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Abstract

For a symmetric linear compact resp. symmetric densely defined linear operator with compact inverse, expansion
theorems in series of eigenvectors are known. The aim of the present paper is to generalize the known expansion
theorems to the case of corresponding operators without the symmetry property. For this, we replace the set of
orthonormal eigenvectors in the symmetric case by a set of biorthonormal eigenvectors resp. principal vectors in
the case of simple eigenvalues resp. general eigenvalues. The results for the operators without the symmetry
property are all new. Furthermore, if the operators are symmetric, the generalized results deliver the known
expansions. As an application of the results for nonsymmetric operators with simple eigenvalues, we obtain a
known expansion in a series of eigenfunctions for a non-selfadjoint Boundary Eigenvalue Problem with ordinary
differential operator discussed in a book of Coddington/Levinson. But, we obtain a new result if the eigenvalues
are general, that is, not necessarily simple. In addition, for a differential operator of 2nd order with constant

coefficients, the eigenfunctions and Green’s function are explicitly determined. This result is also new, as far as
the author is aware.
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1. Introduction

The paper is structured as follows.

Section 2 is of preparatory nature and of utmost importance for the subsequent sections; it discusses functions of an operator
in a Banach space.

Section 3 is on the expansion of a linear compact operator and of a pertinent projection operator in a series of eigenvectors
resp. principal vectors in a Hilbert space.

Section 4 treats densely defined linear operators T = L with compact inverse G = T~' = L™!, derives for it expansions in
series of eigenvectors resp. of principal vectors and shows that G = G* not only for simple, but also for general eigenvalues,
where G4 = Ljrl and L. is the formal adjoint of L.

In Section 5, applications of the results of Section 4 are made to a non-selfadjoint BEVP taken from [2, Chapter 12],
delivering relation [2, Chapter 12, (5.6)]. Here, not only the expansion in a series of eigenfunctions is obtained in the Hilbert
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space H = Ly(a, b) if the eigenvalues are simple, but also a corresponding expansion in a series of principal functions if the
eigenvalues are general.

In Section 6, beyond this, for a differential operator L defined by Lu(x) = L, g,u(x) = —u" (x) + pou’ (x) +qou(x), 0 <x <1
with real constants pg and go, the eigenvalues t; and pertinent eigenfunctions x;(x) as well as the associated eigenvalues 11 =M
and eigenfunctions y;(x) of the formally adjoint operator L defined by L v(x) =L_p, 4,v(x) = —V"(x) — pov/(x) +gov(x), 0 <
x < [ with the biorthonormality property are explicitly determined. Furthermore, the Green’s functions G(x,s) = G(x, s; po,qo)
pertinent to the operator L = L, 4, as well as the associated Green’s function G (x,s) = G” (x,5) = G(s,x) = G(s,x;—po,q0)
pertinent to the formally adjoint operator L, = L_ 4, are also explicitly determined confirming the general result G, = G"
for the linear compact operators G and G defined by the corresponding Green’s functions. In Section 7, we compare the
present expansion results in abstract Hilbert spaces with known ones. Finally, Section 8 contains the conclusions.

2. Functions of an Operator in a Banach Space

This section contains the basis for the convergence of the studied expansions and is thus of utmost importance for the whole
paper.

The method of deriving the expansions for symmetric linear compact operators is no longer applicable when the symmetry
property is missing. See, for example the derivation for a symmetric linear compact operator in [14, Theorem 6.4-B, pp.336-337].

A hint what can be done in the nonsymmetric case is found in [2, Chapter 12, 1. Introduction, p.298, first paragraph]. As
stated there, an appropriate approach is furnished by the Cauchy integral method. There, one can read: “The method ... yields
complete information about the convergence of the expansion for any integrable function.”

We mention that most theorems of the classical Theory of Functions can be carried over to functions of a complex variable
z with values in a complex Banach space.

So, in particular, Cauchy’s integral method can be applied to functions with values in a Banach space, that is, in a complete
normed space, where the completeness property of the space is essential.

In [2], the special case of the Hilbert function space H = L, (a,b) is used, that is, a specific complete function space with
scalar product.

This is not general enough for our purposes, however. What we need is Cauchy’s integral method in a general Banach
space. This is treated in the book [6, Chapter I, §5]. However, there Kato assumes that the underlying normed space be
finite-dimensional. Then, of course, the space is complete. But, the assumption of finite dimension can be replaced by the
completeness of the space since this is the important condition to allow the transition from complex-valued functions of a
complex variable to vector-valued functions of a complex variable, as we have already mentioned above. This is done, for
instance, in Stummel’s paper [13], where Cauchy’s integral method is used to show the existence of the resolvent integral for a
pair of linear bounded operators A, B € B(E,F) where E and F are Banach spaces and where it is proven that the completeness
property is even not necessary if the operator B is compact.

Here, we study only a single operator T € B(E), i.e., the pair (A = T, B = I) with the identity operator [ in F = E where,
for the time being, we assume that the space is complete. In a subsequent paper, we shall investigate whether the completeness
property of the space for the series expansion of 7 can be dropped if T is compact.

For the study of asymptotic expansions for discrete approximations of eigenvalue problems, we refer the reader to [4].

After these preliminary remarks, we turn to functions of an operator in a Banach space as announced in the heading of this
section.

We mention that here we use verbatim and almost verbatim passages from [6, Chapter I, §5].

