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ABSTRACT

In this paper, we study C-parallel mean curvature vector field and C-proper mean curvature vector
field along a slant Frenet curve in a Sasakian Lorentzian 3-manifold. In particular, we prove that
a slant Frenet curve v in a Sasakian Lorentzian 3-manifold A/ satisfying A, H =0 is a geodesic
or pseudo-helix with x? = 72. For example, we find slant pseudo-helix in Lorentzian Heisenberg
3-space.
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1. Introduction

In [1], Baikoussis and Blair considered submanifolds in Sasakian space forms M (p). They defined that the
mean curvature vector field H has C-parallel if VH = \¢, where X is a non-zero differentiable function on
M and V the induced Levi-Civita connection. In [8], we studied curves with C-parallel and C-proper mean
curvature vector fields in the tangent and normal bundles of Sasakian 3-manifolds. So we showed that  has
a C-parallel mean curvature vector field if and only if «y is a geodesic (A = 0) or a helix with £ = v/ —Xcosf
and 7 = Asinf/v/—Acosf. In particular, for a Legendre curve + in a Sasakian 3-manifold M, we proved that v
satisfies V., H = \{ if and only if 7 is a Legendre geodesic.

In this paper, we study C-parallel mean curvature vector field and C-proper mean curvature vector field in
Sasakian Lorenzian 3-manifolds.

Let H be the mean curvature vector field of a curve in 3-dimensional contact Lorentzian manifolds M. The
mean curvature vector field H is said to be C-parallel if VH = ). Moreover, the vector field H is said to be
C-proper it AH = X¢, where V denotes the operator of covariant differentiation of A/. Similarly, in the normal
bundle we define C-parallel and C-proper as follows: H is said to be C-parallel in the normal bundle if V- H = ¢,
and H is said to be C-proper in the normal bundle if A+ H = )¢, where V1 denotes the operator of covariant
differentiation in the normal bundle of M.

Generalizing a Legendre curve in a 3-dimensional contact metric manifold, we consider a slant curve whose
tangent vector field has constant angle with characteristic direction ¢ (see [5]). For a non-geodesic slant curve
in a Sasakian 3-manifold, the direction { becomes & = cos a1 + sin g B, where T' and B are unit tangent vector
field and binormal vector field respectively, that is, the characteristic vector field ¢ is orthogonal to the principal
normal vector field N.

In section 3, we study a slant Frenet curve with C-parallel mean curvature vector field and C-proper mean
curvature vector field in Sasakian Lorentzian 3-manifolds.

In [8], from the point of view of Riemannian structure, we found that a slant curve v in a Sasakian 3-manifold
satisfying A; H = 0 is a geodesic. Now, we prove that a slant Frenet curve v in a Sasakian Lorentzian 3-manifold
M satisfying A, H = 0 is a geodesic or pseudo-helix with x? = 72.

Thus, we find a necessary and sufficient condition for a slant Frenet curve with C-parallel mean curvature
vector field and C-proper mean curvature vector field in Sasakian Lorenzian 3-manifolds in the normal bundle.
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2. Preliminaries

2.1. Contact Lorentzian manifold

Let M be a (2n + 1)-dimensional differentiable manifold. M has an almost contact structure (¢, ¢, n) if it
admits a tensor field ¢ of (1, 1), a vector field { and a 1-form 7 satisfying

P =-T+n®¢& n€) =1

Suppose M has an almost contact structure (¢, £, 7). Then ¢¢ = 0 and 5 o ¢ = 0. Moreover, the endomorphism
¢ has rank 2n.

If a (2n + 1)-dimensional smooth manifold M with almost contact structure (¢, £,n) admits a compatible
Lorentzian metric such that

9(eX,0Y) = g(X,Y) + n(X)n(Y), (2.1)
then we say M has an almost contact Lorentzian structure (7, &, ¢, g). Setting Y = £ we have
n(X) = —g(X, ). (22)

Next, if the compatible Lorentzian metric g satisfies
dn(Xa Y) = g(Xa @Y)v

then 7 is a contact form on M, ¢ the associated Reeb vector field, g an associated metric and (M, ¢, &, 1, g) is
called a contact Lorentzian manifold.
For a contact Lorentzian manifold M, one may define naturally an almost complex structure J on M x R by

