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Şerife Nur Bozdağ* and Feyza Esra Erdoğan
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ABSTRACT

In this paper, we study f-harmonic, f-biharmonic, bi-f-harmonic and f-biminimal non-null
magnetic curves in three-dimensional normal almost paracontact metric manifolds. We determine
necessary and sufficient conditions for these properties of a non-null magnetic curve. Besides, we
obtain absence theorems.
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1. Introduction

The Serret-Frenet vectors of a charged particle are affected by a magnetic field when this charged particle
entered into this area. Then with this effect, a force called Lorentz force becomes exposed and so this charged
particle begin to trace an orbit called magnetic curve. The trajectories of charged particles moving on a
Riemannian manifold under the action of a magnetic field are defined as magnetic curves, in [14]. The interest
in magnetic fields and their corresponding magnetic curves on different manifolds is due to the fact that these
concepts are one of the most important study subjects between differential geometry and physics. In the recent
past, popularity of magnetic curves has increased and some of recent studies can be summarized as follows. In
[5, 9, 10], Munteanu et. al. studied Killing magnetic curves in Minkowski 3-Space and three-dimensional almost
paracontact manifolds. Also they obtained magnetic curves corresponding to Killing magnetic fields in E3. In
[4], Calin et. al. studied magnetic curves in three-dimensional quasi-para-Sasakian geometry. In [24], unlike
previous studies, Perktaş et al. studied biharmonicity and biminimality conditions of a non-null magnetic
curve for the first time in 2018. They obtained biharmonicity and biminimality conditions of non-null magnetic
curves in three-dimensional normal almost paracontact metric manifold. In this paper, we study the magnetic
curves on the maps, which are briefly mentioned below, unlike the studies done so far.

Harmonic maps between Riemannian manifolds were first defined by Eells and Sampson, in [11, 12]. These
maps have comprehensive field of study due to their wide applications in mathematics, engineering and
physics.

Biharmonic functions, a pretty old and important subject, were first introduced by Airy and Maxwell in
1862 to identify a mathematical model of elasticity. Then biharmonic functions on Riemannian manifolds
were examined by Sario et al., in [28] and by Caddeo in [3]. Eells and Sampson studied not only harmonic
maps, but also biharmonic maps between the Riemannian manifolds by generalizing harmonic maps, in
[11]. In recent years, the interest in biharmonic maps have two aspects; one of it, is differential geometrical
aspect; classification results and constructing examples, the other one, is analytical aspect; partial differential
equations, (see [6, 29, 30, 16]). For some recent articles of biharmonic maps, see [24, 21, 26].

f-harmonic maps between Riemannian manifolds were defined by Lichnerowicz in 1970 and then studied
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by Lemaire and Eells, in [12]. The fact that, f-harmonic maps have physical meaning as solutions of continuous
spin systems and inhomogenous Heisenberg spin systems makes them interesting, in [2].

There is a strong relation between biharmonic and f-harmonic maps and these relation summarized in two
ways by Perktaş et.al., in [25]. The first one, by extending the bienergy functional to the bi-f-energy functional,
obtaning a new harmonic map called as bi-f-harmonic map which are critical points of bi-f-energy functional.
The second one, by extending the f-energy functional to the f-bienergy functional, obtaning a new harmonic
map called as f-biharmonic map which are critical points of f-bienergy functional, for more information see
[34, 23].

f-biharmonic maps, which is generalization of biharmonic maps, and f-biharmonic maps between
Riemannian manifolds are defined by Lu, in [17, 18]. Moreover, Ou obtained f-biharmonic submanifolds and
maps, in [22]. He also gave complete classification of f-biharmonic curves in three-dimensional Euclidean space
and characterization of f-biharmonic curves in n-dimensional space forms.

In [23], Ouakkas et. al. introduced bi-f-harmonic maps as a generalization of biharmonic and f-harmonic
maps. Besides, Roth defined a non-f-harmonic, f-biharmonic map called as proper f-biharmonic map, in [27].
It should be noted that, there is not any link between the notion of f-biharmonic and bi-f-harmonic maps. In
[25], Perktaş et. al. derived the bi-f-harmonic equation for curves in Riemannian manifolds and discuss the
particular cases of the Euclidean space, unit sphere and hyperbolic space.

Biminimal curves in a Riemannian manifold are obtained by Loubeau and Montaldo, in [19].
Finally, Karaca and Özgür defined f-biminimal immersions and they handled f-biminimal curves in a

Riemannian manifold, in [13].
Motivated by these studies in this paper, first we give basic notions which will be needed in following

sections. In section 3, we remind the definition, tension and bitension fields of a magnetic curve. In section 4,
we investigate the f-harmonicity condition of a non-null magnetic curve in three-dimensional normal almost
paracontact metric manifold and we give an absence theorem. In section 5, we get f-biharmonicity conditions of
a non-null magnetic curve in three-dimensional normal almost paracontact metric manifold and we determine
this condition in different cases such as paracosymplectic, β-para-Sasakian and α-para-Kenmotsu manifolds.
In section 6, we obtain bi-f-harmonicity conditions of a non-null magnetic curve in three-dimensional normal
almost paracontact metric manifold and also discuss these conditions in various manifolds. Finally in section 7,
we get f-biminimality conditions of non-null magnetic curves in three-dimensional normal almost paracontact
metric manifold.

