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Abstract
In this paper, we investigate the chaotic behaviour of maps having the almost average shad-
owing property by obtaining the relationship of the almost average shadowing property
with different kinds of chaos. Moreover, we relate the notion of almost average shadowing
property with some other types of shadowing properties, for instance, ergodic shadowing,
Fd-shadowing and d-shadowing. We also study the notion of almost average shadowing
property for maps induced on hyperspaces. Our study is supported by providing counter-
examples wherever necessary.
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1. Introduction
Computer simulation of the trajectory of a point in discrete dynamical systems often

produces pseudo-orbits. So to study the dynamical properties of the underlying dynamical
system, it is important to determine the condition under which these numerically obtained
pseudo-orbits can be traced by real trajectories of the system. Shadowing property makes
it possible to approximate pseudo-orbits by real orbits of the system and this feature of
shadowing property has made it an extremely significant and useful dynamical property
in dynamical systems. There are several types of shadowing properties studied in the
literature by now [8, 18, 31, 32]. Unlike the classical shadowing property, the notion of
average shadowing property [5] and the notion of almost average shadowing property
[6] deal with pseudo-orbits with average errors being very small whereas the notion of
asymptotic average shadowing property [11] deals with pseudo-orbits with average errors
tending to zero. These shadowing properties are also related to some useful dynamical
properties [16,17,20,22,23,29].

Another important concept in the theory of dynamical systems is chaos. The first
mathematical definition of chaos was given by Li and Yorke in 1975 [25]. Since then,
various types of chaos have been proposed and studied by many authors. The idea of chaos
lies in the unpredictability of the behaviour of trajectories of the system. Each version of
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chaos represents complexity of the system in its own sense. Transitivity and sensitivity
are two important ingredients of some variants of chaos. For some interesting results on
sensitivity and chaos, kindly refer [1, 14, 19, 21, 24]. Another highly recognized ingredient
of chaos is positivity of topological entropy. Topological entropy basically measures the
chaotic behaviour of a map on a space. It is well known that for graph maps, positivity
of topological entropy is equivalent to the existence of a Devaney chaotic subsystem [26].

A common approach to study the dynamics of the underlying system is to study the
dynamics of its corresponding hyperspace. In 1975, Bauer et al. were the first to initiate
the study of the connections between the dynamical properties of the base system and its
induced system [3]. In recent times, there has been increasing interest in the study of the
interplay of the dynamics of a discrete dynamical system (individual dynamics) with the
corresponding hyperspace (collective dynamics). Many interesting dynamical properties
of the original system are found to be inherited by the corresponding induced system
and vice-versa which include weak mixing, topological mixing, shadowing, just to name
a few [12, 30, 35]. In [30], it is shown that the weak mixing property of the base system
is equivalent to the topological transitivity of the corresponding hyperspace. Also, in
[13], authors have studied interplay of the variants of chaos between the base system and
its induced system. Interestingly, in [15], author has introduced the notion of a general
approximation property which unifies many types of shadowing and has also studied this
property for induced maps on hyperspaces.

The notion of almost average shadowing property (ALASP) is defined in [6] and its
relation with proximality and various kinds of transitivities is studied in [10]. In the
present paper, we relate the notion of ALASP with various other notions in dynamical
systems and study the notion of ALASP for maps induced on hyperspaces. The paper
is organised as follows. Section 2 is devoted to some basic definitions and known results
required for further sections. In Section 3, we prove that every contraction map has the
ALASP, which gives us a large class of maps possessing the ALASP. In Section 4, we
relate the notion of ALASP with various kinds of chaos. We focus mainly on topological
chaos, Li-Yorke chaos, Auslander-Yorke chaos, Devaney chaos and P -chaos. In Section
5, we obtain relationships of the ALASP with different kinds of shadowing properties,
for instance, ergodic shadowing, Fd-shadowing and d-shadowing. Finally in Section 6, we
find the relation between the ALASP of the base map on a space and that of its induced
map on the corresponding hyperspace. The paper is also furnished with many interesting
examples to gloss the study done.

2. Preliminaries
We denote the set of real numbers by R, the set of positive integers by N and the set

of non-negative integers by Z+. For us, a dynamical system is a pair (X, f), where X is
a compact metric space with metric d and f : X → X is a continuous map. Note that
for definitions given in this section we do not need compactness of the phase space, it is
needed mainly for further sections. We say that a dynamical system (X, f) is non-trivial
if X consists of more than one point. A dynamical system (Y, g) is a factor of a dynamical
system (X, f) if there is a continuous surjection called factor map π : X → Y such that
π ◦ f = g ◦ π. Let (X, f) be a dynamical system. The f -orbit of a point x ∈ X is given by
the set {fn(x) : n ≥ 0} and is denoted by Of (x). The ω-limit set of a point x ∈ X is the
set of limit points of Of (x) and is denoted by ωf (x).

