J, (x1,x2), (y1,y2) € X X X, we can write:

T (x1,x2)(2) — T (v1,¥2)(2)
kg Ja( = 1) BV f (2, v (1) 32 (1) £ Dy (7))

—fi(T,,x1 (7),x2(7) ,* D¥xy (1))]dT

A fé(z—r)“k*gku)[xk(r)—mrnm%g@(r) o (2) 3 (1))

— e Jo (T =P fle,v1 (1).32(7) £ DRy (1))
—fi(,,x1 (1) ,x2 (7) ,* D¥%x; (7))]d T,k = 1,2.

Hence,

|Tk(x17x2)(t) - Tk(ylvyZ)(t)‘

< |y Jo (6 = DB (7,21 (1) 202 (1) £ DY (7))

7fk(1‘-7 s V1 (T) V2 (T) 7C'Dkak (T))}dﬂ

s ot = D)% g () i (7) — (= ]d7’+ OHI ka( ) e (7) =y (7)]dT

+

akiolckl"(/j/\ fO ( 7T)ﬁk_1[fk(rvaxl (T)7x2 (T) ,CD,}//"X/( (T))

—fi(T:531 ()32 (7) , DHyi (7)) ]d 1]
Thanks to (H; ), we can write

[T (x1,22) (1) = T (y1,32) ()]

ek Jo (6 =D)AL (g — |+ g — yo| +[CD%exy =€ DYy |) (T)df‘

+

ka( ) e (7) = yie (7)]dT

rhis Iy e = ©) % (D) (0) (D)7 + |

+

(g +1)C(By)

L”ak Jo (T = )P (| = yi| + |2 — ya |+ |[“DYxy —€ D%y |) (T)dT) .
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Therefore,

1Tk (x1,22) = T (V15 32) Moo

< et S[up]f()(t* T) %P (| —yy |+ [xp — yo| + [<D%x —€ DYy |)(7)d T
0,7

+ ol s Ja(e =)%Y (2= To) ™ | (2 = To) g (7) | I (2) — e ()| d

T
+mt€sﬁpﬂr°‘ki{m ()] |3 (%) — e (7)] dT

b Supfa‘ Jo (T = 0)B Y (Jxy = y1] + x2 — ya| + [<D%exy — D%y ) (1)d T
T(og+1)0(By) relo.7]

By (H3) and (Hs), we obtain
[ Tic(x1,x2) = Te(y1,52) o

< WH(M y1) s (02 = y2)llxxx S[up]f(g(f—f)a”ﬁrldf
refo,T

—A
+Hh Mo = yillo, sup Ji(e— )% (7= To) M dv+ i TG o — il
1€(0,7]
3LTk
+ o || G

¥1), (2 =y2)llxxx sup fOT(Tff)ﬁk—ldT‘
1€[0,7]

Hence,
[Tk (x1,22) = T (31, 52) oo
< (WT At 4 WT%H}O l(x1 =y1), (2 = y2)llxwx
o+ (COGA (7 — Ty) % 4 Gip T g — vl
And then,

1T (x1,x2) = Ti (01, 52) oo

< [( 3 3L )Tak+ﬁk+ (1 =2 ) [ be | My (T — Tp)%~ 7LA+1_

Clag+B+1) T rag+1)0(B+1) T(ag—Ag+1)

(% +1)Tak+1]

G =y1), (2 =¥2) llxxx
Consequently,by 3.2, fork=1,2

(1T (x1,2) = T (1 92) oo < WLt = 31) 5 (2 = ¥2) Iy ex

Step 2: For the derivative °DYT (x1,x;),k = 1,2, we can see that:
DT (x1,x) (t) :=
(DT (x1,x2) (1) DT (x1,x2) (1)), €J,k=1,2
For k = 1,2, we can write

CDYka (X] ,XQ) (I) =

(t— fak Y~

t 7S571
IR e=n g“r(g[) [e(5) — fils, 1 (5) 2 (5) £ Doy (s))dsd T

(t— T‘Zk T~

! oy — T
of T bkgk( )xi(T )dTertkk_iY:kH)Oka(T)xk(f)dr

PO (6) — fi(e i (1) 0 (1) € Do ()l
T —%A+1) 0 (B k fk 53 X1 ;X2 s Xk .

3.7)

(3.8)

(3.9)
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We need to prove that “D?T is contractive. For all t € J, (x1,x2), (y1,y2) € X x X and each k = 1,2 we have:
DN Ty (x1,x2)(1) = D*Ti(y1,32)(1)
= s Jo(t = OB (fi (2,31 (1), 32 (1) £ DYy (1))
—fi(T,,x1 (7), %2 (1) DMxy (1)) dT

—ﬁfé(z—r)“k*%*lgkm[xk(r)—n(r)]dﬂﬁjck(r) e (2) 3 (2)]d

~ s Jo (T =D (fulz, 31 (2) 32 (2) £ DRy (7))
—fi(2,,x1 (1) ,2x2 (T) € D¥xy (7)) dT.
Hence,
|“D¥ Ty (x1,x2) (1) = DT (y1,y2)(1)]

< | Jo (6 — 1) P f (7,50 () 32 (7)€ DYy (7))

7fk(1’-v V1 (T) V2 (T) 7CDkak (T))}dl-'