T F5) = (X ~ FEn(X) ),

where X is a vector field tangent to M, ¢ the coordinate of R and f a function on M x R. If the almost complex
structure J is integrable, then the contact Lorentzian manifold M is said to be normal or Sasakian. It is known
that a contact Lorentzian manifold M is normal if and only if M satisfies

[p, ] +2dn® & =0,
where [p, ¢] is the Nijenhuis torsion of ¢.
Proposition 2.1 ([3, 4]). An almost contact Lorentzian manifold (M?"*1 0, &, ¢, g) is Sasakian if and only if

(Vx@)Y = g(X, V)¢ + (V) X.
Using the similar arguments and computations in [2] we obtain

Proposition 2.2 ([3, 4]). Let (M?" 1 n, &, ¢, g) be a contact Lorentzian manifold. Then
Vx€=pX —phX.
If ¢ is a killing vector field with respect to the Lorentzian metric g. Then we have

Vx§ =X (2.3)

2.2. Frenet-Serret equations

Let v : I — M?3 be a unit speed curve in Lorentzian 3-manifolds M? such that /' satisfies g(v',7') = 1 = £1.
The constant ¢, is called the causal character of . A unit speed curve v is said to be a spacelike or timelike if
its causal character is 1 or —1, respectively. A unit speed curve ~ is said to be a Frenet curve if g(v",~7"”) # 0. A
Frenet curve v admits a orthonormal frame field {T" =/, N, B} along ~. Then the Frenet-Serret equations are
following ([6, 7]):

VT = oKV,
VW/N = —e1rT - 637’B, (24)
V»Y/B = E‘QTJ\/v7
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where k = |V,/+'| is the geodesic curvature of v and 7 its geodesic torsion. The vector fields 7', N and B are called
tangent vector field, principal normal vector field, and binormal vector field of v, respectively.

The constant ¢, and €3 defined by ¢g(N, N) = €5 and g(B, B) = e3, and called second causal character and third
causal character of +y, respectively. Thus it satisfied e165 = —¢3.

A Frenet curve v is a geodesic if and only if x = 0. A Frenet curve v with constant geodesic curvature and
zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve v whose geodesic curvature and
torsion are constant.

Proposition 2.3 ([11]). Let { E1, Ea, Es} are orthonomal Frame field in a Lorentzian 3-manifold. Then
Ev AL Es =e3E3, FExNp Ez=e1FE1, E3Ap Ey=cks.

2.3. Slant curves

A one-dimensional integral submanifold of D in 3-dimensional contact manifold is called a Legendre curve,
especially to avoid confusion with an integral curve of the vector field . As a generalization of Legendre curve,
the notion of slant curves was introduced in [5] for a contact Riemannian 3-manifold, that is, a curve in a contact
3-manifold is said to be slant if its tangent vector field has constant angle with the Reeb vector field.

Similarly a curve in a contact Lorentzian 3-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field ,that is, g(v/,¢) is a constant. In particular, if g(7/,£) = 0 then v is a Legendre
curve.

Differentiating ¢(T',{) = a along v in Lorentzian Sasakian manifold, then

a’ = g(eakN, &) +9(7', 7") = —e2n(N).
This equation implies

Proposition 2.4 ([10]). A non-geodesic Frenet curve v in a Sasakian Lorentzian 3-manifold M3 is a slant curve if and
only if n(N) = 0.

Differentiating (V') = 0, using (2.3) and the Frenet-Serret equation (2.4) we have

Theorem 2.1 ([10]). A non-geodesic slant Frenet curve in a Sasakian Lorentzian 3-manifold M is the ratio of T — 1 and
K is constant.

In particular, let v be a non-geodesic Frenet curve in a Sasakian Lorentzian 3-manifold M. If v is a Legendre
curve then 7 = 1.
Moreover, we have

Lemma 2.1 ([10]). Let «y be a slant Frenet curve in 3-dimensioal almost contact Lorentzian manifold M. Then we find
an orthonormal frame field in M as following:

T B_ &+ e1al

T = ,7 Nzia B )
K Vel +a? Vel +a?

also £ = —e1aT + /g1 + a?B.