Let {0} # E be a Banach space over the field F = C . Whereas in [6, Chapter 1] it is supposed that dimE < oo, here we
assume that dim E = oo. As already mentioned several times, the following results taken from [6] are valid for dimE < o and
dimE = o if the space is complete.

Let p(&) be the polynomial

pl)=+oul+-al", LeC 2.1)
with oj € C, j=0,1,--- ,n. Then the polynomial p(T) € B(FE) is defined by

p(T)=o+oT+---0,T", { €C, (2.2)
see [6, Chapter I, §3.3]. Making use of the resolvent

RE):=(T-¢)" ¢ecC, 2.3)
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one can now define the function ¢(7') of T for a more general class of functions ¢(§).

Before we do this, we mention that linear compact operators need not have eigenvalues. For example, Volterra integral
operators have no eigenvalues. On the other hand, consider a symmetric linear compact operator. Then, such an operator has at
least one eigenvalue, and all eigenvalues are real and simple. It may happen that there exits only a finite number of eigenvalues.
Further, there is at most a countable set of eigenvalues with the only possible accumulation point zero, and there exists a set of
pertinent pairwise orthonormal eigenvectors. Further, it is known that the non-zero elements of the spectrum consist solely
of eigenvalues and that, if there is a countable set of eigenvalues, the assocated sequence tends to zero. For all this, see [14,
Chapter 6].

Further, according to [5, Theorem 44.1, p.191], one has 6(T') \ {0} = op(T) \ {0} where o(T) is the spectrum of T and
op(T) the point spectrum consisting of the eigenvalues of 7'

Taking this into account, for our general linear compact operator T € B(E), we suppose that the spectrum o(7') of T has a
countable set of non-zero eigenvalues A4 ; and that the sequence of eigenvalues tends to zero.

Additionally, we suppose that 0 € o(7') so that N(T') = {0} since without this condition, we cannot obtain relation (2.11)
resp.(2.14) below.

Now, suppose that ¢ () is holomorphic in a domain D of the complex plane containing all the eigenvalues A; # 0 of T, and
let C C D be a simple closed smooth curve with positive direction enclosing all the eigenvalues A; in its interior. Then, ¢ (T') is
defined by the Dunford-Taylor integral

o) =~ [0@R@)ag =~ [9(&)T-0) " at. 4

27i Jo

This is an analogue of the Cauchy integral formula in the Theory of Functions, see [7, Part I, §15, p. 61]. More generally, the
curve C may consist of several simple closed rectifiable Jordan curves Cy having positive direction with interiors D) such that
the union of the D; contains all the eigenvalues of 7. We note that (2.4) does not depend on C as long as C satisfies these
conditions. For the Cy, we can use the circles Cy = {z € C ||z — 4| = r} with sufficiently small radii ry.

It can be verified that for the polynomial

o) =pl)=+oul+ 8", {eC (2.5)

witho; € C, j=0,1,---,n, the Dunford-Taylor integral (2.4) is equal to (2.2).
For the special case

¢(&)=p(&)=2¢, (2.6)

we obtain
s frr@ac =1 (<50 [R©a) = (5 [R©ac) T e
Now, we set
P= —ZLM/CR(g)d(;. (2.8)

According to [6, Chapter I, §5, Section 3], P is a continuous projection operator onto the algebraic eigenspace X = P(E) = R(P),
where R(P) means the range of P. Thus, from (2.7) and (2.8), one obtains

T =TP=PT =PTP. 2.9)

Now, let the radii r; be chosen such that

CiNCe=0, j#k jk=1273 . (2.10)
Then,
1 > 1 -
:_%/C (g)dg:j:zl (—m/ch(C)dC) :;Pj @11
with
1 o
P =g Jo RO =123, (2.12)
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At this point, we needed the assumption 0 ¢ o(7T') since otherwise any circle Cy about Ay = 0 would eventually intersect with
the circles Cy for sufficiently large k so that we would not have (2.10) for j,k € (1,2,3,---). Let J be the sequence

J:=(1,2,3,---). (2.13)

Then, (2.11) can be written as

p_ ilpj -y P, (2.14)
=

jer

Because of (2.10), one has

PijZPkPjZPj(Sjk, Jj.keld. (2.15)
Herewith,
Pj(E) ZZXj (216)

is the algebraic eigenspace of T associated with the eigenvalue A;.
From (2.9), (2.11), and (2.15), we obtain

T=PT=TP=PTP=) PT=) TP;=) PTP, (2.17)
JjeJ jeJ JjeJ
and so
R(T)=T(E) = (PT)(E)=(TP)(E)=(PTP)(E)

= Y.(PT)(E)=Y.(TP)(E) = Y. (P,TP)(E). 2.18)

JjeJ jes jeJ

3. Expansion of a Linear Compact Operator and of a Pertinent Projection Operator in
Hilbert Space

The aim of the present section is to specify the relation (2.17), i.e.,

T=PT=TP=PTP=) PT=) TPi=) PTP,
jels jes jes

in more detail. This can best be done in a Hilbert space since, for example, the orthogonal projection Pu of a vector u € H onto
a unit vector e € H can be written as

Pu=(u,e)e,

that is, by using a scalar product.