For a subset A of Z+, we define the upper density of A by

d(A) = lim sup
n→∞

1
n

|A ∩ {0, 1, . . . , n − 1}|

and the lower density of A by
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d(A) = lim inf
n→∞

1
n

|A ∩ {0, 1, . . . , n − 1}|,

where |C| denotes the cardinality of the set C ⊆ Z+. We say that A is syndetic if it has
bounded gaps, that is, there exists N ∈ N such that [n, n + N ] ∩ A ̸= ∅ for every n ∈ Z+
and A is cofinite if Z+ \ A is finite.

For δ > 0, a sequence {xi}i≥0 in X is called a δ-pseudo-orbit of f if d(f(xi), xi+1)
< δ for every i ≥ 0. We say that the map f has the shadowing property if for every ϵ > 0,
there is a δ > 0 such that every δ-pseudo-orbit {xi}i≥0 of f is ϵ-shadowed by a point
z ∈ X, that is, d(f i(z), xi) < ϵ for every i ≥ 0. The map f has the asymptotic average
shadowing property (AASP) [11] if every asymptotic average pseudo-orbit {xi}i≥0 of f ,
that is, {xi}i≥0 satisfying

lim
n→∞

1
n

n−1∑
i=0

d(f(xi), xi+1) = 0,

is asymptotically shadowed in average by a point z ∈ X, that is,

lim
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) = 0.

For δ > 0, a sequence {xi}i≥0 in X is called an almost δ-average-pseudo-orbit of f if

lim sup
n→∞

1
n

n−1∑
i=0

d(f(xi), xi+1) < δ.

We say that the map f has the almost average shadowing property (ALASP) [6] if for
every ϵ > 0, there is a δ > 0 such that every almost δ-average-pseudo-orbit {xi}i≥0 of f is
ϵ-shadowed in average by a point z ∈ X, that is,

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) < ϵ.

For δ > 0, a sequence {xi}i≥0 in X is called a δ-average-pseudo-orbit of f if there is an
integer N = N(δ) > 0 such that for all n ≥ N and for all k ≥ 0,

1
n

n−1∑
i=0

d(f(xi+k), xi+k+1) < δ.

The map f is said to have the average-shadowing property (ASP) [5] if for every ϵ > 0,
there is a δ > 0 such that every δ-average-pseudo-orbit {xi}i≥0 of f is ϵ-shadowed in
average by a point z ∈ X, that is,

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) < ϵ.

For δ > 0, a sequence {xi}i≥0 in X is called a δ-ergodic pseudo-orbit of f if d({i ∈
Z+ : d(f(xi), xi+1) < δ}) = 1. The map f has the ergodic shadowing property if for
every ϵ > 0, there is a δ > 0 such that every δ-ergodic pseudo-orbit of f can be ϵ-
ergodic shadowed by a point z ∈ X, that is, d({i ∈ Z+ : d(f i(z), xi) < ϵ}) = 1 [9]. We
say that the map f has the d-shadowing property if for every ϵ > 0, there is a δ > 0
such that for every δ-ergodic pseudo-orbit {xi}i≥0 of f , there exists z ∈ X such that
d({i ∈ Z+ : d(f i(z), xi) < ϵ}) > 0 [7]. The map f has the Fd-shadowing property if for
every ϵ > 0, there is a δ > 0 such that for every δ-pseudo-orbit {xi}i≥0 of f , there exists
z ∈ X such that d({i ∈ Z+ : d(f i(z), xi) < ϵ}) > 0 [29].

For non-empty subsets U , V of X, we define the hitting time set as N(U, V ) = {k ∈
Z+ : fk(U) ∩ V ̸= ∅} and for x ∈ X and a neighborhood U of x, we define the visiting
time set as N(x, U) = {n ∈ Z+ : fn(x) ∈ U}. We say that the map f is transitive if for
any pair of non-empty open subsets U , V of X, the set N(U, V ) is non-empty and f is
totally transitive if each iterate fk, k ∈ N, is transitive. We say that f is weakly mixing
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if f × f is transitive and f is mixing if for any pair of non-empty open subsets U , V of
X, the set N(U, V ) is cofinite. The map f is minimal if every point of X has dense orbit,
equivalently, if X does not admit any non-empty, proper, closed, f -invariant subset. By
f -invariance of a subset A of X we mean f(A) ⊆ A.