+

et (= )% g () b () — (@) +

o T
e J O (9 () i (@)de

|t e ST = 0B [fe(, 31 (2) 2 (7)€ Do ()

—fie(T,,31 ()32 (1) Dy (7)) ]d7|

The hypothesis (H ) allow us to write

|SD% Ty (x1,x2) (t) =€ D% Ty (y1,y2) (£)]

< gy Jot = D)% (L — i+ 2 — ya| + Do =€ Doy |)(7)d e

+

et (= )% g () be() — (@) +

s r
1-(051,77;1) Oka (7) P (7) = yx (D)]dT

+

O =) _ . .
ey Jo (T =) ](|xl*)’1‘+|x2*)’2|+|LDkak*LDYkYk|)(T)dT)~

(o —y+1)T

Therefore,
€ D* T (x1,22) = D* Ti(y1,52) |0

< S[I(I)PT] o0 =) % WHBT (o — yy |+ xg — yo| + [*DVexy —€ DYy |)(1)d T
telo,

ol S[‘épnféwr)“k-ﬂ-wrfro)**k (T — Ty e (7)] e (7) — e (%) | dT
telo,
+r(ak:1yk+1) ;{%P ]fa‘ y‘f|Gk( ) xx () =y ()| d7

L
Wﬁ)ws‘ﬁwl (T = )P (x1 = y1| + 2 — o + [ DR = Dley|)(v)dT
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Using (H3) and (Hs), we have
[“D¥ Ty (x1,x2) = D*Ti(y1,2) ]

3L B
< map 1 =v1) s (2 = y2) lxwx s[up]fé(t—r)“k bl dg
t

s

b, — Y — — A T % %
+%Mkka*)’kates[‘(l)pT]fé(t*T)w W= T0) AT g TGl — il

3L T% %
+ "‘k ‘\ka ”(

)5 (2 = y2)llxx s[up ] JE(T —o)Fdr.
t

)

Hence,
[$D* Ty (x1,%2) = D™ Ty (y1,52) |0
< (WTW’}W& + WTW—V%) [Ger =y1) s (2 =y2) [ x xx
+(%(T To) %% lk‘f‘WTa" Y‘H)ka—ykﬂw
Thus,

[ D% T} (x1,x2) = DTy (y1,2) oo

3L 3L G —Yi+
< [( e e 7 k )T =Yt Be

o —+1)C(B+1)

L (1) | be | M G—Y—A G, eyt 1
+T Tlog =y~ +1) (T T) o k+1"(06k—,;’k+l)T L

lGer =v1)5 (2 = y2) I xx

Consequently,by 3.2, for k = 1,2, it yields that

DTy (x1,%2) = D T(y1.32) 1 < Wy 111 =31) (2 =32) (3.10)

which implies that

1T (x1,22) = T 01,2 e < Waell(xr = y1,02 = v2) x>

Finally, we obtain

(T (xrox2) =T (1,32) [l xx < gﬁlszk G —=y15%2 = 2) llxx -
Then by 3.4, T is contractive. O
3.2. Existence of Solutions

This result is based on Schaefer fixed point theorem . We have:

Theorem 3.2. Assume that the hypotheses (H;); —2..60re satisfied. Then the problem 1.2 - 1.4 has at least one solution on J.
Proof. We will prove the theorem through the following steps:

Stepl: The continuity of the functions fi,hx, wr,k = 1,2 implies that T is continuous on X x X.

Step2: We define the set:

Q= {(r1,%2) € X % X, [[(x1,%2) |y < 1}, where > 0.

For (x1,x) € Q. k= 1,2, we obtain:

Si+Ry) T+ (1-\ A G Si+Ri) T %P
T (er,00)lx < SR e My ity (T = To)® M g Gy ot 4 BRI (3.11)




Konuralp Journal of Mathematics 251

This is to say that

2
Sk+R )T %P (11— A G ) Si+R) T %+ Br
7Gx < & (% bl Mgzt (T = To)* 7 4 ey T %) (3.12)
Hence, the operator 7 maps bounded sets into bounded sets in X x X.
Step3: Equi-continuity of 7(Q;) :
For t1,t, € J,t) <1, (x1,%2) € Q and k = 1,2, we have:
1Tk (x1,22) (12) — Ti (31, x2) (1) [l < Cie (3.13)

In 3.13, the right hand sides C, (given in 3.3) are independent of x1,x;. and tend to zero as ¢ tends to #,. Then, as a consequence of Steps
1,2,3 and by Arzela-Ascoli theorem, we conclude that 7" is completely continuous.

Step4: We show that the set defined by:
Q= {(x1,%2) € X x X, (x1,x2) = uT (x1,%2),0 <p < 1},

is bounded:

Let (x1,x3) € Q, then (x1,x2) = uT (x1,x), for some 0 < p < 1. Hence, for 7 € J, we have:

x1 () = W (x1,%2) (1), x2(t) = LT (x1,x2)(2). (3.14)
Thus,

(e x2) lsex = T (e x2) e, 0 < < 1 (3.15)

Since the functions f; and &y, are bounded, then by 3.13 , we obtain:

[l Gersx2) i sex < pmaxCi0<p<l. (3.16)

Consequently, Q is bounded.

As a conclusion of Schaefer fixed point theorem, we deduce that 7 has at least one fixed point, which is a solution of 1.2 - 1.4. O
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