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Abstract

By using Hurwitz stability of a linear differential equation system (in short, LDES) with constant coefficients, and using Schur stability
of a linear difference equation system (in short, LDIES) with constant coefficients, we have obtained two new continuity theorems for
sensitivity of Hurwitz stability of a LDES with periodic coefficients. Our approach to the theorems is based on Floquet theory. Also, we have
determined stability regions and supported the obtained results by a numerical example.
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1. Introduction

The linear differential equation system with periodic coefficients

x′(t) = A(t)x(t), A(t +T ) = A(t), T > 0, t ≥ 0

is used in many application area of mechanical, physics, medicine and engineering sciences (for example [14, 13, 12]). In this paper, by
using the Hurwitz and Schur stability concepts, we obtained new continuity theorems which show the sensitivity of Hurwitz stability of the
above mentioned system. Also, we determined stability regions and supported the obtained results by a numerical example.
The content of this paper is organized as follows. In section 2, we recall some preliminary facts on the stability of linear differential and
linear difference equation systems. Section 3 is devoted to prove the main results, and to give a numerical example. In Section 4, conclusions
are given.

2. Preliminaries

In this section, we give some basic concepts and theorems about the linear differential and the linear difference equation systems, respectively.

2.1. The linear differential equation system with constant coefficients

We consider a system of linear differential equations

x′(t) = Ax(t), t ≥ 0, (2.1)

where A is an N ×N matrix whose elements are constant and, x(t) = (x1(t),x2(t), ...,xN(t))>, x1(t),x2(t), ...,xN(t) are differentiable
functions. Hurwitz stability of the system (2.1) (or equivalently, Hurwitz stability of the matrix A) is described as the following in the
literature:

• According to the spectral criterion, it is necessary for Hurwitz stability of the system (2.1) that the real parts of all eigenvalues of the
matrix A are negative (Reλi(A)< 0, i = 1,2, ...,N),

• According to Lyapunov’s second theorem, the system (2.1) is Hurwitz stable if and only if there exists a solution H = H∗ > 0 of the
Lyapunov matrix equation A∗H +HA =−I,

Email addresses: aketen@erbakan.edu.tr (Ayşegül Keten) aduman@erbakan.edu.tr (Ahmet Duman), kaydin@selcuk.edu.tr (Kemal Aydın)



424 Konuralp Journal of Mathematics

[1, 4, 7, 10]. Since the eigenvalue problem is an ill-posed problem for non-symmetric matrices [4, 17], we will study with the stability
parameters which reveal the quality of Hurwitz and Schur stability without eigenvalue calculation.
The parameter κ(A) which reveals the quality of the Hurwitz stability of the system (2.1) is defined as

κ(A) = 2‖A‖‖H‖; H =
∫

∞

0
etA∗etAdt, A∗H +HA =−I, H = H∗ > 0,

where ‖A‖ = max
‖x‖=1

‖Ax‖ is the spectral norm of the matrix A, A∗ is the adjoint of the matrix A, and I is the identity matrix. If there is a

positive definite matrix H = H∗ > 0 providing the above Lyapunov matrix equation, then κ(A)< ∞. Otherwise, κ(A) = ∞ is chosen [4, 5, 9].
Let B is an N×N matrix whose elements are constant. We consider the following system

y′(t) = (A+B)y(t), t ≥ 0. (2.2)

While the system (2.1) is Hurwitz stable, Hurwitz stability of the perturbed system (2.2) is preserved under which conditions. In literature,
this problem is known as the sensitivity problem, and theorems which search for an answer to this problem are known as continuity theorems.

The following theorem is a continuity theorem which shows the sensitivity of Hurwitz stability of the system (2.1).

Theorem 2.1. Let A be a Hurwitz stable matrix (Let the system (2.1) be a Hurwitz stable). If ‖B‖< ‖A‖
κ(A) , then the matrix A+B is Hurwitz

stable (the system (2.2) is Hurwitz stable) and the inequality

κ(A+B)≤ κ(A)(‖A‖+‖B‖)
‖A‖−‖B‖κ(A)

holds [9, Theorem 2].