2. Preliminaries

In this section, we remind some definitions and propositions which will be needed throughout the paper.

Definition 2.1. Let (N, g) and (N̄ , ḡ) be Riemannian manifolds, then if a map ψ : (N, g)→ (N̄ , ḡ) is a critical
point of the energy functional

E(ψ) =
1

2

∫
N

|dψ|2dvg,

then it is defined as a harmonic map, where dvg is the volume element of (N, g). Besides, a map called as
harmonic if

τ(ψ) := trace∇dψ = 0.

Here τ(ψ) is the Euler-Lagrange equation of the energy functional E(ψ), where it is the tension field of map ψ

and ∇ is the connection induced from the Levi-Civita connection ∇N̄ of N̄ and the pull-back connection ∇ψ,
[11, 13].

As a natural generalization of harmonic maps, biharmonic maps are defined as below.

Definition 2.2. If a map ψ : (N, g)→ (N̄ , ḡ) is a critical point, for all variations, of the bienergy functional

E2(ψ) =
1

2

∫
N

|τ(ψ)|2dvg,

then it is defined as a biharmonic map.
For τ2(ψ) bitension field of map ψ, the Euler-Lagrange equation for a biharmonic map is given as;

τ2(ψ) = trace(∇ψ∇ψ −∇ψ∇)τ(ψ)− trace(RN̄ (dψ, τ(ψ))dψ) = 0. (2.1)
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Here RN̄ , the curvature tensor field of N̄ , is defined as

RN̄ (K,L)M = ∇N̄K∇N̄LM −∇N̄L∇N̄KM −∇N̄[K,L]M

for any K,L,M ∈ Γ(TN̄) and ∇ψ is the pull-back connection, [11, 13].

Note that, harmonic maps are always biharmonic. Besides non-harmonic biharmonic maps are called proper
biharmonic.

Definition 2.3. If a map ψ : (N, g)→ (N̄ , ḡ) is critical point of the f-energy functional

Ef (ψ) =
1

2

∫
N

f |dψ|2dvg

where f ∈ C∞(N,R) is a positive smooth function, it is defined as a f-harmonic map.
For τf (ψ) f-tension field of the map ψ, the Euler-Lagrange equation for the f-harmonic map is given as;

τf (ψ) = fτ(ψ) + dψ(gradf) = 0. (2.2)

Note that, f-harmonic maps are generalizations of harmonic maps, [1, 7].

Definition 2.4. If a map ψ : (N, g)→ (N̄ , ḡ) is critical point of the f-bienergy functional

E2,f (ψ) =
1

2

∫
N

f |τ(ψ)|2dvg,

then it is defined as f-biharmonic map. For a f-biharmonic map, the Euler-Lagrange equation is given by

τ2,f (ψ) = fτ2(ψ) + ∆fτ(ψ) + 2∇ψgradfτ(ψ) = 0 (2.3)

where τ2,f (ψ) is the f-bitension field of the map ψ.
If f is a constant then the f-biharmonic map becomes a biharmonic map, [18, 13].

Definition 2.5. If a map ψ : (N, g)→ (N̄ , ḡ) is critical point of the bi-f-energy functional

Ef,2(ψ) =
1

2

∫
N

|τf (ψ)|2dvg,

then it is defined as bi-f-harmonic map.
For τf,2(ψ) bi-f-tension field of the map ψ, the Euler-Lagrange equation for a bi-f-harmonic map is given as

τf,2(ψ) = trace
(
(∇ψf(∇ψτf (ψ))− f∇ψ∇N τf (ψ) + fRN̄ (τf (ψ), dψ)dψ)

)
= 0, [25]. (2.4)

Definition 2.6. If an immersion ψ : (N, g)→ (N̄ , ḡ) is critical point of the bienergy functional E2(ψ) for
variations normal to the image ψ(N) ⊂ N̄ , with fixed energy, then it is called biminimal. Equivalently, ψ is
a critical point of the λ-bienergy functional,

E2,λ(ψ) = E2(ψ) + λE(ψ)

where λ ∈ R is a constant. For a λ-biminimal immersion, the Euler-Lagrange equation is

[τ2,λ(ψ)]⊥ = [τ2(ψ)]⊥ − λ[τ(ψ)]⊥ = 0 (2.5)

where [.]⊥ denotes the normal component of [.], [19, 13].

Definition 2.7. If an immersion ψ : (N, g)→ (N̄ , ḡ) is a critical point of the f-bienergy functional E2,f (ψ) for
variations normal to the image ψ(N) ⊂ N̄ , with fixed energy, then it is called f-biminimal. Equivalently, ψ is a
critical point of the λ-f-bienergy functional,

E2,λ,f (ψ) = E2,f (ψ) + λEf (ψ)

where λ ∈ R is a constant. Then an immersion is f-biminimal if

[τ2,λ,f (ψ)]⊥ = [τ2,f (ψ)]⊥ − λ[τf (ψ)]⊥ = 0. (2.6)

If f is a constant then the f-biminimal map turns into a biminimal map, [13].
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Definition 2.8. A differentiable manifold N2n+1 called as almost paracontact metric manifold if following
conditions are met;