For δ > 0 and x, y ∈ X, a δ-chain of f from x to y of length n ∈ N is a finite sequence
x0 = x, x1, . . . , xn = y satisfying d(f(xi), xi+1) < δ for 0 ≤ i ≤ n − 1. We say that the
map f is chain transitive if for any δ > 0 and any pair of points x, y ∈ X, there is a
δ-chain of f from x to y and f is chain mixing if for any δ > 0 and any pair of points x,
y ∈ X, there exists N ∈ N such that for all n ≥ N , there is a δ-chain of f from x to y
of length n. The map f is said to have the specification property if for every ϵ > 0, there
exists N ∈ N such that for every n ∈ N \ {1}, any finite sequence y1, y2, . . . , yn ∈ X and
any sequence a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn of natural numbers with ai+1 − bi ≥ N
for i = 1, 2, . . . , n − 1, there is a point z ∈ X such that d(f j(z), f j(yk)) < ϵ for every k
with 1 ≤ k ≤ n and every j with ak ≤ j ≤ bk.

The map f is said to be equicontinuous if for every ϵ > 0, there is a δ > 0 such
that whenever x, y ∈ X with d(x, y) < δ then d(fn(x), fn(y)) < ϵ for each n ∈ N. A
factor (Y, g) of (X, f) is said to be maximal equicontinuous factor of (X, f) if (Y, g) is
equicontinuous and every equicontinuous factor of (X, f) is a factor of (Y, g). A point
x ∈ X is called a sensitive point of f if there exists ϵ > 0 such that for any neighborhood
U of x we have diam(fn(U)) > ϵ for some n ∈ N, where diam(A) denotes the diameter
of A. We denote the set of sensitive points of f by Sen(f). We say that the map f is
sensitive if Sen(f) = X and a uniform ϵ > 0 works for all x ∈ X. A point x ∈ X is called
a periodic point of f if fk(x) = x for some k ∈ N and it is called a minimal point of f if
N(x, U) is syndetic for every neighborhood U of x. We denote the set of periodic points
of f by P (f) and the set of minimal points of f by M(f).

We recall Bowen’s definition of topological entropy. For n ∈ N and ϵ > 0, a subset
A ⊆ X is said to be an (n, ϵ)-separated set for f if for each pair a, b of distinct points in
A, there is a k ∈ {0, 1, . . . , n − 1} such that d(fk(a), fk(b)) > ϵ. Let sn(f, ϵ) denote the
maximal cardinality of an (n, ϵ)-separated set for f . Then the topological entropy of f is
defined as

h(f) = lim
ϵ→0

[
lim sup

n→∞

log sn(f, ϵ)
n

]
.

We also recall the asymptotic and proximal relations on X which are given by Asym(f) =
{(x, y) ∈ X × X : lim

n→∞
d(fn(x), fn(y)) = 0} and Prox(f) = {(x, y) ∈ X × X :

lim inf
n→∞

d(fn(x), fn(y)) = 0} respectively. Elements in Asym(f) and Prox(f) are called
asymptotic and proximal pairs of f respectively. A dynamical system (X, f) is proximal
if Prox(f) = X × X. We say that the map f is distal if Prox(f) = ∆X , where ∆X =
{(x, x) : x ∈ X} is the diagonal of X ×X and f is called Li-Yorke chaotic if there is an un-
countable set U ⊆ X, called as scrambled set (for f), such that (x, y) ∈ Prox(f)\Asym(f)
for any two distinct points x, y ∈ U. We say that the map f is densely Li-Yorke chaotic if
it admits a dense, uncountable scrambled set [14]. We say that the map f is topologically
chaotic if h(f) > 0 and it is Auslander-Yorke chaotic if it is transitive and sensitive. Also,
f is Devaney chaotic if it is transitive, sensitive and P (f) is dense in X and it is P-chaotic
if it has the shadowing property and P (f) is dense in X [2].

3. Relating contraction with the ALASP
In the following result we prove that every contraction map has the ALASP.

Theorem 3.1. Let (X, d) be a metric space. If f : X → X is a contraction map, then f
has the ALASP.
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Proof. Since f is a contraction map, there exists α ∈ R, 0 < α < 1, such that d(f(x), f(y))
≤ αd(x, y) for all x, y ∈ X. Let ϵ > 0 be a real number. Choose δ > 0 such that
δ/(1 − α) < ϵ. Let {xi}i≥0 be an almost δ-average-pseudo-orbit of f . Then

lim sup
n→∞

n−1∑
i=0

βi < δ, (3.1)

where βi = d(f(xi), xi+1) for every i ≥ 0. Let y0 = x0 and yi+1 = f(yi), i ≥ 0. Then
d(f(x0), f(y0)) = 0. Consider,

d(f(x1), f(y1)) ≤ αd(x1, y1)
≤ α(d(x1, f(x0)) + d(f(x0), f(y0)))
= αβ0.