Thus -y is a spacelike curve with spacelike normal vector field or timelike curve.

3. Main results

Let (M, g) be a semi-Riemannian manifold and v = v(s) : I — M a unit speed curve in M. Then the induced
(or pull-back) vector bundle v*T'M is defined by

VTM = Ty M.
sel

The Levi-Civita connection V of M induces a connection V7 on v*T M as follows:

Vi, V=YV, VelHTM).
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The Laplacian operator A = A" of v*T'M is given explicitly by

A= —51Vﬁvﬁy.

The mean curvature vector field H of a curve v in 3-dimensional contact Lorentzian manifolds is defined by
H =¢e1Vyy = —e3xN.
In particular, for a Legendre curve v we get
H = e1Vyy = —e3rp7y.
Differentiating ¢y along v, we get 7 = 1.
Using (2.4), we have
Lemma 3.1. Let «y be a Frenet curve in a Sasakian Lorentzian 3-manifold M. Then

V4 Vii = e3k®T + e2k/ N + £1k7B, (3.1)
ViV Ved = 3e3kk’T + {eak” — k(e1k” + e372)}N + &1 (26'T + k7')B. (3.2)

Let H be the mean curvature vector field of a curve in 3-dimensional contact Lorentzian manifolds M. The
mean curvature vector field H is said to be C-parallel if VH = A\{. Moreover, the vector field H is said to be
C-proper if AH = \§, where V denotes the operator of covariant differentiation of M. Similarly, H is said to be
C-parallel in the normal bundle if V- H = \¢, and H is said to be C-proper in the normal bundle if ALH = \¢, where
V= denotes the operator of covariant differentiation in the normal bundle of M.

For a slant Frenet curve ~ in Sasakian Lorentzian 3-manifolds, Using the Lemma 2.1 and (3.1) we find that
satisfies V;, H = X if and only if

K2 = e1a,
k' =0, (3.3)
KT = MWep + a2

Therefore we obtain:

Theorem 3.1. Let v be a slant Frenet curve in a Sasakian Lorentzian 3-manifold with C-parallel mean curvature vector
field. we have
(i) If v is a Legendre curve or A = 0, then it is a geodesic.

(ii) If v is not Legendre curve and X # 0, then it is a pseudo-helix with k = \/e1a\, T = (eatat)r

€1a !
Next, for a slant Frenet curve v in Sasakian Lorentzian 3-manifolds, from the Lemma 2.1 and (3.2) we find
that v satisfies Ay H = ¢ if and only if

3xKk’ = —al,
K" — egk(e1k? + 37%) = 0, (3.4)

e3(26'T + KT') = Mey + a.
Hence we have:

Proposition 3.1. Let vy be a slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then ~ has a C-proper mean
curvature vector field if and only if ~ satisfies Ay H = 0.

Proof. We assume that A\ = \g # 0, where )\ is a constant. Then from the above first equation we get x? =
—2(aXo)s + ¢, cis a constant. Applying this result to the second equation of (3.4), it is a contradiction. O

Moreover, using (3.4) for the case of A = 0 we have

Theorem 3.2. Let ~y be a slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then ~ satisfies Ay H = 0 if and only

if v is a geodesic or pseudo-helix with k* = 72.
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Remark 3.1. In [8], from the point of view of Riemannian structure, we proved that a slant curve + in a Sasakian
3-manifold satisfying A; H = 0 is a geodesic.

The normal bundle of v in M is defined by
Tl'y = U(R7(8)>L7
sel

here 7 is a spacelike or timelike. The connection V+ of the normal bundle T+ is called the normal connection.
The Laplacian operator
At =— V5V

of the normal bundle T is called the normal Laplacian of .
Then from (2.4) we have:
Lemma 3.2. Let +y be a Frenet curve in contact Lorentzian 3-manifold M. Then
ViViy =ear'N +e1k7B, (3.5)
ViViVad = (e2x” — eskr?)N + €1 (267 + k7') B. (3.6)

For a slant Frenet curve v in Sasakian Lorentzian 3-manifolds, from the Lemma 2.1 and (3.5) we find that ~
satisfies V- H = A¢ if and only if

aX =0,
K/ = O’ (3.7)
KT = \Wep + a2,

From which, we have

Theorem 3.3. Let v be a non-geodesic slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then ~ has a C-parallel
mean curvature vector field in normal bundle if and only if ~y is a pseudo-circle(A = 0) or a Legendre helix(\ # 0) with
k= Aand T =1, )\ is a non-zero constant.