ϕ2 = I − η ⊗ ξ, ϕξ = 0, η(ξ) = 1, g(ϕK,ϕL) = −g(K,L) + η(K)η(L) (2.7)

where ϕ is a tensor field type (1, 1), ξ is a vector field, η is a 1-form, K, L ∈ TN , I is the identity endomorphism
on vector fields, g is a compatible metric with a given almost paracontact structure is necessarily of signature
(n+ 1, n).
In an almost paracontact metric manifoldN , η ◦ ϕ = 0 and rank(ϕ) = 2n. From (2.7), g(K,ϕL) = −g(ϕK,L) and
g(K, ξ) = η(K), for any K, L ∈ TN . The fundamental 2-form of N is defined by Φ(K,L) = g(K,ϕL).
An almost paracontact metric manifold (N,ϕ, ξ, η, g) is said to be normal if N(K,L)− 2dη(K,L)ξ = 0, where N
is the Nijenhuis torsion tensor of ϕ, [15, 33].
For a three-dimensional normal almost paracontact metric manifold where α, β = constant, the curvature
tensor field equation becomes

R(K,L)M =
(r

2
+ 2

(
α2 + β2

))
(g(L,M)K − g(K,M)L)

+ g(K,M)
(r

2
+ 3

(
α2 + β2

))
η(L)ξ −

(r
2

+ 3(α2 + β2)
)
η(L)η(M)K

− g(L,M)
(r

2
+ 3(α2 + β2)

)
η(K)ξ +

(r
2

+ 3(α2 + β2)
)
η(K)η(M)L (2.8)

here K,L,M ∈ TN and r is the scalar curvature, [24].

Proposition 2.1. For a three-dimensional almost paracontact metric manifold N , the following conditions are mutually
equivalent:

i) N is normal,
ii) there exist α, β functions on N such that

(∇K ϕ)L = α (g(ϕK,L) ξ − η(L)ϕK) + β (g(K,L)ξ − η(L)K) , (2.9)

iii) there exist α, β functions on N such that

∇K ξ = α (K − η(K)ξ) + βϕK. (2.10)

Moreover, the functions α, β realizing (2.9) as well as (2.10) are given by

2α = trace{K → ∇K ξ}, 2β = trace{K → ϕ∇K ξ},

[32].

Definition 2.9. Let N be a three-dimensional normal almost paracontact metric manifold,

• if α = β = 0 then N is called as paracosymplectic manifold, [8]
• if α = 0 and β 6= 0 then N is called as quasi-para-Sasakian manifold, [32]
• if α = 0, β 6= 0 and β is constant then N is called as β-para-Sasakian manifold, in particular, if β = −1

called as para-Sasakian manifold, [33]
• α 6= 0 and α is constant and β = 0 then N is called as α-para-Kenmotsu manifold, [31].

Definition 2.10. Let (N,ϕ, ξ, η, g) be a three-dimensional normal almost paracontact metric manifold. The
structural function cγ : I → IR of the immersed curve γ : I ⊆ IR→ N , is the map given by

cγ(s) = g(V (s), ξ) = η(V (s))

where V = dγ
ds = γ̇. Then the curve γ called as slant curve if cγ = c = constant and called as Legendre curve if

c = 0, [4].

3. Non-Null Magnetic Curves

In this section, we remind the definitions and tension fields of a magnetic curve on a magnetic manifold and
on a three-dimensional normal almost paracontact metric manifold.

www.iejgeo.com 334

http://www.iej.geo.com
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Definition 3.1. Let Φ, which is a closed 2-form on N , be a magnetic field on (N, g) (pseudo-)Riemannian
manifold. Then the Lorentz force FΦ of the magnetic field Φ is defined by

g(FΦK,L) = Φ(K,L)

for any K, L ∈ TN . In this case, the magnetic curve γ : I ⊆ IR→ N on the magnetic manifold (N, g,Φ) is the
solution of the Lorentz equation which is given by

∇γ̇ γ̇ = FΦγ̇.

Note that, constant speed magnetic curves and geodesics are magnetic curves with vanishing magnetic
fields, [4, 24].
Now let remind the definition of a magnetic curve in a three-dimensional normal almost paracontact metric
manifold with α, β = constant.

Definition 3.2. A smooth curve γ : I ⊆ IR→ N in a three-dimensional normal almost paracontact metric
manifold (N,ϕ, ξ, η, g) is called as a magnetic curve if it satisfies the following condition

∇V V = ϕV (3.1)

where V = γ̇, [24].

Throughout this article, we will assume that γ : I ⊆ IR→ N is a non-null and non-geodesic magnetic curve,
parametrized by arclength parameter, in a three-dimensional normal almost paracontact metric manifold
(N,ϕ, ξ, η, g) with α, β = constant as well as {ξ, V, ϕV } is a pseudo-orthonormal Frenet frame along the curve
γ where V = γ̇, g(V, V ) = ε1 = ±1, (η(V ))

2 6= ε1.

Let remind the tension and bitension fields of a non-null magnetic curve in a pseudo-Riemannian manifold
M . The tension and bitension fields of a non-null magnetic curve γ : I ⊆ IR→M , parametrized by arclength,
immersed in a pseudo-Riemannian manifold (M, g) , given in [24, 20], as follows;

τ(γ) = ∇γ∂
∂s

dγ(
∂

∂s
) = ∇V V (3.2)

and
τ2(γ) = ∇3

V V −R(V,∇V V )V. (3.3)

So we can easily see that from (3.2), if
τ(γ) = ∇V V = 0 (3.4)

then γ is called as a non-null magnetic harmonic curve. Besides if

τ2(γ) = ∇3
V V −R(V,∇V V )V = 0

then γ is called as a non-null magnetic biharmonic curve.