Also,

d(f(x2), f(y2)) ≤ αd(x2, y2)
≤ α(d(x2, f(x1)) + d(f(x1), f(y1)))
≤ αβ1 + α2β0.

Therefore by induction we get

d(f(xi), f(yi)) ≤ αβi−1 + α2βi−2 + α3βi−3 + · · · + αi−1β1 + αiβ0

for all i ≥ 1. We claim that y0 is the required tracing point of {xi}i≥0. It is clear that
d(y0, x0) = 0 and d(f(y0), x1) = d(f(x0), x1) = β0. Also,

d(f2(y0), x2) = d(f(y1), x2) ≤ d(f(y1), f(x1)) + d(f(x1), x2) ≤ αβ0 + β1.

Therefore by induction we have

d(f i(y0), xi) ≤ αi−1β0 + αi−2β1 + · · · + αβi−2 + βi−1

for all i ≥ 1. Thus for fixed n ∈ N, we get

1
n

n−1∑
i=0

d(f i(y0), xi) ≤ 1
n

[β0(1 + α + α2 + · · · + αn−2)

+ β1(1 + α + α2 + · · · + αn−3) + · · · + βn−3(1 + α) + βn−2].

This gives for all n ∈ N,

1
n

n−1∑
i=0

d(f i(y0), xi) ≤ 1
1 − α

1
n

n−1∑
i=0

βi.

Therefore using (3.1) we have

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(y0), xi) ≤ 1
1 − α

lim sup
n→∞

1
n

n−1∑
i=0

βi <
1

1 − α
δ < ϵ.

Thus f has the ALASP. �

Remark 3.2. It is clear that a map having ALASP need not be contracting, for instance,
the usual tent map has the ALASP [10], however, it is not contracting.

Remark 3.3. One can verify that the notion of ALASP is preserved under topological
conjugacy on compact spaces. Following example justifies that the condition of compact-
ness can not be relaxed in this case.
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Example 3.4. Let X = N, f : X → X be defined as f(x) = x + 1, x ∈ N. Also,
let Y = { 1

2n : n ∈ N} and g : Y → Y be defined as g(1/2n) = 1/2n+1, n ∈ N. Then
(X, f) is topologically conjugate to (Y, g) with topological conjugacy h : X → Y given by
h(n) = 1/2n, n ∈ N. Note that f being an isometry does not have the ALASP, however,
g being contracting has the ALASP.

4. Variants of chaos and the ALASP
Note that the tent map f1(x) = 1−|1−2x|, x ∈ [0, 1], the logistic map f2(x) = 4x(1−x),

x ∈ [0, 1] and the doubling map f3(x) = (2x) mod 1, x ∈ [0, 1] are some examples of maps
having the ALASP with positive topological entropy. Interestingly, we have the following:

Theorem 4.1. Let (X, f) be a non-trivial dynamical system. If f is a surjection having
the ALASP and the shadowing property, then it is topologically chaotic.

Proof. Since f is a surjection having the ALASP and the shadowing property, we have
f × f is a surjection having the ALASP and the shadowing property [6], which gives
M(f × f) = X × X [10]. Also, f being a surjection having the ALASP, it can not be
equicontinuous implying that Sen(f) ̸= ∅. Let z ∈ Sen(f). Then there exists ϵ > 0 such
that for any neighborhood U ⊆ X of z, there is a k ∈ N such that diam(fk(U)) > 2ϵ.
Suppose δ with 0 < δ < ϵ/2 is obtained corresponding to ϵ/2 by the shadowing property of
f . Let U ⊆ X be a neighborhood of z with diam(U) < δ/2. Then diam(fk(U)) > 2ϵ. Since
M(f × f) = X × X and U is open, using continuity of f , we can choose (a, b) ∈ M(f ×
f)∩(U ×U) such that d(fk(a), fk(b)) > 2ϵ. Since N((a, b), (B(a, δ/2)×B(b, δ/2))) (under
f ×f) is syndetic, choose an integer p > k such that (f ×f)p(a, b) ∈ B(a, δ/2)×B(b, δ/2),
which gives d(a, fp(a)) < δ/2 and d(b, fp(b)) < δ/2.