In our case, the projection operators P; are not orthogonal, however. But, the dimension of R(P;) = P;j(H) is finite-
dimensional and represents the geometric eigenspace Nj:= N(T — A;) if the eigenvalue A; is simple and the algebraic
eigenspace X := X;LJ.(T) if A; is not simple. Now, for finite-dimensional spaces, the author constructed, in earlier work, a
set of biorthonormal eigenvectors resp. principal vectors pertinent to a finite-dimensional mapping (usually represented by
a matrix with respect to a fixed basis of vectors); here, the mapping is given by T; = TP; = P;T = P;TP;. Thus, using these
biorthonormal sets, it is possible to specify the expressions T;u = T Pju = P;Tu = P;T Pju for elements u € H in more detail
by using a scalar product. This leads to the desired expansion for 7u. Now, the announced details follow, first for the case of
simple eigenvalues, and then for the case of general, not necessarily simple eigenvalues.
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3.1 The Case of Simple Eigenvalues

In this subsection, in the case of simple eigenvalues, expansions in a series of eigenvectors are treated; it is organized as follows.
First, the conditions for the expansions to hold are stated. Then, the series expansions of Tu as well as of Pu are derived. Finally,
the known expansions for a selfadjoint operator 7 = A are retrieved from the more general result obtained in this subsection.

(i) The Conditions (CI) - (C4)
We assume the following conditions:

(C1) {0} # H is a Hilbert space over the field F = C with scalar product

(C2) 0+#T € B(H) is compact (or completely continuous) having countably many simple non-zero eigenvalues A, Az, A3, - - -
with lim;_,., A4 = 0 pertinent to the eigenvectors X1, X2, X3, - -. Further, 0 & o(T).

(C3) The eigenvectors of the adjoint 7* of T with the eigenvalues Il ,12,13, coeare Y, Yo, Y,

(ii) Series Expansions of Tu as well as of Pu

One has the following theorem.

Theorem 3.1 (Biorthonormality relations for A; # Ax, j # k)

Let the conditions (C1) - (C4) be fulfilled. Then, with appropriate normalization, the eigenvectors X1,X2,X3, -+ and
Vi, Wo, Y3, -+ are orthonormal, that is,

(%> W) = Sk, j ke d. 3.1

Proof: Define the operators

P =Y P (3.2)
j=1
as well as
T :=17P" =Y TP, 3.3)
j=1

Here, R(T") = (T")(H) is finite-dimensional with dimension . From [8, Theorem1], one has

(Xj> W) = 8jx, j.k=1,---,n. (3.4)
and

Ty =%, j=1,--,n. (3.5)
Now, letting n — oo, relation (3.4) entails (3.1) since 7 = lim;, o T according to Section 2. o

Furthermore, we obtain the following theorem.
Theorem 3.2 (Expansions of Tu as well as of Pu in a series of eigenvectors)
Let the conditions (C1) - (C4) be fulfilled. Then,

Tu= Z)»j(u,l//j)xj, ueH 3.6)
jeJ
as well as
Pu= Z(u,y/j)xj, ucH. 3.7
jeJ

Proof: Let u € H. Then, due to (3.1),

n

Py =Y (u,y;)x (3.8)
j=1
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and thus

TWy =T1p" Z (u,w))x (3.9)

Now, from Section 2, the limit

Mx

Pu = lim P™y =

n—eo

(i)=Y (w,v))x; (3.10)

1 jeJ

J

exists entailing also the existence of the limit

=

Tu=1limT"Wu=1lim TP™u= Y L;(u,y;)x; = Y A;(u, w))x (3.11)

— —
n—oco n—oo i

~.
Il
—

Remark: From (3.6) we conclude that

Further,
P:HH[xlax27x3a"']' (313)
o
Theorem 3.3
Let the conditions (C1) - (C4) be fulfilled. Then, we obtain
u:Pu:Z(u,l]/j)xj,MEH (3.14)
=

and the projection operator
Ph=1-P:H—N(T)={0} <= P =0. (3.15)

Proof: Evidently,

u=Pu+(I—Pu,ucH. (3.16)
Further,

T(Pou)=T(I—Pu=Tu—TPu=0 (3.17)
where the last equal sign follows from (2.17). So, Pou € N(T) = {0}, i.e., Bu=0, u € H or By = 0. o

If condition (C4) is not fulfilled, one can remedy this by using a biorthonormalization pre-process, as the next lemma shows.
Lemma 3.4
Let the conditions (C1) - (C3) be fulfilled, and let, for instance, Aj ,Aj, -+ , A;, be eigenvalues of T with linearly independent

eigenvectors Xj,, Xj,**  Xj,s further, let W, . ;) -+, y; Dbe linearly zndependent eigenvectors pertinent to /'L,l ,ljz, . ljp
of T*. Then, these eigenvectors can be biorthonormalized such that

(xjkaWjj)zskhkal:1727"'ap' (318)

Proof: See [9, Theorem 3]. o

After appropriate application of the biorthonormalization pre-process, condition (C4) is satisfied.
(iii) Special Case of a Selfadjoint Compact Operator T = A

If T = A is selfadjoint and compact and if there is a countable set of non-zero eigenvalues A;, j € J, then it is known that
the relation

lim A; =0 (3.19)

J—re
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is fulfilled. Further, the eigenvalues are real, and the pertinent eigenvectors @; can be chosen real so that one has

P=2i=VjJeJ (3.20)

meaning that the biorthonormality relations (3.1) turn into the orthonormality relations

(0, @) =6jx, j,kel. 3.21)
Thus, if 0 & 6(A), the relations (3.6) and (3.14) turn into the known results
Au=Y Aj(u,9;)p;, uc H (3.22)
jel
and
u=Pu=Y (u,0;)p;, ucH. (3.23)
jel

3.2 The Case of General Eigenvalues
In this subsection, we do not assume that the eigenvalues of 7 be simple. Then, we obtain expansions in a series of principal
vectors.