Unlike the tension field given in (3.4), more calculations are required to calculate the bitension field.
Bitension field of a non-null magnetic immersed curve γ in a three-dimensional normal almost paracontact
metric manifold N with α, β = constant; obtained as below in [24] with the help of differentiating (3.1) along γ
by using (2.9);

∇2
V V = (1− βη(V ))V − αη(V )ϕV + (ε1β − η(V )) ξ. (3.5)

Then by using (2.9) and (2.10)

∇3
V V = 2αη(V ) (βη(V )− 1)V

+
(

2α2 (η(V ))
2 − 2βη(V ) + ε1

(
β2 − α2

)
+ 1
)
ϕV

+
(

3α (η(V ))
2 − 2ε1αβη(V )− ε1α

)
ξ. (3.6)

From (2.8) and (3.1)

R(V,∇V V )V =
(r

2

(
(η(V ))

2 − ε1

)
+
(
α2 + β2

) (
3 (η(V ))

2 − 2ε1

))
ϕV (3.7)
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where r is the scalar curvature of N . So the bitension field obtained as

τ2(γ) = (2αη(V ) (βη(V )− 1))V

+
(

(α2 + 3β2 +
r

2
)(ε1 − (η(V ))2)− 2βη(V ) + 1

)
ϕV

+
(

3α (η(V ))
2 − 2ε1αβη(V )− ε1α

)
ξ. (3.8)

With the help of these solutions, we obtained f-tension field, f-bitension field, bi-f-tension field, the
biminimality and f-biminimality conditions of a non-null magnetic curve in a three-dimensional normal almost
paracontact metric manifold as in following sections.

4. f-Harmonic Non-Null Magnetic Curves

In this section, we derive the f-harmonicity condition for a non-null magnetic curve in a three-dimensional
normal almost paracontact metric manifold. Let γ : I ⊆ IR→ N be a non-null magnetic curve in a three-
dimensional normal almost paracontact metric manifold with α, β = constant. Then with the help of Definition
2.3 and Definition 3.2; the f-harmonicity condition obtained as below;

τf (γ) = f
′
V + fϕV = 0. (4.1)

Via (4.1) we get following absence theorem,

Theorem 4.1. There is no f-harmonic non-null magnetic curve in a three-dimensional normal almost paracontact metric
manifold with α, β = constant.

Proof. From the f-harmonicity condition given in (4.1), it is easy to see that f
′

= 0 and f = 0. This is a
contradiction with the definition of a f-harmonic curve.

5. f-Biharmonic Non-Null Magnetic Curves

In this section, we derive the f-biharmonicity condition for a non-null magnetic curve in a three-dimensional
normal almost paracontact metric manifold and discuss the particular cases of paracosymplectic, α-para-
Kenmotsu and β-para-Sasakian manifolds. By using equations (3.1), (3.5), (3.6) and (3.7) in the formula of
f-bitension field τ2,f (γ), we get f-biharmonicity condition as below;

τ2,f (γ) = fτ2(γ) + (∆f)τ(γ) + 2∇γgradfτ(γ)

= f(∇3
V V −R(V,∇V V )V ) + f

′′
∇V V + 2f

′
∇2
V V

= [2(1− βη(V ))(f
′
− αη(V )f)]V

+
[(

1− r

2
((η(V ))2 − ε1)− 2βη(V ) + (α2 + 3β2)(ε1 − (η(V ))2)

)
f − 2αη(V )f

′
+ f

′′]
ϕV

+
[
(3α(η(V ))2 − 2ε1αβη(V )− ε1α)f + 2(ε1β − η(V ))f

′]
ξ

= 0. (5.1)

From (5.1) we obtain following theorem;

Theorem 5.1. Let N be a three-dimensional normal almost paracontact metric manifold with α, β = constant and
γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a f-biharmonic curve iff the followings holds:

(1− βη(V ))(f
′ − αη(V )f) = 0,(

1− r
2 ((η(V ))2 − ε1)− 2βη(V ) + (α2 + 3β2)(ε1 − (η(V ))2)

)
f − 2αη(V )f

′
+ f

′′
= 0,

(3α(η(V ))2 − 2ε1αβη(V )− ε1α)f + 2(ε1β − η(V ))f
′

= 0.

(5.2)

www.iejgeo.com 336

http://www.iej.geo.com
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After Theorem 5.1 has been obtained, we examine the following 9 cases with the help of equation (5.2).

Case I: If 1− βη(V ) = 0 and f
′ − αη(V )f = 0 then we have followings;

η(V ) =
1

β
,

f = constant,

α = 0.

(5.3)

Then we obtained the following absence theorem from Case I;

Theorem 5.2. There is no f-biharmonic non-null magnetic curve on a three-dimensional normal almost paracontact
metric manifold with α, β = constant where 1− βη(V ) = 0 and f

′ − αη(V )f = 0.