Let Z = {a, f(a), f2(a), . . . , fp−1(a)} and Z∗ = {b, f(b), f2(b), . . . , fp−1(b)} with placing
of elements fixed. For n ∈ N, take {wi}0≤i≤np−1 = Z1Z2 . . . Zn, where Zj ∈ {Z, Z∗}, j =
1, 2, . . . , n (for example, if Zj = Z for every j, then {wi} = {a, f(a), f2(a), . . . , fp−1(a), a,
f(a), f2(a), . . . , fp−1(a), . . . }). Since d(x, fp(y)) < δ for x, y ∈ {a, b}, we have {wi}0≤i≤np−1
is a finite δ-pseudo-orbit of f . Therefore there exists w ∈ X such that d(f i(w), wi) < ϵ/2
for all 0 ≤ i ≤ np−1. Let {cj}, {dj} ∈ Z1Z2 . . . Zn be two distinct δ-pseudo-orbits of f con-
sisting of np elements with ϵ/2-tracing points c, d respectively. Since d(fk(a), fk(b)) > 2ϵ
and p > k, there exists j with 0 ≤ j ≤ np − 1 such that d(cj , dj) > 2ϵ. This gives 2ϵ <
d(cj , dj) ≤ d(cj , f j(c)) + d(f j(c), f j(d)) + d(f j(d), dj) < ϵ/2 + d(f j(c), f j(d)) + ϵ/2 so that
d(f j(c), f j(d)) > ϵ. Therefore the set A = {z : z is an ϵ/2-tracing point of some {zi} ∈
Z1Z2 . . . Zn} is (np, ϵ)-separated and hence (np, η)-separated for every η ∈ (0, ϵ). It is
clear that |A| = 2n, which gives snp(f, η) ≥ 2n for every η ∈ (0, ϵ) and every n ∈ N. Thus
h(f) ≥ (log 2)/p > 0 and hence f is topologically chaotic. �

Following example justifies that the condition of ALASP is necessary in Theorem 4.1.

Example 4.2. Consider X = {a, b} with discrete metric and f as the cycle permutation
on X given by f(a) = b, f(b) = a. It is shown in [6] that f does not have the ALASP.
Also, it is clear that f has the shadowing property (every 0 < δ < 1 will work). Moreover,
f being an isometry, h(f) = 0.

It is known that the AASP implies the ALASP [34, Theorem 4.3]. So using [17, Corollary
3.12], we have the following remark:

Remark 4.3. If (X, f) is a dynamical system and there is a point y ∈ X such that
ωf (x) = {y} for every x ∈ X, then f has the ALASP.

Next example justifies that the condition of shadowing property is necessary in Theorem
4.1.
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Example 4.4. Consider the unit circle S1 and the map f : S1 → S1 defined as f(e2πιt) =
e2πιt2 , t ∈ [0, 1). By Remark 4.3, f has the ALASP, indeed ωf (x) = {(1, 0)} for every
x ∈ S1. Since f is not mixing, it does not have the shadowing property [10]. Also, on S1

the positivity of topological entropy of a map is equivalent to that of being it Devaney
chaotic, which gives h(f) = 0 since f is not transitive.

In general, topological chaos need not imply the ALASP as exhibited by the following
example.

Example 4.5. Let Y be a proximal subshift of ({0, 1}Z, σ) having positive topological
entropy and unique fixed point 0∞. One can refer [28] for the construction of such subshift.
Let A = {(. . . x−2x−1x0x1x2 . . . ) ∈ {0, 1}Z : there exists y ∈ Y with x2i = yi and x2i+1 =
0 ∀ i ∈ Z}. Then X = A ∪ σ(A) is also a proximal subshift having positive topological
entropy and a fixed point 0∞. However, σ|X does not have the ALASP since it does not
have the ASP, by [29, Example 20].

Observe that using Theorem 4.1 and [4, Corollary 2.4], we get that if (X, f) is a non-
trivial dynamical system and f is a surjection having the ALASP and the shadowing
property, then f is Li-Yorke chaotic. Moreover, we have the following result:

Theorem 4.6. Let (X, f) be a dynamical system and f be minimal having the ALASP.
(a) If X is infinite, then f is densely Li-Yorke chaotic.
(b) If X is non-trivial, then f is Auslander-Yorke chaotic.

Proof. (a) Since the ALASP implies the ASP, (X, f) has only trivial maximal equicon-
tinuous factor, by [16, Theorem 6.1]. Using [14, Proposition A.4] and the minimality of f ,
we get that f is weakly mixing. Thus the result follows by [14, Corollary 3.6].