2.2. The linear difference equation system with constant coefficients

We consider a system of linear difference equations

x(n+1) = Ax(n), n ∈ Z, (2.3)

where A is an N×N matrix whose elements are constant, and x(n) is an N dimensional column vector. Schur stability of the system (2.3) (or
equivalently, Schur stability of the matrix A) is described as the following in the literature:

• According to the spectral criterion, it is necessary for the Schur stability of the system (2.3) that all eigenvalues of the matrix A lie in
the unit disc (|λi(A)|< 1, i = 1,2, ...,N),

• By using Lyapunov’s second theorem, the system (2.3) is Schur stable if and only if there exists a solution X = X∗ > 0 of the
discrete-Lyapunov matrix equation A∗XA−X + I = 0,

[1, 4, 6, 8, 10]. The parameter ω(A) which reveals the quality of Schur stability of the system (2.3) is defined as

ω(A) = ‖X‖; X =
∞

∑
k=0

(A∗)kAk, A∗XA−X + I = 0, X = X∗ > 0.

If there is a positive definite matrix X = X∗ > 0 providing the discrete-Lyapunov matrix equation, then ω(A)< ∞. Otherwise, ω(A) = ∞ is
chosen [1, 4, 5, 8, 11].
Let B is an N×N matrix whose elements are constant. We consider the following system which called as the perturbed system of the system
(2.3)

y(n+1) = (A+B)y(n), n ∈ Z. (2.4)

The following theorem is a continuity theorem which shows the sensitivity of Schur stability of the system (2.3).

Theorem 2.2. Let A be a Schur stable matrix (Let the system (2.3) be a Schur stable). If ‖B‖<
√
‖A‖2 + 1

ω(A) −‖A‖, then the matrix A+B

is Schur stable (the system (2.4) is Schur stable) and the inequality

ω(A+B)≤ ω(A)
1− (2‖A‖+‖B‖)‖B‖ω(A)

holds [8, Corollary 1].
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3. Sensitivity of Hurwitz Stability of the LDES with Periodic Coefficients

In this section, by using Floquet-Lyapunov theorem, we will obtain new continuity theorems for sensitivity of Hurwitz stability of a LDES
with periodic coefficients. To investigate the Hurwitz stability of a LDES with periodic coefficients via Schur stability of a LDIES with
constant coefficients, is an interesting result.
Consider a system of linear differential equations

x′(t) = A(t)x(t), A(t +T ) = A(t), T > 0, t ≥ 0, (3.1)

where A(t) is a continuous, T -periodic, (real or complex) N×N coefficient matrix, and x(t) = (x1(t),x2(t), ...,xN(t))>, x1(t),x2(t), ...,xN(t)
are differentiable functions.
By Floquet-Lyapunov theorem, the fundamental matrix X(t) of the system (3.1) with X(0) = I has the representation

X(t) = F(t)eMt (3.2)

where M is a constant N×N matrix satisfies the equation X(T ) = eMT , and F(t) is a continuously differentiable, T -periodic (F(t+T ) = F(t)
for all t), N×N matrix function. Clearly, F(0) = I and detF(t) 6= 0 for all t [16, p.196]. Conversely, if F(t) and M are matrices with the
above properties, then the matrix X(t) is the fundamental matrix of the system (3.1) [2, p.42].
Hurwitz stability of the system (3.1) depends on Hurwitz stability of the constant matrix M (see [2, p.42]), in other words, Hurwitz stability
of the system (3.1) depends on Hurwitz stability of the system

u′(t) = Mu(t), t ≥ 0. (3.3)

Moreover, Hurwitz stability of the system (3.1) depends on the Schur stability of the monodromy matrix X(T ) = eMT (see [2, p.9] and [18,
p.84]), in other words, Hurwitz stability of the system (3.1) depends on the Schur stability of the system

y(n+1) = eMT y(n), n ∈ Z. (3.4)

Consider the perturbed system of the system (3.1)

w′(t) = [A(t)+C(t)]w(t), C(t +T ) =C(t), t ≥ 0, (3.5)

where C(t) is a continuous N×N matrix function of t.
In this section, unless stated otherwise, the matrices F(t) and X(T ) will be considered as matrices satisfying the properties in the Floquet-
Lyapunov theorem given above.
We will give the following lemma and remark that are necessary for the proof of Theorem 3.3 and Theorem 3.5. We denote that it is omitted
because the proof of lemma is easy.