Proof. From the second equation of (3.7) we can see that « is a constant. Using the first equation of (3.7), we get
A =0 or vis a Legendre curve. If A = 0, then a slant Frenet curve  becomes a pseudo-circle as « is a constant
and 7 = 0. If A # 0 then a slant Frenet curve +y is a Legendre helix and A = x. O

Next, from the Lemma 2.1 and (3.6) we find that ~ satisfies A#H = X if and only if

aX =0,
egk’ —e3kT? =0, (3.8)

—&1(26'T + kT') = Mey + a?.
From which, we have

Theorem 3.4. Let y be a non-geodesic slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then -~ has a C-proper
mean curvature vector field in the normal bundle if and only if -y is a pseudo-circle(\ = 0) or a Legendre curve(\ # 0)
with k = pcos(s) + gsin(s), 7 = 1and X\ = 2{psin(s) — q cos(s)} where p and q are constants.
Proof. (I) For the case of A = 0, we have
gok! — egkT? =0,
{ 2k'T + kT’ = 0. (39)

Since a curve v is a non-geodesic slant Frenet curve, by Theorem 2.1, 7 = Q«x + 1, where @ is a constant. From
the second equation of (3.9), we have that ¥’ = 0 or 3Qx + 2 = 0.

For the case of v = 0, we get k = constant # 0 and 7 = 0.

For the case of 3Qx + 2 = 0, using the first equation of (3.9) we have 7 = 0. However, it is contradictory to
slant Frenet curve condition.

Hence, for a non-geodesic slant Frenet curve v in a Sasakian Lorentzian 3-manifold, v satisfies A#H =0if
and only if v is a pseudo-circle with x = constant # 0 and 7 = 0.
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(IT) For the case of A # 0, we can see that v is a Legendre curve satisfying

K"+ k=0,
{ AN (3.10)

From this, for a slant Frenet curve ~ in a Sasakian Lorentzian 3-manifold, + satisfies Aﬁf-H = X¢ if and only

if v is a Legendre curve with x = pcos(s) + ¢sin(s), 7 =1 and A = 2{psin(s) — gcos(s)} where p and ¢ are
constants. O

For Riemannian structure, we found

Remark 3.2 ([8]). Let v be a non-geodesic slant curve in a Sasakian 3-manifold. Then the slant curve v has
a C-proper mean curvature vector field in the normal bundle if and only if v is a circle(A = 0) or a Legendre
curve(A # 0) with k = aexp(s) + bexp(—s), 7 = land A = —2{aexp(s) — bexp(—s)} where a and b are constants.

4. Example

The Heisenberg group Hj is a Lie group which is diffeomorphic to R? and the group operation is defined by

(09,25 @55 = @+ Ty 17242+ 2~ ),
The mapping
1 a b o g
H3—> 0 1 ¢ a,b,CER Z(,x’y,z)._) 0 1 y
0 0 1 0 0 .

Q.

is an isomorphism between Hjs an
Now, we take the contact form

a subgroup of GL(3,R).

n =dz + (ydz — zdy).

Then the characteristic vector field of nis £ = %.
Now, we equip the Lorentzian metric as following:

g = da® + dy* — (dz + (ydz — 2zdy))” .
We take a left-invariant Lorentzian orthonormal frame field (e, e3, e3) on (Hs, g):

0 0 7] 0 0

= — — x
ox y +

e ey =— 4T, €3 = —
! 0z 2 Oy 0z T 9z’

and the commutative relations are derived as follows:
[e1,e2] = 2es3, [e2,e3] = [e3,e1] = 0.
Then the endomorphism field ¢ is defined by
pe; = eq, pes = —eq, pes = 0.
The Levi-Civita connection V of (H, g) is described as ([9])

Ve, e1 = Ve,ea =Vee3 =0, Vg ea =e3=—V,en, (4.1)
V6263 = —€1 = ve3€2, V6361 = €3 = Veleg‘