(b) It is well known that a minimal map is either equicontinuous or sensitive [1]. Since
f is surjective and has the ALASP, it can not be equicontinuous (using the fact that a
surjective equicontinuous map does not have the ALASP [10]). Thus f is Auslander-Yorke
chaotic. �

The condition of minimality is necessary in Theorem 4.6 (a) as shown by the following
example.

Example 4.7. Let Y = {(1 − 1
n) : n ∈ N} and X = Y ∪ {1}. Then X is clearly a compact

metric space with usual metric of R. Define f : X → X as

f(x) =
{

x+ if x ∈ Y,
x if x = 1,

where x+ denotes the element of X which is immediate to the right of x. It is clear that
ωf (x) = {1} for every x ∈ X so that f has the ALASP, by Remark 4.3. Also, f is neither
minimal nor Li-Yorke chaotic.

The condition of ALASP is necessary in Theorem 4.6 (a) is justified by following two
examples.

Example 4.8. Consider the Morse shift defined as follows. First define the sequence of
Morse blocks inductively as M0 = 0, Mn = Mn−1M c

n−1 for all n ≥ 1, where M c
n is the

complement of Mn, obtained by interchanging the 1’s and 0’s in Mn. The Morse sequence
m ∈ Σ2 = {0, 1}Z+ is the limit of the sequence of Morse blocks, that is, m = lim

n→∞
Mn, so

the first few terms of the Morse sequence are
m = 01101001100101101001011001101001 . . . .

Let σ be the one-sided shift map on Σ2. Then the sequence m generates the infinite
Morse set M = Oσ(m), closure of Oσ(m), and (M, σ|M ) is called the Morse system,
which is minimal but not weakly mixing [33] and hence does not have the ALASP. Since



1378 M. Garg and R. Das

Asym(σ|M ) = Prox(σ|M ), the Morse shift has no Li-Yorke pairs which implies that it is
not Li-Yorke chaotic.
Example 4.9. Consider an odometer defined as follows. Let s = (sj)∞

j=1 be a sequence
of positive integers which is strictly increasing and satisfies s1 ≥ 2, sj divides sj+1. Take
X(j) = {0, 1, . . . , sj − 1} and Xs = {x ∈ Π∞

j=1X(j) : xj+1 ≡ (xj) mod sj}. Define
f : Xs → Xs as f((xj)) = (yj), where yj = (xj + 1) mod sj , j = 1, 2, . . . . Then the
dynamical system (Xs, f) is called an odometer (or an adding machine) defined by s. It is
clear that f is minimal and equicontinuous which gives that it does not have the ALASP
since a surjective equicontinuous map does not have the ALASP [10]. Also, f being distal,
is not Li-Yorke chaotic.

The condition of minimality is necessary in Theorem 4.6 (b) as shown by the following
example.
Example 4.10. Consider the space and the map as given in Example 4.4. Here f has
the ALASP. However, f is neither minimal nor Auslander-Yorke chaotic since f is not
transitive.

The condition of ALASP is necessary in Theorem 4.6 (b) as exhibited by the following
example.
Example 4.11. Let S1 denote the unit circle, identified with R/Z, or with the interval
[0, 1), by the function e2πιx and fα be the rotation by an irrational number α ∈ (0, 1) given
by fα : S1 → S1, fα(x) = (x + α) mod 1. The map fα being minimal is transitive but not
sensitive which implies that it is not Auslander-Yorke chaotic. Also, fα being distal does
not have the ALASP [10].

In general, the Auslander-Yorke chaos need not imply the ALASP as justified by the
following example.
Example 4.12. We consider the Sturmian system defined as follows. First consider the
irrational rotation on the unit circle S1 defined as fα : S1 → S1, fα(x) = (x + α) mod 1,
where α ∈ (0, 1) is an irrational number. Take I0 = [0, 1 − α) and I1 = [1 − α, 1) and
consider the coding function ν given by ν(x) = 0 if x ∈ I0, ν(x) = 1 if x ∈ I1. Then
the coding of the orbit of t ∈ [0, 1) under the rotation fα, that is, ν(fn

α (t)), provides the
rotation sequence which is a Sturmian sequence. We call X(α), the closure of the set of
all such bi-infinite sequences and σ be the shift map on Σ2 = {0, 1}Z. Then the system
(X(α), σ|X(α)) is called a Sturmian system. It is clear that the Sturmian shift is minimal
but not weakly mixing which gives that it does not have the ALASP, by Theorem 4.6 (a).
Also, it is transitive and sensitive giving that it is Auslander-Yorke chaotic.
Remark 4.13. Note that in Example 4.4, f is not Devaney chaotic. Therefore in general,
the ALASP need not imply Devaney chaos. Moreover, observe that if (X, f) is an infinite
dynamical system, where f is a surjection having the ALASP and the shadowing property,
then f being having the specification property [10], is Devaney chaotic.