This subsection is organized in a similar way as the preceding one.

So, first the conditions for the expansions to hold are stated. Then, the series expansions of Tu as well as of Pu are derived.

(i) The Conditions (C1') - (C4')
In the general case when the eigenvalues need not be simple, we assume the following conditions:

(C1") {0} # H is a Hilbert space over the field F = C with scalar product (-, -)

(C2") 0#T € B(H) is compact (or completely continuous) having countably many non-zero eigenvalues A1, 4,43, - -+ with
limy_,. A« = 0 and the pertinent algebraic eigenspaces P;(H) = X, (T') spanned by the principal vectors
(), (/)

X175 X xm; for j € J, where xm is of stage i. Further, 0 € o (T).

(c3h yll(j >, éj ), SN w,S{J ) are .the principal vectors corresponding to the eigenvalues A j» J €J, spanning the algebraic eigenspaces
P;(H) :ij(T*) forjelJ
(C4/) A’j 7£ )’ka ]#k7 ]7k eJ

(ii) Series Expansions of Tu as well as of Pu

As a preparation of the expansions in series of principal vectors, we begin with the detailed biorthonormalization process.
According to (C2') and (C3'), we have

TZ;Ei> _ liX/Ei) +X;E?1, k=12, ,m (3.24)
and

T*Wl(j) :xj %(J)+W(i)]’ 1=1,2,--- ;. (3.25)
Then, the fact can be used that the principal vectors of stage k are determined only up to a linear combination of principal
vectors of stages less than k which was applied in [8] to the chain l//l(" >, 2(1 >, e l//,(,,]_ j) leading to

(X]Ei)’wl(i)):Ql#mi_k+1’k:]7...’mi (3.26)
and

(xlii)’ wxg_k+1) £0, l=mi—k+1,k=1,--- m. (3.27)
So, with

v/ii) = ‘//r(rfi)—kﬂv (3.28)



Eigenvalue Expansion of Nonsymmetric Linear Compact Operators in Hilbert Space — 62/74

one has
(X/Ei)a U]Ei)) 7é 07 k= 17 cee M.
Further, according to [8],
o) =0,i# ]

k=1, my, [ =1, ,mj.

Now, replace v,Ei) in (3,29) by

ﬁ}@ = Wkt 1 = Byilii)—k{»l Ymi—k+1 = B,E,i.)karl D]@

and determine the factor ﬁrsl )7 x41 such that
o) =1.

Then,

B i =1/ o) = 1 () Wi, k=1,

or

ﬁz(l) = 1/(%}'(;,-)71+17vr(nji)71+1) = 1/(Xr(nll‘>fl+1>llll)7 =1,

From (3.31), we obtain

or

with Béj) :=1and lf/(()j) :=0as well as

7 =B BY  1=1,2, mi.

This means that in the canonical Jordan form of T restricted to the subspace spanned by the principal vectors l/?l(j ), 1172(j ), S

the ones are to be replaced by the 7@17 [=2,--- ,m.
Due to the above, one has the following lemma.

M

Lemma 3.5 (Biorthonormality relations for principal vectors)

Let the conditions (C1') - (C4') be fulfilled. Then, with the above notations,

(X/Ei)7 5;(j>) = 0y 6ij,

k=1,--- mj, l=1,--- .mj, i,je€J with

f’z(j) = ‘T’r(n],-)fm = Bri]j)fm ‘lf,gljj)fm = ﬁ,ijj)fm vl(”,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.38)

(3.39)
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I=1,---,mj, j€Jaswell as
By o =1/ o) = 17007 Wy 1), (3.40)
[=1,---,mj, je. o

At this point, we mention that
(u,v) = (®?u,e®v), u,veC", 0< @ <21
which also applies to the pairs of vectors u = x(i) V= ﬁl(j Jin (3.38).
Remark: We note that the matrix

(N ki1 m (3.41)

has the form

(3.42)

which is called cross-diagonal in [12, p.3] and anti-diagonal by other authors. As opposed to this, the matrix ( ( x,gl) , f)l(l)) Ved=1, m;»
is equal to the identity matrix and thus diagonal. o
With Lemma 3.5, we can derive the next theorem that is an analogue to Theorem 3.2.
Theorem 3.6
Let the conditions (C1') - (C4') be fulfilled. Then,

”lj
T“—ZZ u oA + 2] uen (3.43)
JjeJ k=

as well as

Pu=}), Z o), weH. (3.44)

jeJk=

Proof: Define

Py = ipj = Zn:P,l.(T). (3.45)

n mj
:ZZ uvk Xk LucEH. (3.46)
This leads to
n mj . .
TWu: = TPWu=Y Y (u,0)Ty
n mj Jj=lk=1 (3.47)
_ MUNPON0 I H
Z (u,D n ) Jxk +Xk 1] uei.
j=1k=1

From this, it follows, based on Section 2,

P = lim P (3.48)

n—yoo
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as well as
T = lim 7™ (3.49)
n—soo
in the Banach space B(H). From (3.45) - (3.49), the relations (3.43) and (3.44) follow. o
Using (3.44), we obtain the next theorem.
Theorem 3.7
Let the conditions (C1') - (C4') be fulfilled. Then,
mj . .
u=Pu=YY (u, 5%, ueH, (3.50)
jeJ k=1
Proof: The proof is done in the same way as for Theorem 3.3 o

Remark: As in the case of simple eigenvalues of 7', under the conditions (C1’) - (C4') the relation N(T') = {0} is equivalent
to the property that Ay = 0 is not an eigenvalue of 7 which, in turn, is equivalent to Ay = 0 is not an eigenvalue of T* or that

N(T*) ={0}. o
Remark: If condition (C4') is not fulfilled, this again can be remedied by a biorthonormalization pre-process described in [9,
Theorem 4]. o

4. Series Expansions for a Densely Defined Linear Operator with Compact Inverse

The results on linear compact operators in Section 3 can be carried over to densely defined linear operators with compact
inverse. The obtained expansions have important applications to BEVPs for ordinary and partial differential equations, where in
Section 5, we restrict ourselves to BEVPs for ODEs. Again, it is natural to first handle the case of simple eigenvalues and then
the case of general eigenvalues.