Case II: If 1− βη(V ) 6= 0 and f
′ − αη(V )f = 0, then we have followings;

η(V ) 6= 1

β
,

f = constant,

α = 0.

(5.4)

From Case II we get the following absence theorem;

Theorem 5.3. There is no f-biharmonic non-null magnetic curve on a three-dimensional normal almost paracontact
metric manifold with α, β = constant where 1− βη(V ) 6= 0 and f

′ − αη(V )f = 0.

Case III: If 1− βη(V ) = 0 and f
′ − αη(V )f 6= 0, then we have followings;

η(V ) =
1

β
,

f = e
3α
2β s+c,

r =
2β2ε1(α2 + 3β2)− 8β2 − 7

2α
2

1− ε1β2
.

(5.5)

Then we have Corollary 5.1 from Case III;

Corollary 5.1. Let N be a three-dimensional normal almost paracontact metric manifold with α, β = constant and
γ : I ⊆ IR→ N is a non-null slant magnetic curve. Then γ is a f-biharmonic curve iff the function f and the constant
scalar curvature r equals to:

f(s) = e
3α
2β s+c

and

r =
2β2ε1(α2 + 3β2)− 8β2 − 7

2α
2

1− ε1β2

where s ∈ I, 1− βη(V ) = 0 and f
′ − αη(V )f 6= 0.

Case IV: If η(V ) = 0, that is to say γ is a Legendre curve, then equation (5.2) becomes:
f

′
= 0,(

α2ε1 + 3β2ε1 + 1 + r
2ε1

)
f = 0,

αf = 0.

(5.6)

We have the following results from Case IV;

Theorem 5.4. There is no f-biharmonic non-null magnetic Legendre curve in three-dimensional normal almost
paracontact metric manifold with α, β = constant.
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Corollary 5.2. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null Legendre magnetic curve. Then
γ is a biharmonic curve iff the constant scalar curvature r equals to:

r = −6β2 − 2ε1.

Case V: If β = 0, that is to say N is a α-para-Kenmotsu manifold, then equation (5.2) becomes:
f

′ − αη(V )f = 0,(
1− r

2 ((η(V ))2 − ε1) + α2(ε1 − (η(V ))2)f − 2αη(V )f
′
+ f

′′
= 0,

(3α(η(V ))2 − ε1α)f − 2η(V )f
′

= 0.

(5.7)

Here by using first and second equations of (5.7), we obtain the function f as f(s) = eαη(V )s+c and the scalar

curvature r as r =
2

η(V )2 − ε1
. Then by using this results in third equation we get α = 0.

With the help of these information we have the following results from Case V;

Theorem 5.5. There is no f-biharmonic non-null magnetic curve in a α-para-Kenmotsu manifold.

Corollary 5.3. Let N be a paracoymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic curve. Then γ is a
biharmonic curve iff the constant scalar curvature r equals to:

r =
2

η(V )2 − ε1
.

Case VI: If α = 0, that is to say N is a β-para-Sasakian manifold then equation (5.2) becomes:
(1− βη(V ))f

′
= 0,(

1− r
2 ((η(V ))2 − ε1)− 2βη(V ) + 3β2(ε1 − (η(V )2))f + f

′′
= 0,

(ε1β − η(V ))f
′

= 0.

(5.8)

We have the following corollaries by using first equation of Case VI;

If 1− βη(V ) = 0 and f
′ 6= 0 then we have;

Corollary 5.4. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null slant magnetic curve. Then γ is
a f-biharmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) 6= constant

and

r =
2β2f

′′ − 8β2f + 6β4ε1f

(1− ε1β2)f

where s ∈ I and 1− βη(V ) = 0.

If 1− βη(V ) 6= 0 and f
′

= 0 then we have;

Corollary 5.5. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic curve. Then γ is a
biharmonic curve iff the constant scalar curvature r equals to:

r =
2− 4βη(V ) + 6β2(ε1 − (η(V ))2)

(η(V ))2 − ε1

where 1− βη(V ) 6= 0 and f
′

= 0.

If 1− βη(V ) = 0 and f
′

= 0 then we have;
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Ş.N. Bozdağ & F.E. Erdoğan

Corollary 5.6. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic slant curve. Then γ is
a biharmonic curve iff the constant scalar curvature r equals to:

r =
2(3β2ε1 − 3β2(η(V ))2 − βη(V ) + 1)

(η(V ))2 − ε1

where 1− βη(V ) = 0 and f
′

= 0.

Case VII: If η(V ) = β = 0, that is to say γ is a Legendre curve in α-para-Kenmotsu manifold N then equation
(5.2) becomes: 

f
′

= 0,(
α2ε1 + 1 + r

2ε1

)
f = 0,

αf = 0.

(5.9)

We have the following results from Case VII;

Theorem 5.6. There is no f-biharmonic non-null magnetic Legendre curve in paracosymplectic manifold.

Corollary 5.7. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic Legendre curve. Then
γ is a biharmonic curve iff the constant scalar curvature r equals to:

r = −2ε1.

Case VIII: If η(V ) = α = 0, that is to say γ is a Legendre curve in β-para-Sasakian manifold N then equation
(5.2) becomes: 

f
′

= 0,(
1 + r

2ε1 + 3β2ε1

)
f + f

′′
= 0,

βf
′

= 0.