A continuum is a non-trivial compact connected metric space.
Remark 4.14. Observe that if (X, f) is a dynamical system, where X is a continuum
and f is P -chaotic, then f has the ALASP (using the result that a P -chaotic map on a
continuum is mixing, by [2, Corollary 3.4] and the fact that the shadowing property and
mixing together imply the ALASP [10]).

In general, P -chaos need not imply the ALASP which follows by the following example.
Example 4.15. Consider the Cantor set X = {0, 1}N with metric d(x, y) = inf{2−m :
xi = yi for all i < m} for every x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈ X. Then the identity
map IX on X has the shadowing property and P (IX) = X. However, IX being distal does
not have the ALASP [10].
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5. The ALASP and variants of shadowing
In this section, we relate the notion of ALASP with ergodic shadowing, Fd-shadowing

and d-shadowing.

Theorem 5.1. Let (X, f) be a dynamical system. If f has the ergodic shadowing property,
then it has the ALASP. The converse holds if f is a surjection having the shadowing
property.

Proof. Since f has the ergodic shadowing property, it has the shadowing property and it
is mixing implying that f has the ALASP [10]. Conversely, under the above hypothesis,
we have f is mixing [10]. So using the shadowing property of f , we get that f has the
ergodic shadowing property [9]. �

Remark 5.2. Observe that the Example 4.4 justifies that in general, the ALASP need
not imply the ergodic shadowing property.

Theorem 5.3. Let (X, f) be a dynamical system. If f has the ALASP, then it has Fd-
shadowing property.

Proof. Let ϵ > 0 be a real number and δ > 0 be obtained for ϵ/2 by the ALASP of
f . Suppose {xi}i≥0 is a δ-pseudo-orbit of f , then clearly it is also an almost δ-average-
pseudo-orbit of f so that there exists z ∈ X such that

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) < ϵ/2.

Let Λ = {i ∈ Z+ : d(f i(z), xi) < ϵ}. Then

ϵ/2 > lim sup
n→∞

1
n

n−1∑
i=0

d(f i(z), xi)

≥ lim sup
n→∞

ϵ

n
(n − |Λ ∩ {0, 1, . . . , n − 1}|)

= ϵ − ϵd(Λ).

This gives d(Λ) > 1/2. Thus f has the Fd-shadowing property. �

One can observe using [7, Lemma 4.1] that if f is chain mixing and has the Fd-shadowing
property, then it has the d-shadowing property. Using this we have the following:

Corollary 5.4. Let (X, f) be a dynamical system. If f is surjective and has the ALASP,
then it has the d-shadowing property.

Proof. Since f is surjective and has the ALASP, it is chain mixing [6]. Thus the result
follows by Theorem 5.3. �

Remark 5.5. Note that the Example 4.15 justifies that in general, the Fd-shadowing
property need not imply the ALASP.

6. The ALASP on hyperspaces
Let (X, f) be a dynamical system and K (X) denotes the collection of all non-empty

compact subsets of X. The map f induces the map f̄ : K (X) → K (X) defined as
f̄(K) = f(K) = {f(x) : x ∈ K} for every K ∈ K (X). Consider the Hausdorff metric Hd

on K (X) given by
Hd(K1, K2) = max{sup{d(x1, K2) : x1 ∈ K1}, sup{d(K1, x2) : x2 ∈ K2}}
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for all K1, K2 ∈ K (X). So (X, f) induces the dynamical system (K (X), f̄) with Haus-
dorff metric. Note that the system (X, f) is a subsystem of the induced system (K (X), f̄),
where each point x ∈ X is identified as a subset {x} ∈ K (X) [27].

The following result shows that the ALASP of the induced map implies the ALASP of
the base map.

Theorem 6.1. Let (X, f) be a dynamical system. If f̄ has the ALASP, then so does f .

Proof. Let ϵ > 0 and δ > 0 be obtained corresponding to ϵ by the ALASP of f̄ . Let
{xi}i≥0 be an almost δ-average-pseudo-orbit of f , that is,

lim sup
n→∞

1
n

n−1∑
i=0

d(f(xi), xi+1) < δ.

Since Hd({f̄({xi})}, {xi+1}) = d(f(xi), xi+1) for every i ≥ 0, we have

lim sup
n→∞

1
n

n−1∑
i=0

Hd({f̄({xi})}, {xi+1}) < δ.

