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ABSTRACT

In this paper, we study C-parallel mean curvature vector field and C-proper mean curvature vector
field along a slant Frenet curve in a Sasakian Lorentzian 3-manifold. In particular, we prove that
a slant Frenet curve γ in a Sasakian Lorentzian 3-manifold M satisfying ∆γ̇H = 0 is a geodesic
or pseudo-helix with κ2 = τ2. For example, we find slant pseudo-helix in Lorentzian Heisenberg
3-space.
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1. Introduction

In [1], Baikoussis and Blair considered submanifolds in Sasakian space forms M(ρ). They defined that the
mean curvature vector field H has C-parallel if ∇H = λξ, where λ is a non-zero differentiable function on
M and ∇ the induced Levi-Civita connection. In [8], we studied curves with C-parallel and C-proper mean
curvature vector fields in the tangent and normal bundles of Sasakian 3-manifolds. So we showed that γ has
a C-parallel mean curvature vector field if and only if γ is a geodesic (λ = 0) or a helix with κ =

√
−λ cos θ

and τ = λ sin θ/
√
−λ cos θ. In particular, for a Legendre curve γ in a Sasakian 3-manifold M , we proved that γ

satisfies ∇γ′H = λξ if and only if γ is a Legendre geodesic.
In this paper, we study C-parallel mean curvature vector field and C-proper mean curvature vector field in

Sasakian Lorenzian 3-manifolds.
Let H be the mean curvature vector field of a curve in 3-dimensional contact Lorentzian manifolds M . The

mean curvature vector field H is said to be C-parallel if ∇H = λξ. Moreover, the vector field H is said to be
C-proper if ∆H = λξ, where ∇ denotes the operator of covariant differentiation of M . Similarly, in the normal
bundle we defineC-parallel andC-proper as follows:H is said to beC-parallel in the normal bundle if∇⊥H = λξ,
and H is said to be C-proper in the normal bundle if ∆⊥H = λξ, where ∇⊥ denotes the operator of covariant
differentiation in the normal bundle of M .

Generalizing a Legendre curve in a 3-dimensional contact metric manifold, we consider a slant curve whose
tangent vector field has constant angle with characteristic direction ξ (see [5]). For a non-geodesic slant curve
in a Sasakian 3-manifold, the direction ξ becomes ξ = cosα0T + sinα0B, where T and B are unit tangent vector
field and binormal vector field respectively, that is, the characteristic vector field ξ is orthogonal to the principal
normal vector field N .

In section 3, we study a slant Frenet curve with C-parallel mean curvature vector field and C-proper mean
curvature vector field in Sasakian Lorentzian 3-manifolds.
In [8], from the point of view of Riemannian structure, we found that a slant curve γ in a Sasakian 3-manifold
satisfying ∆γ̇H = 0 is a geodesic. Now, we prove that a slant Frenet curve γ in a Sasakian Lorentzian 3-manifold
M satisfying ∆γ̇H = 0 is a geodesic or pseudo-helix with κ2 = τ2.
Thus, we find a necessary and sufficient condition for a slant Frenet curve with C-parallel mean curvature
vector field and C-proper mean curvature vector field in Sasakian Lorenzian 3-manifolds in the normal bundle.
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2. Preliminaries

2.1. Contact Lorentzian manifold

Let M be a (2n+ 1)-dimensional differentiable manifold. M has an almost contact structure (ϕ, ξ, η) if it
admits a tensor field ϕ of (1, 1), a vector field ξ and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

SupposeM has an almost contact structure (ϕ, ξ, η). Then ϕξ = 0 and η ◦ ϕ = 0. Moreover, the endomorphism
ϕ has rank 2n.

If a (2n+ 1)-dimensional smooth manifold M with almost contact structure (ϕ, ξ, η) admits a compatible
Lorentzian metric such that

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ), (2.1)

then we say M has an almost contact Lorentzian structure (η, ξ, ϕ, g). Setting Y = ξ we have

η(X) = −g(X, ξ). (2.2)

Next, if the compatible Lorentzian metric g satisfies

dη(X,Y ) = g(X,ϕY ),

then η is a contact form on M , ξ the associated Reeb vector field, g an associated metric and (M,ϕ, ξ, η, g) is
called a contact Lorentzian manifold.

For a contact Lorentzian manifold M , one may define naturally an almost complex structure J on M ×R by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

where X is a vector field tangent to M , t the coordinate of R and f a function on M ×R. If the almost complex
structure J is integrable, then the contact Lorentzian manifold M is said to be normal or Sasakian. It is known
that a contact Lorentzian manifold M is normal if and only if M satisfies

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ.