Lemma 3.1. Let P be a square matrix. Then the matrix C(t) defined as C(t) := F(t)PF−1(t) has the period T . In particular, if P is a
diagonal matrix whose all terms are equal, then C(t) = P.

Remark 3.2. Let A be an N×N arbitrary matrix. Then, ‖A‖= σmax(A) and ‖A−1‖= 1
σmin(A)

, where σmax(A) and σmin(A) are the largest
and smallest singular values of the matrix A, respectively [15, p.312].

Now, we give two new continuity theorems. In the following first theorem, the sensitivity of Hurwitz stability of the system (3.1) is examined
with the sensitivity of Hurwitz stability of the system (3.3).

Theorem 3.3. Let the system (3.1) be Hurwitz stable and the matrix δM be a perturbation matrix satisfying ‖δM‖< ‖M‖
κ(M)

. Then, for the

perturbation matrix C(t) with C(t) := F(t)δMF−1(t), the perturbed system (3.5) is Hurwitz stable and, furthermore

‖C(t)‖< σmax(F(t))
σmin(F(t))

‖M‖
κ(M)

, t ≥ 0

where σmax(F(t)) and σmin(F(t)) are the largest and smallest singular values of the matrix F(t), respectively.

Proof. Suppose C(t) is a matrix satisfying the hypotheses of Theorem 3.3. We will show that the perturbed system (3.5) is Hurwitz stable
for the matrix C(t), and the mentioned inequality holds.
Firstly, we will determine the perturbed system which has the fundamental matrix Y (t) := F(t)e(M+δM)t . Suppose that Y (t) is a fundamental
matrix of the system

y′(t) = B(t)y(t). (3.6)

Since Y (t) is a matrix solution of this system, the equality Y ′(t) = B(t)Y (t) holds. Thus, we get

F ′(t)e(M+δM)t +F(t)(M+δM)e(M+δM)t = B(t)F(t)e(M+δM)t

F ′(t)F−1(t)+F(t)(M+δM)F−1(t) = B(t). (3.7)

On the other hand, using the fundamental matrix X(t) = F(t)eMt of the system (3.1), we obtain the following equalities

F ′(t)eMt +F(t)MeMt = A(t)F(t)eMt

F ′(t)F−1(t)+F(t)MF−1(t) = A(t). (3.8)
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If the equality (3.8) is used in the equality (3.7), then

A(t)+F(t)δMF−1(t) = B(t)

is found. This indicates that Y (t) is a fundamental matrix for the perturbed system (3.5) with C(t) := F(t)δMF−1(t). We also denote that
C(t +T ) =C(t) from Lemma 3.1.
Now, under the hypotheses we will show that the system (3.5) is Hurwitz stable. Since the system (3.1) is Hurwitz stable from hypotheses,
the matrix M is Hurwitz stable, that is, the system (3.3) is Hurwitz stable. By Theorem 2.1, the matrix M+δM (‖δM‖< ‖M‖

κ(M)
) is Hurwitz

stable. So, the perturbed system (3.5) is Hurwitz stable for the matrix C(t) mentioned.

Moreover, from the hypotheses and Remark 3.2, we have for every t ≥ 0,

‖C(t)‖ = ‖F(t)δMF−1(t)‖
≤ ‖F(t)‖‖δM‖‖F−1(t)‖

<
σmax(F(t))
σmin(F(t))

‖M‖
κ(M)

.

This completes the proof.

Remark 3.4. Note that the matrix Y (t) mentioned in the proof of Theorem 3.3 satisfies the conditions of Floquet-Lyapunov theorem. In fact,
according to Floquet-Lyapunov theorem, F(T ) = I. Since the monodromy matrix Y (T ) of the perturbed system (3.5) equals to the matrix
F(T )e(M+δM)T , then Y (T ) = e(M+δM)T is obtained.

In the following second theorem, the sensitivity of Hurwitz stability of the system (3.1) is examined with the sensitivity of Schur stability of
the system (3.4).