4.1 The Case of Simple Eigenvalues
In this subsection, in the case of simple eigenvalues, expansions in series of eigenvectors are treated.

It is structured as follows. We begin with the conditions on the densely defined linear operator L, its formally adjoint
operator L, and their pertinent compact inverses G and G. Then, it is shown that G, = G* where G™ is the adjoint operator of
G. Next, the expansions for Gu and Pu in series of eigenvectors are derived.

(i) The Conditions (C1,) - (C5,)
We assume the following conditions:

(C1,) {0} # H is a Hilbert space over the field FF = C with scalar product (-, -)
(C24) {0} # Hp and H, are pre-Hilbert spaces with
Hp CHrCH,Hp=Hp=H
and where
L:D(L):=Hpw— Hg

is a linear operator with the countably many simple non-zero eigenvalues
Wi, Mo, U3, --- and the property lim;_,.. i1; = oo as well as pertinent eigenvectors x1, X2, X3, - - € Hp. Further, L possesses
a compact inverse

G:=L"'cB(H)
(C34) {0} # Hp 4 and Hg are pre-Hilbert spaces with
Hpy CHRCH,Hp.=Hr=H
and where
Ly:D(Ly):=Hpy— Hg

is a linear operator with the countably many simple non-zero eigenvalues
Wi+, Mo 4+, 3 +,- - and the property lim;_,., lt; 1 = oo as well as pertinent eigenvectors Y1, Y, y3,--- € Hp . Further,
L, possesses a compact inverse

G :=L;'€B(H)
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(C4;) (Lu,v)= (u,Lyv), u € Hp, vE Hp 1

(C54) Wj# M, j# ks jkeT

We mention that due to the above conditions, 0 ¢ 6(G).
(ii) Series Expansions of Gu and Pu
The first theorem reads as follows.
Theorem 4.1
Let the conditions (Cly) - (C5;) be fulfilled. Then,

Hj+=Hj jed @.1)
and

G, =G 4.2)
where G* € B(H) is the adjoint operator of G defined by

(Gu,v) = (u,G*u), u,v € H. 4.3)

Further, the operator G has the eigenvalues Aj = 1/u; as well as the eigenvectors X, and G = G* has the eigenvalues
Aiv=A;=1/uj4= l/ﬁj as well as the eigenvectors yj for j € J. In addition, limj_,., A; = 0.
Proof: Let ii, ¥ € Hg and

L 'i=Gi

u:
as well as

vi=L' =G,
Then,

uc€Hp,veHp.
Substituting this in (C4,) gives

(i1,G4v) = (Gii,v), i, v € Hg
or, with new denotations,

(u,G4v) = (Gu,v), u, v € Hg,
i.e.,

(Gu,v) = (u,G1v), u, v € Hg,
and thus, because of Hg = H, also

(Gu,v) = (u,G4v), u,v€ H.
On the other hand,

(Gu,v) = (u,G*v), u,ve H
and consequently

G, =G".

The rest of the proof is obtained in a simple way. o
From Theorem 4.1 and the results of Subsection 3.1, we obtain the following corollary.
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Corollary 4.2
Let the conditions (Cly) - (C54) be fulfilled. Then,
Gu= Z 7Lj(u, l[/j)x]', ucH, 4.4
jet
u=Pu=Y (u,y)x, ucH. 4.5)
jeJ

Proof: Because of

Gxj=AiX;
and
Gy =Gy = Ajs ¥ = A,
j € J, from Section 3.1 we obtain the relations (4.4) and (4.5). o

4.2 The Case of General Eigenvalues
In this subsection, we do not assume that the eigenvalues of L be simple. Then, we obtain expansions in a series of principal
vectors.

This subsection is organized in a similar way as the preceding one.

So, first the conditions on the densely defined linear operator L, its formally adjoint operator L. and their compact inverses
G and G are stated. Next, the expansions of Gu and Pu in series of principal vectors are derived.

(i) The Conditions (C1!)) - (C5/))
We assume the following conditions:

(C1),) {0} # H is a Hilbert space over the field F = C with scalar product (-, -)
(C2,) {0} # Hp and Hg are pre-Hilbert spaces with
Hp CHrCH,Hp=Hp=H
and where
L:D(L):=Hpw— Hg

is a linear operator with the countably many general non-zero eigenvalues

Wi, Uo, U3, --- and the property lim;_ .. {1; = oo as well as pertinent principal vectors xl(j)7 Z(j), e ,(,112 € Hp j €J, where

xl.(j ) is of stage i. Further, L possesses a compact inverse

G:=L"'€B(H)

(C3!)) {0} # Hp 4 and Hg are pre-Hilbert spaces with
Hp CHrRCH,Hp . =Hg=H
and where
Ly:D(Ly):=Hpy— Hg

is a linear operator with the countably many general non-zero eigenvalues

Wi+, Mo 4+, U3 4, - and the property lim;_,. 1; + = oo as well as pertinent principal vectors l//l(j), l//z(j), e l//,(njj) €Hpije
J. Further, L, possesses a compact inverse

G :=L;'€B(H)
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(C4))) (Lu,v)= (u,Lyv), u € Hp, ve€ Hp 4

(C5)) Wj# s J# Kk, jked
Again, we mention that due to the above conditions, 0 € o(G).