Proposition 2.1 ([3, 4]). An almost contact Lorentzian manifold (M2n+1, η, ξ, ϕ, g) is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ + η(Y )X.

Using the similar arguments and computations in [2] we obtain

Proposition 2.2 ([3, 4]). Let (M2n+1, η, ξ, ϕ, g) be a contact Lorentzian manifold. Then

∇Xξ = ϕX − ϕhX.

If ξ is a killing vector field with respect to the Lorentzian metric g. Then we have

∇Xξ = ϕX. (2.3)

2.2. Frenet-Serret equations

Let γ : I →M3 be a unit speed curve in Lorentzian 3-manifolds M3 such that γ′ satisfies g(γ′, γ′) = ε1 = ±1.
The constant ε1 is called the causal character of γ. A unit speed curve γ is said to be a spacelike or timelike if
its causal character is 1 or −1, respectively. A unit speed curve γ is said to be a Frenet curve if g(γ′′, γ′′) 6= 0. A
Frenet curve γ admits a orthonormal frame field {T = γ′, N,B} along γ. Then the Frenet-Serret equations are
following ([6, 7]):  ∇γ

′T = ε2κN,
∇γ′N = −ε1κT − ε3τB,
∇γ′B = ε2τN,

(2.4)
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where κ = |∇γ′γ′| is the geodesic curvature of γ and τ its geodesic torsion. The vector fields T , N and B are called
tangent vector field, principal normal vector field, and binormal vector field of γ, respectively.

The constant ε2 and ε3 defined by g(N,N) = ε2 and g(B,B) = ε3, and called second causal character and third
causal character of γ, respectively. Thus it satisfied ε1ε2 = −ε3.

A Frenet curve γ is a geodesic if and only if κ = 0. A Frenet curve γ with constant geodesic curvature and
zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve γ whose geodesic curvature and
torsion are constant.

Proposition 2.3 ([11]). Let {E1, E2, E3} are orthonomal Frame field in a Lorentzian 3-manifold. Then

E1 ∧L E2 = ε3E3, E2 ∧L E3 = ε1E1, E3 ∧L E1 = ε2E2.

2.3. Slant curves

A one-dimensional integral submanifold of D in 3-dimensional contact manifold is called a Legendre curve,
especially to avoid confusion with an integral curve of the vector field ξ. As a generalization of Legendre curve,
the notion of slant curves was introduced in [5] for a contact Riemannian 3-manifold, that is, a curve in a contact
3-manifold is said to be slant if its tangent vector field has constant angle with the Reeb vector field.

Similarly a curve in a contact Lorentzian 3-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field ,that is, g(γ′, ξ) is a constant. In particular, if g(γ′, ξ) = 0 then γ is a Legendre
curve.

Differentiating g(T, ξ) = a along γ in Lorentzian Sasakian manifold, then

a′ = g(ε2κN, ξ) + g(γ′, ϕγ′) = −ε2κη(N).

This equation implies

Proposition 2.4 ([10]). A non-geodesic Frenet curve γ in a Sasakian Lorentzian 3-manifold M3 is a slant curve if and
only if η(N) = 0.

Differentiating η(N) = 0, using (2.3) and the Frenet-Serret equation (2.4) we have

Theorem 2.1 ([10]). A non-geodesic slant Frenet curve in a Sasakian Lorentzian 3-manifold M is the ratio of τ − 1 and
κ is constant.

In particular, let γ be a non-geodesic Frenet curve in a Sasakian Lorentzian 3-manifold M . If γ is a Legendre
curve then τ = 1.

Moreover, we have

Lemma 2.1 ([10]). Let γ be a slant Frenet curve in 3-dimensioal almost contact Lorentzian manifold M . Then we find
an orthonormal frame field in M as following:

T = γ′, N =
ϕT√
ε1 + a2

, B =
ξ + ε1aT√
ε1 + a2

,

also ξ = −ε1aT +
√
ε1 + a2B.

Thus γ is a spacelike curve with spacelike normal vector field or timelike curve.

3. Main results

Let (M, g) be a semi-Riemannian manifold and γ = γ(s) : I →M a unit speed curve in M. Then the induced
(or pull-back) vector bundle γ∗TM is defined by

γ∗TM :=
⋃
s∈I

Tγ(s)M.

The Levi-Civita connection ∇ of M induces a connection ∇γ on γ∗TM as follows:

∇γd
ds

V = ∇γ̇V, V ∈ Γ (γ∗TM).
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The Laplacian operator ∆ = ∆γ of γ∗TM is given explicitly by

∆ = −ε1∇γ̇∇γ̇ .