Therefore {{xi}}i≥0 is an almost δ-average-pseudo-orbit of f̄ so that there exists Y ∈
K (X) such that

lim sup
n→∞

1
n

n−1∑
i=0

Hd((f̄)i(Y ), {xi}) < ϵ.

Let y0 ∈ Y . Then one can obtain that Hd((f̄)i(Y ), {xi}) ≥ d(f i(y0), xi) for every i ≥ 0,
which gives

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(y0), xi) < ϵ.

Thus f has the ALASP. �
For the converse, we have the following result:

Theorem 6.2. Let (X, f) be a dynamical system. Suppose that for every ϵ > 0, there
exists η > 0 such that if for every j ≥ 0, a sequence {ai,j}i≥0 ⊆ X is η-shadowed in

average by some cj ∈ X, then lim sup
n→∞

1
n

n−1∑
i=0

sup
j≥0

d(f i(cj), ai,j) < ϵ. If f has the ALASP,

then f̄ has the ALASP.

Proof. Let ϵ > 0 and η > 0 be obtained corresponding to ϵ by the assumption in the
hypothesis of the Theorem. Suppose δ > 0 is provided corresponding to η by the ALASP
of f . Let {Yi}i≥0 be an almost δ-average-pseudo-orbit of f̄ , that is,

lim sup
n→∞

1
n

n−1∑
i=0

Hd(f̄(Yi), Yi+1) < δ. (6.1)

Since each Yi, i ≥ 0, is compact, fixing i ≥ 0 and yi ∈ Yi, we can obtain yi+1 ∈ Yi+1 such
that

Hd(f̄(Yi), Yi+1) ≥ d(f(yi), yi+1). (6.2)
Each Yk, k ≥ 0, being a compact metric space is separable. Therefore each Yk, k ≥ 0, has
a countable dense subset, say {xl

k : l ≥ 0}. Using (6.1) and (6.2), for each xl
k, k, l ≥ 0, we

can form an almost δ-average-pseudo-orbit of f , say {zl
kr : r ≥ 0}, with zl

kk = xl
k. This

way we get countably many almost δ-average-pseudo-orbits of f and we can rearrange
these countable union of countably many elements into a sequence {{yj

i }i≥0}j≥0 such that
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{yj
i : j ≥ 0} = Yi for every i ≥ 0 and {yj

i : i ≥ 0} is an almost δ-average-pseudo-orbit of f
for every j ≥ 0.

y0
0 y1

0 y2
0 y3

0 y4
0 . . .

y0
1 y1

1 y2
1 y3

1 y4
1 . . .

y0
2 y1

2 y2
2 y3

2 y4
2 . . .

y0
3 y1

3 y2
3 y3

3 y4
3 . . .

. . .

(Note that in the above table, for i ≥ 0, ith row is dense in Yi and each column is an
almost δ-average-pseudo-orbit of f). Therefore for every j ≥ 0, there exists zj ∈ X such
that

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(zj), yj
i ) < η. (6.3)

Let Z = {zj : j ≥ 0}. Then each f i, i ≥ 1, being a closed map, f i(Z) = f i(Z) for
every i ≥ 0. One can observe that if A = {an : n ≥ 1} and B = {bn : n ≥ 1}, then
Hd(A, B) ≤ supn≥1 d(an, bn). This gives Hd((f̄)i(Z), Yi) ≤ supj≥0 d(f i(zj), yj

i ) for every
i ≥ 0. Using (6.3) and the condition in the hypothesis of the theorem we get

lim sup
n→∞

1
n

n−1∑
i=0

sup
j≥0

d(f i(zj), yj
i ) < ϵ.

This in turn gives

lim sup
n→∞

1
n

n−1∑
i=0

Hd((f̄)i(Z), Yi) < ϵ.

Thus {Yi}i≥0 is ϵ-shadowed in average by Z ∈ K (X) and hence f̄ has the ALASP. �

Example 6.3. It is clear that if f is a constant map, then f̄ is also a constant map and
hence both have the ALASP.

Example 6.4. Note that all the maps f1, f2, f3, f̄1, f̄2 and f̄3 given in the beginning of
Section 4 are topologically mixing and have the shadowing property. Thus they have the
ALASP [10].

Example 6.5. In Example 4.11, fα being an isometry does not have the ALASP [10] and
hence by Theorem 6.1, f̄α does not have the ALASP.

Acknowledgment. Authors are thankful to Professor Marcin Kulczycki, Jagiellonian
University, Poland for giving the idea of the proof of the Remark 3.3 through personal
discussions. This work is a part of the doctoral thesis of the first author.
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