(5.10)

We have the following corollary from Case VIII;

Corollary 5.8. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic Legendre curve. Then
γ is a biharmonic curve iff the constant scalar curvature r equals to:

r = −6β2 − 2ε1.

Case IX: If β = α = 0, that is to say N is a paracosymplectic manifold, then equation (5.2) becomes:
f

′
= 0,(

1 + r
2 (ε1 − (η(V ))2)

)
f + f

′′
= 0,

η(V )f
′

= 0.

(5.11)

We have the following results from Case IX;

Theorem 5.7. There is no f-biharmonic non-null magnetic curve in a paracosymplectic manifold.

Corollary 5.9. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic curve. Then γ is a
biharmonic curve iff the constant scalar curvature r equals to:

r =
2

(η(V ))2 − ε1
.

This Corollary 5.9 is the same with the Corollary 2 in the [24].
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6. Bi-f-Harmonic Non-Null Magnetic Curves

In this section, we derive the bi-f-harmonicity condition for a non-null magnetic curve in a three-dimensional
normal almost paracontact metric manifold and discuss the particular cases of paracosymplectic, β-para-
Sasakian and α-para-Kenmotsu manifolds. By using equations (3.1), (3.5), (3.6) and (3.7) in the equation of
bi-f-tension field τf,2(γ), we get bi-f-harmonicity condition as below;

τf,2(γ) = trace
(
∇γf(∇γτf (γ))− f∇γ∇τf (γ) + fR(τf (γ), dγ)dγ

)
= (ff

′′′
+ f

′
f

′′
)V + (3ff

′′
+ 2(f

′
)2)∇V V + 4ff

′
∇2
V V + f2∇3

V V + f2R(∇V V, V )V

=
[
(ff

′′
)
′
+ (1− βη(V ))(4ff

′
− 2f2αη(V ))

]
V

+
[
3ff

′′
+ 2(f

′
)2 − 4ff

′
αη(V ) + f2

(
1− 2βη(V ) +

r

2
((η(V ))2 − ε1)

+(η(V ))2(5α2 + 3β2)− ε1(β2 + 3α2)
)]
ϕV

+
[
4ff

′
(ε1β − η(V )) + f2(3α(η(V ))2 − 2ε1αβη(V )− ε1α)

]
ξ = 0. (6.1)

From equation (6.1) we obtain the following theorem;

Theorem 6.1. Let N be a three-dimensional normal almost paracontact metric manifold with α, β = constant and
γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a bi-f-harmonic curve if and only if the followings holds:

(ff
′′
)
′
+ (1− βη(V ))(4ff

′ − 2f2αη(V )) = 0,

3ff
′′

+ 2(f
′
)2 − 4ff

′
αη(V ) + f2

[
1− 2βη(V ) + r

2 ((η(V ))2 − ε1) + (η(V ))2(5α2 + 3β2)− ε1(β2 + 3α2)
]

= 0,

4ff
′
(ε1β − η(V )) + f2(3α(η(V ))2 − 2ε1αβη(V )− ε1α) = 0.

(6.2)

Let’s examine Theorem 6.1 in detail.

Case I: If η(V ) = 0, that is to say γ is a Legendre curve, then equation (6.2) becomes:
(ff

′′
)
′
+ (2f2)

′
= 0,

3ff
′′

+ 2(f
′
)2 + f2(−ε1(β2 + 3α2) + 1− r

2ε1) = 0,

4ff
′
β − αf2 = 0.

(6.3)

We have the following corollary from Case I;

Corollary 6.1. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null Legendre magnetic curve. Then
γ is a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and
r = 2(ε1 − β2)

where s ∈ I.

Case II: If β = 0, that is to say N is a α-para-Kenmotsu manifold, then equation (6.2) becomes:
(ff

′′
)
′
+ (2f2)

′ − 2f2αη(V ) = 0,

3ff
′′

+ 2(f
′
)2 − 4ff

′
αη(V ) + f2

(
α2(5(η(V ))2 − 3ε1) + 1 + r

2 ((η(V ))2 − ε1)
)

= 0,

−4ff
′
η(V ) + f2

(
3α(η(V ))2 − ε1α) = 0.

(6.4)

We have the following corollaries from Case II;
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Corollary 6.2. Let N be a α-para-Kenmotsu manifold and γ : I ⊆ IR→ N is a non-null magnetic curve. Then γ is a
bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = e

(3α(η(V ))2 − ε1α

4η(V )

)
s+c

and

r =

(
10( 3α(η(V ))2−ε1α

4η(V ) )2 − 8( 3α(η(V ))2−ε1α
4η(V ) )αη(V ) + 10α2(η(V ))2 − 6α2ε1 + 2

)
ε1 − (η(V ))2

where

α =
ε1 ± 24η(V )

√
2(3(η(V ))4 + (η(V ))2 − 1)(ε1 − (η(V ))2)

18(η(V ))2(3(η(V ))4 + (η(V ))2 − 1)

and s ∈ I.

Corollary 6.3. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic curve. Then γ is a
bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and
r =

2

η(V )2 − ε1

where s ∈ I.