(ii) Series Expansions of Gu and Pu

The next theorem reads as follows.

Theorem 4.3

Let the conditions (Cld) (CS ) instead of (C1) - (C54) be fulfilled. Then, the relations (4.1) - (4.3) as well as lim . A; =0
of Theorem 4.1 hold.

Proof: The proof of Theorem 4.3 is the same as for Theorem 4.1 since it does not depend on the condition that the
eigenvalues be simple. o

From Theorem 4.3 and the results of Subsection 3.2, we obtain the following corollary.

Corollary 4.4

Let the conditions (Cld) (CS ) be fulfilled. Then,

GM—ZZ u o)At + 20\, ue H, 4.6)
JjeJ k=
u—Pu—ZZuv xk, €H. 4.7)
jeJk=
<&

5. Application to a General Non-Selfadjoint BEVP with Ordinary Differential Operator of
nth Order

In this section, we apply the results of Section 4 to a general non-selfadjoint BEVP for an ordinary differential operator L of nth
order. In doing so, we not only obtain the expansion (1.7) for simple eigenvalues, but also, in addition, those for Pu and Gu in
series of eigenfunctions, and further those for general eigenvalues in series of principal functions, which is much more than
what is obtained in [2] before.

We mention that this section contains a series of verbatim and almost verbatim passages from [2, Chapter 11].

Now, the details follow.

Let a < x < b be a closed bounded interval, and let L be the linear differential operator of nth order with n > 1 defined by

(Lut) (x) == an (x)u™ (x) + ap_ 1 ()" (x) + - -+ @y (x)ud (x) + a0 (x)u(x) (5.1)

where a; are complex-valued functions of class C¥[a,b] and a,(x) # 0 on [a,b]. Given any set of 2mn complex constants
o;j, Bij, i=1,2,---,m, j=0,1,--- ,n—1, define the m boundary operators or boundary forms Ry,--- ,R,, for the functions u
on [a, b, for which ul/), j=1,2,--- nexist at a and b by

Riu = Z{a,, a)+Biju (b))} =0,i=1,2,---,m (5.2)

Ru=0. (5.3)

We suppose that R has rank m. Corresponding to any homogeneous boundary value problem (for short: BVP) is a well-defined
“adjoint” problem (which should better be called formally adjoint problem) with the Lagrange ”adjoint operator” given by

(L) () = (=1 (@)™ () + (= 1) @1 (x)9) D () + -+ 5
D)@ ) (x) + a0 (x)v() |

and a set of adjoint boundary conditions

Riv=0 (5.5)
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complementary in a sense to those for the problem pertinent L.

We mention that some authors denote the formally adjoint operator by L*, see for instance [10]. But, we do not follow
this usage since this paper is functional-analysis-oriented and since L* could be misinterpreted as the adjoint of a densely
defined linear operator L, see [1, No.44]. Instead, as in [2], we use a plus sign to denote the formally adjoint operator, here as a
subscript instead of a superscript there.

We note that an adjoint boundary condition is not unique, see [2, Theorem 2.1].

Now, we define the pre-Hilbert spaces

Hp:=D(L) :={uecC"[a,b]|Ru=0} (5.6)
and

Hp 4 :=D(L;):={veC"[a,b]|Riv=0}. 3.7
Then,

(Lu,v) = (u,Lyv), u€ Hp, vE Hp 4. (5.8)

We mention that
Cg’[a,b} C Hp C Hg := Cz[a,b] C Lz(a,b) = H 5.9)

where C»[a, b] is the function space C|a, b] endowed with the norm

1
b 2
|””2:</a Iu(x)lzdx) : (5.10)

and where the integral is taken in the sense of Riemann which is equal to the Lebesgue integral for u € C;[a,b]. The space
Ly(a,b) is the space of measurable functions such that the above integral (taken in the sense of Lebesgue) is finite.
Corresponding to (5.9), one has

C(o)o[a,b} CHp CHR:CQ[a,b} CLg(a,b):H. (5.11)
It is known that

Cyla,bl = Ly(a,b).

If R is a boundary form of rank m, the problem

Tw: Lu=0, u € Hp =D(L) (5.12)
is called a homogeneous BVP of rank m.
The problem
On—m,+ : L+V = O, S HD,+ = D(L+> (513)

is called the adjoint BVP.
One has the following:
7, and 7,  have the same number of independent solutions. see [2, p.293, last line].
The BEVP pertinent to 7, is given by

Tyt Lu=pu, uc Hp=D(L) (5.14)
and that associated with 7, | by
Tog+: Lyv=Hv,vEHp  =D(Ly). (5.15)

Now, let G(x,s) be the Green’s function pertinent to the BVP 7, and G (x,s) the Green’s function associated with 7, .
Then, the pertinent compact operators G = L~! and G = L;l are given by

b
(Gu)(x) :/a G(x,s)u(s)ds, u € Ly(a,b) (5.16)
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and
b
(Giv)(x) = / G (x,s)v(s)ds, v € Ly(a,b) (5.17)

Ja

where

G (x,5) = G(s,x), x,5 € [a,b], (5.18)
see [2, (4.15)] implying for the pertinent operators G in (5.15) and G in (5.17) the relations

G, =G". (5.19)

If the conditions (C1y) - (C54) for Lin (5.1) and for L. in (5.4) are fulfilled, then (5.19) follows also from the abstract results
of Section 4, and beyond this, one obtains also the expansions in series of eigenvectors (4.4) and (4.5) in Corollary 4.2 with
convergence in the norm || - ||2, whereas in [2, Chapter 12,(5.6)] only the relation (4.5), i.e.,

8

u= ) (u,y;)xj, ucH=1Ly(a,b)
=1

is given.