The mean curvature vector field H of a curve γ in 3-dimensional contact Lorentzian manifolds is defined by

H = ε1∇γ̇ γ̇ = −ε3κN.

In particular, for a Legendre curve γ we get

H = ε1∇γ̇ γ̇ = −ε3κϕγ̇.

Differentiating ϕγ̇ along γ, we get τ = 1.

Using (2.4), we have

Lemma 3.1. Let γ be a Frenet curve in a Sasakian Lorentzian 3-manifold M . Then

∇γ̇∇γ̇ γ̇ = ε3κ
2T + ε2κ

′N + ε1κτB, (3.1)
∇γ̇∇γ̇∇γ̇ γ̇ = 3ε3κκ

′T + {ε2κ′′ − κ(ε1κ
2 + ε3τ

2)}N + ε1(2κ′τ + κτ ′)B. (3.2)

Let H be the mean curvature vector field of a curve in 3-dimensional contact Lorentzian manifolds M . The
mean curvature vector field H is said to be C-parallel if ∇H = λξ. Moreover, the vector field H is said to be
C-proper if ∆H = λξ, where ∇ denotes the operator of covariant differentiation of M . Similarly, H is said to be
C-parallel in the normal bundle if∇⊥H = λξ, and H is said to be C-proper in the normal bundle if ∆⊥H = λξ, where
∇⊥ denotes the operator of covariant differentiation in the normal bundle of M .

For a slant Frenet curve γ in Sasakian Lorentzian 3-manifolds, Using the Lemma 2.1 and (3.1) we find that γ
satisfies ∇γ̇H = λξ if and only if  κ2 = ε1aλ,

κ′ = 0,
κτ = λ

√
ε1 + a2.

(3.3)

Therefore we obtain:

Theorem 3.1. Let γ be a slant Frenet curve in a Sasakian Lorentzian 3-manifold with C-parallel mean curvature vector
field. we have
(i) If γ is a Legendre curve or λ = 0, then it is a geodesic.

(ii) If γ is not Legendre curve and λ 6= 0, then it is a pseudo-helix with κ =
√
ε1aλ, τ =

√
(ε1+a2)λ
ε1a

.

Next, for a slant Frenet curve γ in Sasakian Lorentzian 3-manifolds, from the Lemma 2.1 and (3.2) we find
that γ satisfies ∆γ̇H = λξ if and only if  3κκ′ = −aλ,

κ′′ − ε2κ(ε1κ
2 + ε3τ

2) = 0,
ε3(2κ′τ + κτ ′) = λ

√
ε1 + a2.

(3.4)

Hence we have:

Proposition 3.1. Let γ be a slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then γ has a C-proper mean
curvature vector field if and only if γ satisfies ∆γ̇H = 0.

Proof. We assume that λ = λ0 6= 0, where λ0 is a constant. Then from the above first equation we get κ2 =
− 2

3 (aλ0)s+ c, c is a constant. Applying this result to the second equation of (3.4), it is a contradiction.

Moreover, using (3.4) for the case of λ = 0 we have

Theorem 3.2. Let γ be a slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then γ satisfies ∆γ̇H = 0 if and only
if γ is a geodesic or pseudo-helix with κ2 = τ2.
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Remark 3.1. In [8], from the point of view of Riemannian structure, we proved that a slant curve γ in a Sasakian
3-manifold satisfying ∆γ̇H = 0 is a geodesic.

The normal bundle of γ in M is defined by

T⊥γ =
⋃
s∈I

(Rγ̇(s))⊥,

here γ is a spacelike or timelike. The connection ∇⊥ of the normal bundle T⊥γ is called the normal connection.
The Laplacian operator

∆⊥ = −ε1∇⊥γ̇ ∇⊥γ̇

of the normal bundle T⊥γ is called the normal Laplacian of γ.

Then from (2.4) we have:

Lemma 3.2. Let γ be a Frenet curve in contact Lorentzian 3-manifold M . Then

∇⊥γ̇ ∇⊥γ̇ γ̇ = ε2κ
′N + ε1κτB, (3.5)

∇⊥γ̇ ∇⊥γ̇ ∇⊥γ̇ γ̇ = (ε2κ
′′ − ε3κτ2)N + ε1(2κ′τ + κτ ′)B. (3.6)

For a slant Frenet curve γ in Sasakian Lorentzian 3-manifolds, from the Lemma 2.1 and (3.5) we find that γ
satisfies ∇⊥γ̇ H = λξ if and only if  aλ = 0,

κ′ = 0,
κτ = λ

√
ε1 + a2.