Case III: If α = 0, that is to say N is a β-para-Sasakian manifold, then equation (6.2) becomes:
(ff

′′
)
′
+ (2f2)

′
(1− βη(V )) = 0,

3ff
′′

+ 2(f
′
)2 + f2

(
3β2(η(V ))2 − 2βη(V )− ε1β

2 + 1 + r
2 ((η(V ))2 − ε1)

)
= 0,

4ff
′(
ε1β − η(V )) = 0.

(6.5)

We have the following corollaries by using third equation of Case III;

If f
′

= 0 we get;

Corollary 6.4. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic slant curve. Then γ is
a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and
r =

2(2βη(V )− 3β2(η(V ))2 + ε1β
2)

(η(V ))2 − ε1

where s ∈ I.

If ε1β − η(V ) = 0 we get;

Corollary 6.5. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic slant curve. Then γ is
a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = c1e
√

2(β2ε1−1)s + c2e
−
√

2(β2ε1−1)s

and
r =

14β2ε1 + 6β4 − 20

ε1 − β2

where s ∈ I and ε1β − η(V ) = 0.

If f
′

= 0 and ε1β − η(V ) = 0 we get;
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Corollary 6.6. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic slant curve. Then γ is
a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and

r =
6β4 − 6β2ε1 − 2

ε1 − β2

where s ∈ I and ε1β − η(V ) = 0.

Case IV: If η(V ) = β = 0, that is to say N is a α-para-Kenmotsu manifold and γ is a Legendre curve , then
equation (6.2) becomes: 

(ff
′′
)
′
+ (2f2)

′
= 0,

3ff
′′

+ 2(f
′
)2 + f2

(
1− 3α2ε1 − r

2ε1

)
= 0,

f2ε1α = 0.

(6.6)

We have the following corollary from Case IV;

Corollary 6.7. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic Legendre curve. Then
γ is a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = c1cos(
√

2s) + c2sin(
√

2s)

and

r =
4(f

′
)2 − 10f2

ε1f2

where s ∈ I. (Here in Corollary 6.7, the constant of integration c is taken as 0.)

Case V: If η(V ) = α = 0, that is to say N is a β-para-Sasakian manifold and γ is a Legendre curve , then
equation (6.2) becomes: 

(ff
′′
)
′
+ (2f2)

′
= 0,

3ff
′′

+ 2(f
′
)2 + f2

(
1− β2ε1 − r

2ε1

)
= 0,

4ff
′
β = 0.

(6.7)

We have the following corollaries from Case V;

Corollary 6.8. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N is a non-null magnetic Legendre curve. Then
γ is a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and
r = 2(ε1 − β2)

where s ∈ I.

Corollary 6.9. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic Legendre curve. Then
γ is a bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and
r = 2ε1

where s ∈ I.
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Case VI: If β = α = 0, that is to say N is a paracosymplectic manifold, then equation (6.2) becomes:
(ff

′′
)
′
+ (2f2)

′
= 0,

3ff
′′

+ 2(f
′
)2 + f2

(
1 + r

2 ((η(V ))2 − ε1)
)

= 0,

ff
′
η(V ) = 0.

(6.8)

We have the following corollary from Case VI;

Corollary 6.10. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N is a non-null magnetic curve. Then γ is a
bi-f-harmonic curve iff the function f and the constant scalar curvature r equals to:

f(s) = constant

and
r =

2

ε1 − (η(V ))2

where s ∈ I.

7. f-Biminimal Non-Null Magnetic Curves

Finally, in this section we derive the f-biminimality condition for a non-null magnetic curve in a three-
dimensional normal almost paracontact metric manifold and discuss the particular cases of paracosymplectic,
α-para-Kenmotsu and β-para-Sasakian manifolds.
We find the f-biminimality condition as below by using normal components of f-tension and f-bitension field
with the help of λ-f-bienergy functional;

[τ2,λ,f (γ)]⊥ = [τ2,f (γ)]⊥ − λ[τf (γ)]⊥

=
[(

1− r

2
((η(V ))2 − ε1)− 2βη(V ) + (α2 + 3β2)(ε1 − (η(V ))2)− λ

)
f − 2αη(V )f

′
+ f

′′]
ϕV

+
[
(3α(η(V ))2 − 2ε1αβη(V )− ε1α)f + 2(ε1β − η(V ))f

′]
ξ

= 0. (7.1)

By using (7.1) we obtain;

Theorem 7.1. Let N be a three-dimensional normal almost paracontact metric manifold with α, β = constant and
γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a f-biminimal curve iff the followings holds:

(
1− r

2 ((η(V ))2 − ε1)− 2βη(V ) + (α2 + 3β2)(ε1 − (η(V ))2)− λ
)
f − 2αη(V )f

′
+ f

′′
= 0,

(3α(η(V ))2 − 2ε1αβη(V )− ε1α)f + 2(ε1β − η(V ))f
′

= 0.
(7.2)

From Theorem 7.1, we deduce;

Corollary 7.1. Let N be a three-dimensional normal almost paracontact metric manifold with α, β = constant and
γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a f-biminimal curve iff the function f and the constant scalar
curvature r equals to:

f(s) = e

(
αη(V )+

α((η(V ))2 − ε1)

2(η(V )− ε1β)

)
s+c

and

r =

2

((α((η(V ))2 − ε1)

2(η(V )− ε1β)

)2 − (η(V ))2(3β2 + 2α2) + ε1(3β2 + α2)− 2βη(V ) + 1− λ
)

(η(V ))2 − ε1

where s ∈ I.
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Case I: If η(V ) = 0, that is to say γ is a Legendre curve, then equation (7.2) becomes:
(
ε1(β2 − α2) + 1 + r

2ε1 + 2ε1(β2 + α2)− λ
)
f + f

′′
= 0,

2βf
′ − αf = 0.