Beyond this, if the conditions (C 1&) - (C5'd) are fulfilled, then the expansions in series of principal vectors (4.6) and (4.7)
are valid in the norm || - ||,. This case when the eigenvalues are general is not treated in [2] and means a considerable progress
in the theory of non-selfadjoint BEVPs.

6. The Case of a Non-Selfadjoint BEVP of 2nd Order

In this section, we further specialize the BEVP discussed in Section 5 by restricting the order of L to n = 2 and by employing
very simple boundary values. The considered problem is often used as an example in books on Mathematical Physics and is
treated there in a special weighted norm. But when it comes to specific examples, the term with the first derivative usually is
omitted so that one obtains a selfadjoint problem. Here, we keep this term, and so we get a non-selfadjoint problem of 2nd
order.

This section is split up in two subsections.

In Subsection 6.1, the BEVP of 2nd order with real continuous coefficients is established. It goes without saying that the
series expansions obtained in Section 5 are valid if the corresponding conditions are fulfilled.

In Subsection 6.2, we further specialize the BEVP of 2nd order to the case when the coefficients are constant. Then, it is
possible to explicitly determine the eigenvalues, biorthonormal eigenfunctions, and the Green’s functions defining the inverse
operators G of Land G of L.

6.1 The BEVP of 2nd Order with Real Continuous Coefficients
As a special case of the general differential operator of nth order in Section 5, in this subsection we consider the differential
operator of 2nd order

Lu(x) == ax (x)u” (x) + a1 (x)u (x) +ap(x)u(x), 0 <x <1 (6.1)
with real functions a; € C'[0,1], i = 0,1,2 and the boundary conditions
Ru=0 < u(0)=u(l) =0, (6.2)
cf. e.g., [11, §75, p.362] where ay(x) = —1, a;(x) = p(x), ao(x) = q(x), [ = 1.
We mention that we have chosen here the interval [0, ] since, in applications to mechanical problems,  means a length.
The formally adjoint operator L reads
Liv(x) := (aa(x)v)" (x) — (a1 (x)v)(x) +ap(x)v(x), 0 < x < L. (6.3)
As adjoint boundary condition, we choose

Riv=0 < v(0)=v(l)=0 (6.4)
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so that R;v = Ru = 0 holds. Here, we have

Hp = {u € C*0,1]|u(0) = u(l) =0} = Hp (6.5)
and

Hg = G2[0,1] (6.6)
as well as

H =L,(0,1). (6.7)
Herewith,

(Lu,v) = (u,Lyv), u € Hp, vE€ Hp + (6.8)

so that condition (C4,) is fulfilled.

We further suppose that the differential operator L in (6.1) has a countable set of simple non-zero eigenvalues g, ty, U3, - -
with lim_,e, f1; = co. Then, the conditions (C1,) - (C5,) are fulfilled, and one has the expansions in series of eigenfunctions
(4.4) and (4.5).

6.2 The Special Case of Constant Coefficients
In this subsection, we treat the BEVP of Subsection 6.1 when ay(x) = —1, a;(x) = p(x) = po, ao(x) = g(x) = go are constant
in the interval [0, /], that is, when Lu = —u” + pou’ +gou and thus Ly v = —v" — pgv' +qov .

In this special case, it is possible to explicitly determine the eigenvalues p; of L resp. ; of L, and the pertinent
eigenfunctions x; resp. y;, as the case may be. Further, the Green’s functions G(x,s; po,qo) and G4 (x,s; po,qo) defining the
inverse compact operators G and G = G are explicitly determined. As far as the author is aware, these results have not been
obtained, before.

For the sake of brevity, the details of the derivation of these quantities are left to the reader. However, we give some hints
for obtaining these results.

(i) The Differential Operators L and L, and Pertinent BEVPs

As already announced, in this subsection, we choose constant coefficients in the differential operator L. More precisely, we
set

ax(x) = ~1, a1(x) = p(x) = po, ao(x) = 4(x) = o 69)
with real constants pg and gq so that

(Lu)(x) = —u" (x) + potd (x) + qou(x), 0 <x <1 (6.10)
and

(Lyv)(x) = =" (x) = pov/ (x) + gov(x), 0 < x <1 (6.11)

with the same boundary conditions (6.2) and (6.4) as in Subsection 6.1.
We restrict the constant gg to gg > 0.
The pertinent BEVPs read

Moy Lu=pu, uc Hp=D(L) (6.12)
and that associated with 7, 4 by
Do+ Liv=uv,veHp = D(L+). (6.13)

(ii) The Eigenvalues and Eigenfunctions
The eigenvalues of L and L are given by

j27r2
u:ﬁ:ujzﬁj:l—z+D,jeJ (6.14)
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with the quantity