(3.7)

From which, we have

Theorem 3.3. Let γ be a non-geodesic slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then γ has a C-parallel
mean curvature vector field in normal bundle if and only if γ is a pseudo-circle(λ = 0) or a Legendre helix(λ 6= 0) with
κ = λ and τ = 1, λ is a non-zero constant.

Proof. From the second equation of (3.7) we can see that κ is a constant. Using the first equation of (3.7), we get
λ = 0 or γ is a Legendre curve. If λ = 0, then a slant Frenet curve γ becomes a pseudo-circle as κ is a constant
and τ = 0. If λ 6= 0 then a slant Frenet curve γ is a Legendre helix and λ = κ.

Next, from the Lemma 2.1 and (3.6) we find that γ satisfies ∆⊥γ̇ H = λξ if and only if aλ = 0,
ε2κ
′′ − ε3κτ2 = 0,

−ε1(2κ′τ + κτ ′) = λ
√
ε1 + a2.

(3.8)

From which, we have

Theorem 3.4. Let γ be a non-geodesic slant Frenet curve in a Sasakian Lorentzian 3-manifold. Then γ has a C-proper
mean curvature vector field in the normal bundle if and only if γ is a pseudo-circle(λ = 0) or a Legendre curve(λ 6= 0)
with κ = p cos(s) + q sin(s), τ = 1 and λ = 2{p sin(s)− q cos(s)} where p and q are constants.

Proof. (I) For the case of λ = 0, we have {
ε2κ
′′ − ε3κτ2 = 0,

2κ′τ + κτ ′ = 0.
(3.9)

Since a curve γ is a non-geodesic slant Frenet curve, by Theorem 2.1, τ = Qκ+ 1, whereQ is a constant. From
the second equation of (3.9), we have that κ′ = 0 or 3Qκ+ 2 = 0.

For the case of κ′ = 0, we get κ = constant 6= 0 and τ = 0.
For the case of 3Qκ+ 2 = 0, using the first equation of (3.9) we have τ = 0. However, it is contradictory to

slant Frenet curve condition.
Hence, for a non-geodesic slant Frenet curve γ in a Sasakian Lorentzian 3-manifold, γ satisfies ∆⊥γ̇ H = 0 if

and only if γ is a pseudo-circle with κ = constant 6= 0 and τ = 0.
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(II) For the case of λ 6= 0, we can see that γ is a Legendre curve satisfying{
κ′′ + κ = 0,
2κ′ = −λ. (3.10)

From this, for a slant Frenet curve γ in a Sasakian Lorentzian 3-manifold, γ satisfies ∆⊥γ̇ H = λξ if and only
if γ is a Legendre curve with κ = p cos(s) + q sin(s), τ = 1 and λ = 2{p sin(s)− q cos(s)} where p and q are
constants.

For Riemannian structure, we found

Remark 3.2 ([8]). Let γ be a non-geodesic slant curve in a Sasakian 3-manifold. Then the slant curve γ has
a C-proper mean curvature vector field in the normal bundle if and only if γ is a circle(λ = 0) or a Legendre
curve(λ 6= 0) with κ = a exp(s) + b exp(−s), τ = 1 and λ = −2{a exp(s)− b exp(−s)}where a and b are constants.

4. Example

The Heisenberg group H3 is a Lie group which is diffeomorphic to R3 and the group operation is defined by

(x, y, z) ∗ (x, y, z) = (x+ x, y + y, z + z +
xy

2
− xy

2
).

The mapping

H3 →


 1 a b

0 1 c
0 0 1

 ∣∣∣∣ a, b, c ∈ R

 : (x, y, z) 7→

 1 x z + xy
2

0 1 y
0 0 1


is an isomorphism between H3 and a subgroup of GL(3,R).
Now, we take the contact form

η = dz + (ydx− xdy).

Then the characteristic vector field of η is ξ = ∂
∂z .

Now, we equip the Lorentzian metric as following:

g = dx2 + dy2 − (dz + (ydx− xdy))
2
.

We take a left-invariant Lorentzian orthonormal frame field (e1, e2, e3) on (H3, g):

e1 =
∂

∂x
− y ∂

∂z
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
,

and the commutative relations are derived as follows:

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

Then the endomorphism field ϕ is defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

The Levi-Civita connection ∇ of (H3, g) is described as ([9])

∇e1e1 = ∇e2e2 = ∇e3e3 = 0, ∇e1e2 = e3 = −∇e2e1, (4.1)
∇e2e3 = −e1 = ∇e3e2, ∇e3e1 = e2 = ∇e1e3.