(7.3)

We have the following corollary from Case I;

Corollary 7.2. Let N be a three-dimensional normal almost paracontact metric manifold with α, β = constant and
γ : I ⊆ IR→ N be a non-null magnetic Legendre curve. Then γ is a f-biminimal curve iff the function f and the constant
scalar curvature r equals to:

f(s) = e
α
2β s+c

and
r = (2λ− 2− α2

2β2
)ε1 − 6β2 − 2α2

where s ∈ I.

Case II: If α = 0, that is to say N is a β-para-Sasakian manifold, then equation (7.2) becomes:
(
− 2βη(V ) + 1− r

2 ((η(V ))2 − ε1)− β2(3(η(V ))2 − 3ε1)− λ
)
f + f

′′
= 0,

(ε1β − η(V ))f
′

= 0.
(7.4)

We have the following corollaries from Case II;

Corollary 7.3. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a
biminimal curve iff the constant scalar curvature r equals to:

r =
2
(
3β2ε1 + 1− 3β2(η(V ))2 − 2βη(V )− λ

)
(η(V ))2 − ε1

.

Corollary 7.4. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N be a non-null magnetic slant curve. Then γ is
a biminimal curve iff the constant scalar curvature r equals to:

r =
2
(
β2ε1 + 1− 3β4 − λ

)
β2 − ε1

.

Corollary 7.5. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N be a non-null magnetic slant curve. Then γ
is a f-biminimal curve iff the function f and the constant scalar curvature r are the solution of the following differential
equation: (

1− r

2
((η(V ))2 − ε1)− η(V ))2(ε1 − 3(η(V ))2)− λ

)
f + f

′′
= 0.

Case III: If β = 0, that is to say N is a α-para-Kenmotsu manifold, then equation (7.2) becomes:
(
− α2ε1 + 1− r

2 ((η(V ))2 − ε1)− α2((η(V ))2 − 2ε1)− λ
)
f − 2αη(V )f

′
+ f

′′
= 0,

(3α(η(V ))2 − ε1α)f − 2η(V )f
′

= 0.
(7.5)

We have the following corollary from Case III;

Corollary 7.6. Let N be a α-para-Kenmotsu manifold and γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a
f-biminimal curve iff the function f and the constant scalar curvature r equals to:

f(s) = e

(3α(η(V ))2 − ε1α

2η(V )

)
s+c

and

r =

2

(
− 4(η(V ))2α2 + 2ε1α

2 + 1− λ+
( 3α(η(V ))2−ε1α

2η(V )

)2
)

)
(η(V ))2 − ε1

.

where s ∈ I.
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Case IV: If η(V ) = β = 0, that is to say N is a α-para-Kenmotsu manifold and γ is a Legendre curve , then
equation (7.2) becomes: 

(
1 + r

2ε1 + α2ε1 − λ
)
f + f

′′
= 0,

αf = 0.
(7.6)

We have the following corollary from Case IV;

Corollary 7.7. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N be a non-null magnetic Legendre curve. Then
γ is a f-biminimal curve iff the function f equals to:

f(s) = c1cos(

√
1 +

r

2
ε1 − λs) + c2sin(

√
1 +

r

2
ε1 − λs)

where s ∈ I ; c1, c2 ∈ IR and r is the constant scalar curvature.

Case V: If η(V ) = α = 0, that is to say N is a β-para-Sasakian manifold and γ is a Legendre curve , then
equation (7.2) becomes: 

(
3ε1β

2 + r
2ε1 − 1− λ

)
f + f

′′
= 0,

βf
′

= 0.
(7.7)

We have the following corollaries from Case V;

Corollary 7.8. Let N be a β-para-Sasakian manifold and γ : I ⊆ IR→ N be a non-null magnetic Legendre curve. Then
γ is a biminimal curve iff the constant scalar curvature r equals to:

r = 2ε1(λ− 1− 3ε1β
2).

Corollary 7.9. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N be a non-null magnetic Legendre curve. Then
γ is a biminimal curve iff the constant scalar curvature r equals to:

r = 2ε1(λ− 1).

Case VI: If β = α = 0, that is to say N is a paracosymplectic manifold, then equation (7.2) becomes:
(
1− r

2 ((η(V ))2 − ε1)− λ
)
f + f

′′
= 0,

η(V )f
′

= 0.
(7.8)

We have the following corollary from Case VI;

Corollary 7.10. Let N be a paracosymplectic manifold and γ : I ⊆ IR→ N be a non-null magnetic curve. Then γ is a
biminimal curve iff the constant scalar curvature r equals to:

r =
2(1− λ)

(η(V ))2 − ε1
.

8. Conclusion

In this paper, we handled f-biharmonic and bi-f-harmonic non-null magnetic curves in three-dimensional
normal almost paracontact metric manifolds. Because of the importance of these curves in physics and
application fields of physics, we belive in that the paper has potential for further research. Thanks to the
reviewers for their valuable comments.
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