D=D(po,qo)=(%)2+qo>0 (6.15)
so that
1
limA; =lim — =0 (6.16)
J—roo J—roo ‘u]-
is fulfilled.
The biorthonormal eigenfunctions are found to be
2 po .. . X .
xi(x) = Yexp(7x)sm]7tj,0§x§l,]€] 6.17)
and
2 po .\ ., X
Yi(x) = jexp(—Tx)smkﬂ:T0§x§l,k€] (6.18)

so that we have

! 2 /b X X .
(s vi) = /0 2 W) dx = 7 /0 sin(j 3 )sin (k2 7) dx = 8, jk €. (6.19)
Hint: To derive these results, use the ansatz u(x) = ce® in order to solve the BEVP
Ly gout = Hat, u(0) = u(l) = 0. (6.20)

The eigenfunctions y;(x) are obtained from x;(x) by just replacing pg by —po. o
(iii) The Green’s Function of Lp, gou =0, u(0) = u(l) =0
A set of fundamental solutions of the BVP L, , u =0, u(0) = u(l) =0, i.e., when u = 0, is given by

up(x) = exp (%x) sinhv/Dx, 0 < x <1, (6.21)

1 (x) = exp (%x) coshv/Dx, 0 < x <1, (6.22)
with

D = D(po,qo0) = (%)2 +4q0 (6.23)

which is also obtained with the ansatz u(x) = ce* by setting ¢ = 1 and taking into account it = 0 where here D is a discriminant.
Based on these fundamental solutions, we have calculated the Green’s functions by the method described in [10, pp.311].
Thus, one gets

sinhv/Dx sinhv/D (I —s)

Po
Gi(x,s) = exp| —(x—s)),0<x<s<]|,
. 1(5:9) VDsinhv/Dl p( 2 ! >)
G(x,s) = (6.24)
Ga(x,5) = smh\/l»)(l.—x) sinhv/Ds exp (Q(x—s)) 0<s<x<]
v Dsinhv/Dl 2

For G (x,s), we obtain

sinhv/D (I —x) sinh/Ds Po
exp (

G+,1(xas) = \/ESIHh\/El
Gi(x,s) = (6.25)

inhv/Dx sinhv/D (] —
Gyt = VB D=0 i
/Dsinhv/Dl
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so that, because of D = D(po,qo),

G(x,s) = G(x,53po,40) (6.26)
and

G (x,5) = G" (x,5) = G(5,x) = G(5,%—po, ) (6.27)

in accordance with the fact that, for the pertinent operators, one has G, = G'.

7. Comparison of Present Expansion Results
with Known Ones in an Abstract Hilbert Space

The oldest expansion result for compact operators in an abstract Hilbert space being of formal similarity to our results the
author found is that in [1, Section 64, pp.172-174]. There, under certain conditions, the expansions of the form

h=ho+Y (hej)ej, heH (7.1)
jeJ

with an element hg € Hy := N(T) as well as

Th=Y uj(he;)g;, heH (7.2)
JjeJ

can be found. Here, the vectors e; are the pairwise orthonormal eigenvectors of A := T*T. The associated eigenvalues A; can
be written in the form

/lj = (Aej,ej) = (T*Tej,ej) = (TEJ', T@j) > 0. (7.3)

Therefore, one has ?Lj = ,ujz-, where (i > tp > --- > 0.
The vectors g; are defined by

Tej = ‘Lngj (74)
leading to
(8),8k) = Sjk- (7.5)

Applying T to (7.1) and using (7.4), we obtain (7.2).

As opposed to this, our result is an expansion in series of eigenvalues and eigenvectors/principal vectors of the compact
operator T itself whereas in [1] one has an expansion in series of eigenvalues u; = p;(T*T) and eigenvectors e; = ¢;(T*T') of
T*T and the vectors g; defined in (7.4) that are left singular vectors in the denotation of [3, p.2].

The most recent publication on expansions of a compact operator in an abstract Hilbert space the author has found is [3].
There, it is used that the singular values and singular vectors of T are related to the nonzero eigenvalues and corresponding
eigenvectors of T*T and TT*. More precisely, one has

T ¢ = Ox Wk, (7.6)
T*T ¢ = o ¢, (1.7)
TT* y = 62 . (7.8)

The quantities oy are called singular values, the vectors ¢ are called right singular vectors and ; left singular vectors in [3,
p.2]. Herewith, it is proven that the expansion

T=) oty @ (7.9)

k=1

is valid in B(H). The difference to the present paper is that, in [3], the expansion is not in eigenvalues and eigenvectors/principal
vectors of the compact operator 7 itself.
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8. Conclusions

In this paper it is shown that expansions in series of eigenvectors valid for symmetric linear compact operators and symmetric
densely defined linear operators with compact inverse can be carried over to corresponding nonsymmetric operators where,
in the case of general eigenvalues, the expansions are in series of principal vectors. These results are all new and mean a
considerable progress in the Spectral Analysis of Nonsymmetric Linear Compact Operators in a Hilbert Space. The expansions
discussed in Section 7 are not in series of eigenvectors resp. principal vectors and thus are different from ours. Further, in
Natural Sciences and Engineering, expansions in series of eigenvectors and principal vectors are of particular importance.
Our results are applicable to general non-selfadjoint BEVPs pertinent to an ordinary differential operator of nth order and
deliver even there new results when the eigenvalues are general, that is, not necessarily simple. In a special example of a
differential operator of 2nd order with constant coefficients, the eigenvalues, eigenfunctions and the Green’s functions are
explicitly determined which also seems to be new, as far as the author is aware.
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