The contact form η satisfies dη(X,Y ) = g(X,ϕY ). Moreover the structure (η, ξ, ϕ, g) is Sasakian. The
Riemannian curvature tensor R of (H3, g) is given by

R(e1, e2)e1 = 3e2, R(e1, e2)e2 = −3e1,

R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2,
R(e3, e1)e3 = e1, R(e3, e1)e1 = e3,
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the others are zero.
The sectional curvature is given by ([3])

K(ξ, ei) = −R(ξ, ei, ξ, ei) = −1, for i = 1, 2,

and
K(e1, e2) = R(e1, e2, e1, e2) = 3.

Hence Lorentzian Heisenberg space (H3, g) is the Lorentzian Sasakian space forms with constant holomorphic
sectional curvature µ = 3.

Let γ be a slant Frenet curve in Lorentzian Heisenberg space (H3, g) parametrized by arc-length. Then the
tangent vector field has the form

T = γ′ =
√
ε1 + a2 cosβe1 +

√
ε1 + a2 sinβe2 + ae3, (4.2)

where a = constant, β = β(s). Using (4.1), we get

∇γ′γ′ =
√
ε1 + a2(β′ + 2a)(− sinβe1 + cosβe2). (4.3)

since γ is a non-geodesic, we may assume that κ =
√
ε1 + a2(β′ + 2a) > 0 without loss of generality. Then the

normal vector field
N = − sinβe1 + cosβe2.

The binormal vector field ε3B = T ∧L N = −a cosβe1 − a sinβe2 −
√
ε1 + a2e3. From the Lemma 2.1, we see that

ε2 = 1, so we have ε3 = −ε1. Hence

B = ε1(a cosβe1 + a sinβe2 +
√
ε1 + a2e3).

Using the Frenet-Serret equation (2.4), we have

Lemma 4.1. Let γ be a Frenet slant curve in Lorentzian Heisenberg space (H3, g) parametrized by arc-length. Then γ
admits a orthonormal frame field {T,N,B} along γ and

κ =
√
ε1 + a2(β′ + 2a), (4.4)

τ = 1 + ε1a(β′ + 2a).

Let γ(s) = (x(s), y(s), z(s)) be a curve in Lorentzian Heisenberg space (H3, g). Then the tangent vector field
γ′ of γ is

γ′ =

(
dx

ds
,
dy

ds
,
dz

ds

)
=
dx

ds

∂

∂x
+
dy

ds

∂

∂y
+
dz

ds

∂

∂z
.

Using the relations:
∂

∂x
= e1 + ye3,

∂

∂y
= e2 − xe3,

∂

∂z
= e3,

If γ is a slant curve in (H3, g), then from (4.2) the system of differential equations for γ are given by

dx

ds
(s) =

√
ε1 + a2 cosβ(s), (4.5)

dy

ds
(s) =

√
ε1 + a2 sinβ(s), (4.6)

dz

ds
(s) = a+

√
ε1 + a2(x(s) sinβ(s)− y(s) cosβ(s)).

Now, we construct a slant Frenet curve γ with C-parallel mean curvature vector fields in the Lorentzian
Heisenberg space (H3, g). From the Theorem 3.1 and (4.4) we have

Proposition 4.1. Let γ : I → (H3, g) be a non-geodesic slant Frenet curve parametrized by arc-length in the Lorentzian
Heisenberg space (H3, g). Then
(i) γ satisfies C-parallel mean curvature vector fields if and only if γ is a slant pseudo-helix with

β′(s) =

√
ε1aλ√
ε1 + a2

− 2a, for a = η(γ′).
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(ii) γ satisfies ∆⊥γ̇ H = 0 if and only if γ is a slant pseudo-helix with

β′(s) = −a±
√
ε1 + a2.

Namely, β′ is a constant, say A, hence β(s) = As+ b, b ∈ R. Thus, from (4.5) and (4.6) we have the following
result :

Corollary 4.1 ([10]). Let γ : I → (H3, g) be a non-geodesic slant Frenet curve parametrized by arc-length in the
Lorentzian Heisenberg space (H3, g). If γ is slant pseudo-helix , then the parametric equations of γ are given by

x(s) = 1
A

√
ε1 + a2 sin(As+ b) + x0,

y(s) = − 1
A

√
ε1 + a2 cos(As+ b) + y0,

z(s) = {a+ ε1+a
2

A }s−
√
ε1+a2

A {x0 cos(As+ b) + y0 sin(As+ b)}+ z0.

where b, x0, y0, z0 are constants.

In particular, from the Theorem 3.1, if γ is a Legendre curve, it is a geodesic.
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