Theorem 3.5. Let the system (3.1) be Hurwitz stable and δX(T ) be a matrix providing the following conditions

‖δX(T )‖<

√
‖X(T )‖2 +

1
ω(X(T ))

−‖X(T )‖ and δX(T )+X(T ) is a non-singular matrix,

then for the perturbation matrix C(t) satisfying C(t) := F(t)(Q−M)F−1(t) (where the matrix Q is defined as eQT := δX(T )+X(T )), the
perturbed system (3.5) is Hurwitz stable and, the inequality

‖C(t)‖ ≤ σmax(F(t))
σmin(F(t))

‖Q−M‖, t ≥ 0

holds (where σmax(F(t)) and σmin(F(t)) are the largest and smallest singular values of the matrix F(t), respectively).

Proof. Assume that the hypotheses hold. By a similar approach to Theorem 3.3, firstly, we will determine the perturbed system which has
the fundamental matrix Y (t) = F(t)eQt . Let Y (t) be the fundamental matrix of the system

y′(t) = D(t)y(t). (3.9)

In this case, since Y (t) is a matrix solution of the system (3.9), we get

F ′(t)eQt +F(t)QeQt = D(t)F(t)eQt

F ′(t)F−1(t)+F(t)QF−1(t) = D(t). (3.10)

Also, X(t) = F(t)eMt is a fundamental matrix of the system (3.1), then the equality (3.8) holds. Therefore, from (3.8) and (3.10)

A(t)+F(t)(Q−M)F−1(t) = D(t)

is obtained. This shows that Y (t) is a fundamental matrix for the perturbed system (3.5) with C(t) = F(t)(Q−M)F−1(t). By Lemma 3.1,
we see that C(t +T ) =C(t).
Now, we will show that the perturbed system (3.5) is Hurwitz stable. By hypotheses, since the system (3.1) is Hurwitz stable, the monodromy
matrix X(T ) = eMT is Schur stable, that is, the system (3.4) is Schur stable. By Theorem 2.2, the matrix δX(T )+X(T ) = eQT is Schur
stable. Finally, the perturbed system (3.5) is Hurwitz stable for the matrix C(t) mentioned.

Furthermore, from Remark 3.2, we have for every t ≥ 0

‖C(t)‖ = ‖F(t)(Q−M)F−1(t)‖
≤ ‖F(t)‖‖Q−M‖‖F−1(t)‖

=
σmax(F(t))
σmin(F(t))

‖Q−M‖.

The proof is completed.

Sensitivity of Hurwitz stability of the system (3.1) given by Theorem 3.3 and Theorem 3.5 can be summarized with the following diagram.
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If the system (3.1) is Hurwitz stable 

then the system y(n+1)=𝑒𝑀𝑇y(n) is Schur 

stable for the matrix 𝑀 in (3.2). 

then the system u′(t)=Mu(t) is Hurwitz 

stable for the matrix 𝑀 in (3.2). 

By Theorem 2.2, for the matrix  𝑒𝑄𝑇 

satisfying the conditions of Theorem 3.5 

By Theorem 2.1, for the matrix 𝛿𝑀 

satisfying  𝛿𝑀 <  𝑀 𝜅 (𝑀) 

the system  z(n+1)=eQTz(n) is Schur 

stable. 

the system υ′(t)=(M+δM)υ(t)  is Hurwitz 

stable. 

the system ω′(t)=[A(t)+C(t)]ω(t) is Hurwitz stable. 

C(t) = F(t)δMF -1(t) 

By Theorem 3.3, for the matrix 

C(t) = F(t)(Q-M)F -1(t) 

By Theorem 3.5, for the matrix 

Figure 3.1: The diagram shows sensitivity of the system (3.1).

Example 3.6. We consider the system (3.1) for the matrix A(t) =
[
−1 cos t
−cos t −1

]
.

The fundamental and monodromy matrices of this system are, respectively,

X(t) =
[

e−t cos(sin t) e−t sin(sin t)
−e−t sin(sin t) e−t cos(sin t)

]
and X(T ) = X(2π) =

[
e−2π 0

0 e−2π

]
.

The Floquet representation of the fundamental matrix X(t) is

X(t) = F(t)eMt ,

where F(t) =
[

cos(sin t) sin(sin t)
−sin(sin t) cos(sin t)

]
and M =

[
−1 0
0 −1

]
(see [3, p.161]).

Let us now examine the sensitivity of Hurwitz stability of this system by Theorem 3.3 and Theorem 3.5, respectively.