The contact form 7 satisfies dn(X,Y) = g(X,»Y). Moreover the structure (7,£,p,g) is Sasakian. The
Riemannian curvature tensor R of (Hs, g) is given by

R(el, 62)61 = 362, R(el, 62)62 = 7361,
R(EQ, 63)62 = —€3, R(eg, 63)63 = —€9,

R(es, e1)es = eq, R(es,e1)er = es,
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the others are zero.
The sectional curvature is given by ([3])

K& e) =—R( ei,&e;) = =1, fori=1,2,
and
K(61362) = R(617€2581762) = 3

Hence Lorentzian Heisenberg space (Hs, g) is the Lorentzian Sasakian space forms with constant holomorphic
sectional curvature p = 3.

Let v be a slant Frenet curve in Lorentzian Heisenberg space (H3, g) parametrized by arc-length. Then the
tangent vector field has the form

T =+~ =+/e1 +a?cos Be; ++/e1 + a?sin Bes + aes, 4.2)

where a = constant, = (s). Using (4.1), we get

v'v"yl =/e1 +a2(B" + 2a)(—sin Be; + cos Bes). (4.3)

since v is a non-geodesic, we may assume that x = v/e1 + a?(f’ + 2a) > 0 without loss of generality. Then the
normal vector field

N = —sin fBe; + cos Bes.
The binormal vector field e3B = T A;, N = —acos Se; — asin Bes — V&1 + ae3. From the Lemma 2.1, we see that
g2 = 1,50 we have €3 = —¢;. Hence

B = ¢e1(acos Bey + asin fBes + /1 + a?es).
Using the Frenet-Serret equation (2.4), we have

Lemma 4.1. Lef «y be a Frenet slant curve in Lorentzian Heisenberg space (Hs, g) parametrized by arc-length. Then ~
admits a orthonormal frame field {T, N, B} along v and

k=+e1+ a? (B + 2a), 4.4)
T=1+¢e1a(8 + 2a).

Let v(s) = (x(s),y(s), 2(s)) be a curve in Lorentzian Heisenberg space (Hs, g). Then the tangent vector field
~" of v is

_(dody =\ _de o g0 d:0
\ds’ds'ds) dsdx dsdy dsdz

Using the relations:

L R
ax = €1 y63, ay = €2 xres, az = €3,
If v is a slant curve in (Hs, g), then from (4.2) the system of differential equations for -y are given by
Z—;ﬁ(s) = /e1 +a?cosB(s), (4.5)
%(s) = e +a?sinf(s), (4.6)
d
d—z(s) = a+ Ve +a?(x(s)sinf(s) — y(s) cos B(s)).

Now, we construct a slant Frenet curve v with C-parallel mean curvature vector fields in the Lorentzian
Heisenberg space (Hs, g). From the Theorem 3.1 and (4.4) we have

Proposition 4.1. Let v : I — (Hs, g) be a non-geodesic slant Frenet curve parametrized by arc-length in the Lorentzian
Heisenberg space (Hs, g). Then
(i) ~y satisfies C-parallel mean curvature vector fields if and only if ~ is a slant pseudo-helix with

\/ A
B'(s) = % —2a, fora=n").
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(i1) vy satisfies Az H = 0 if and only if ~ is a slant pseudo-helix with

B'(s) = —a++/e1 + a2
Namely, ' is a constant, say A, hence §(s) = As + b, b € R. Thus, from (4.5) and (4.6) we have the following

result :

Corollary 4.1 ([10]). Let ~:I — (Hs, g) be a non-geodesic slant Frenet curve parametrized by arc-length in the
Lorentzian Heisenberg space (Hs, g). If v is slant pseudo-helix , then the parametric equations of ~y are given by

z(s) = §Ve1 + a?sin(As + b) + zo,
— Ve + a? cos(As + b) + yo,
e14a? \/e1+a? .
2(s) = {a + 2= }s — Y—— {x¢ cos(As + b) + yosin(As + b)} + zo.

where b, xg, yg, 20 are constants.

In particular, from the Theorem 3.1, if  is a Legendre curve, it is a geodesic.
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