By Theorem 3.3: The condition number for the given system is κ(M) = 1, and thus the system is Hurwitz stable. On the other hand, we can
see from Theorem 3.3 that the perturbed system (3.5) is Hurwitz stable for C(t) := F(t)δMF−1(t) with ‖δM‖< 1.
Now, we take these matrices δiM as (i = 1,2,3, ...)

δiM =

[
1−1.10−i 0

0 −1+1.10−i

]
.

‖δiM‖= 1−1.10−i < 1. Thus the system persists its Hurwitz stability if it are perturbed with the matrices

Ci(t) = F(t)δiMF−1(t),

Ci(t) =
[
(1−1.10−i)cos(2sin t) −(1−1.10−i)sin(2sin t)
−(1−1.10−i)sin(2sin t) −(1−1.10−i)cos(2sin t)

]
, i = 1,2, ....

We note that Ci(t +2π) =Ci(t). For the matrices Ci(t), the Floquet representations of the fundamental matrices of the perturbed system
(3.5) are

Yi(t) = F(t)e(M+δiM)t

where,

M+δiM =

[
−1.10−i 0

0 −2+1.10−i

]
.

The parameters κ(M+δiM) which reveal the quality of the Hurwitz stability of the perturbed system (3.5) can be calculated as

κ(M+δiM) = 19.10i−1 +
i−2

∑
j=0

9.10 j, i = 1,2,3,4, ....

For the matrices δ1M, δ2M,..., δ10M, respectively, we have that
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• ‖C1(t)‖= 0,9 and κ(M+δ1M) = 19,
• ‖C2(t)‖= 0,99 and κ(M+δ2M) = 199,

...
• ‖C10(t)‖= 0,9999999999 and κ(M+δ10M) = 19999999999.

Since κ(M+δiM)< ∞ for i = 1,2,3, ..., the matrices M+δiM are Hurwitz stable. Note that, while the norms of perturbation matrices Ci(t)
approache 1, the values κ(M+δiM) which reveal the quality of stability of perturbed system increase, so the quality of stability of the system
gradually decreases.
By Theorem 3.5: The condition number of the given system is ω(X(2π)) = 1, and thus the perturbed system (3.5) is Hurwitz stable from
Theorem 3.5 for the matrix C(t) := F(t)(Q−M)F−1(t) satisfying the conditions ‖δX(2π)‖< 0,998128 and δX(2π)+X(2π) = eQ2π .
Now, we take the perturbation matrices δiX(2π) as (i = 1,2,3, ...)

δiX(2π) =

[
0.99− 1

10i+1 0
0 0.99− 1

10i+1

]
.

Then ‖δiX(2π)‖< 0,998128 and,

Qi =

[
1

2π
ln(e−2π +0.99− 1

10i+1 ) 0
0 1

2π
ln(e−2π +0.99− 1

10i+1 )

]
.

If the system (3.5) is perturbed with the matrices Ci(t), then the system persists its Hurwitz stability, where Ci(t) = F(t)(Qi−M)F−1(t) =
Qi−M and

Ci(t) =

[
1

2π
ln(e−2π +0.99− 1

10i+1 )+1 0
0 1

2π
ln(e−2π +0.99− 1

10i+1 )+1

]
.

For the matrices δ1X(2π), δ2X(2π),..., δ7X(2π), the parameters ω(δiX(2π)+X(2π)) which reveal the quality of the Hurwitz stability of
the perturbed system (3.5) are as the following.

• ‖C1(t)‖= 0.9970 and ω(δ1X(2π)+X(2π)) = 27.8263,
• ‖C2(t)‖= 0.9985 and ω(δ2X(2π)+X(2π)) = 54.9977,

...
• ‖C7(t)‖= 0.9987 and ω(δ7X(2π)+X(2π)) = 61.729.

Note that, while the norms of the perturbation matrices Ci(t) approache 1, the values ω(δiX(2π)+X(2π)) which reveal the quality of
stability of the perturbed system (3.5) increase, so the quality of stability of the system gradually decreases.

4. Conclusions

In this paper, using some theorems which exist in the literature dealing with sensitivity of the linear differential and linear difference equation
systems with constant coefficients, and using the Floquet-Lyapunov theory of the LDES with periodic coefficients, two new continuity
theorems for the LDES with periodic coefficients are obtained. Moreover, the stability regions are determined and the obtained results are
supported by a numerical example.
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