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ABSTRACT

We define generalized semi-invariant submanifolds in locally product Riemannian manifolds.
Then we study multiply warped product generalized semi-invariant submanifolds in the same
structure. We give an existence theorem for such submanifolds. We also give necessary and
sufficient conditions for such a submanifold to be a multiply direct product submanifold.
Moreover, we establish a general inequality for such submanifolds.
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1. Introduction

Multiply warped product manifolds [12] are natural generalization of the warped product manifolds [8].
These notions play very important roles in physics as well as in differential geometry, especially in the theory
of relativity. Indeed, the standard spacetimes models such as Roberston-Walker, Schwarschild, static and
Kruskal are warped products. Also, the simplest models of neighborhoods of stars and black holes are warped

product [16].

On the other hand, warped or multiply warped product submanifolds have been studying very actively
since Chen [9] studied the warped product CR-submanifolds in Kaehler structures. The most of the studies
related to the warped or multiply warped product submanifolds can be found in the book [11] and its list of
references.

In this paper, motivated by the papers placed in [11], especially Chen and Dillen’s paper [10], we study a
certain type of multiply warped product submanifolds in locally product Riemannian manifolds. In particular,
we consider the multiply warped product submanifolds in the form MY xp M{ x ... x5 MI x,, M x
... Xg, M-, where M’ is a proper slant, M is an invariant submanifold and M;" is an anti-invariant
submanifold of the locally product Riemannian manifold for 1 <i <k and 1 < j < [. We give necessary and
sufficient conditions for a generalized semi-invariant submanifold to be a locally multiply warped product in
the main theorem. Also, we investigate the behavior of the second fundamental form of such submanifolds
and as results, we give necessary and sufficient conditions for such submanifolds to be locally multiply direct
or usual product and get an inequality for the squared norm of the second fundamental form in terms of the
warping functions for such submanifolds.
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2. Preliminaries

In this section, we give the fundamental definitions and notions needed for further study. In subsection
2.1, we will recall the definition of the multiply warped product manifolds. In subsection 2.2, we give the
basic background for submanifolds of Riemannian manifolds. The definition of a locally product Riemannian
manifold is placed in the last subsection.

2.1. Multiply warped product manifolds

Let (Mo, g0), (M1,91),..., (Mg, gx) be Riemannian manifolds and let fi, f2,..., frx be positive smooth
functions on M. Then the multiply warped product manifold [12] Mo x s, My x ... Xy, M, is the multiply product
manifold My x My x ... x M, furnished with the metric

9=75(g0) ® (f1 0m0)*m} (91) ® ... ® (fix © m0)* Tk (g)-
More precisely, for any vector fields X and Y on M, we have

k
9(X,Y) = go(mo. X, 70, Y) + > _(fi 0 70) i (s, X, mi, V), (2.1)
i=1

where 7; : M = My x My x ...x My — M;,i=0,1,...,k is the canonical projection, 7} (g;) is the pullback of
g; via m; and the subscript * denotes the derivative map of x;. The functions fi,..., fx are called the warping
functions of My x ¢, My x ... Xy, M. The manifolds (M1, g1),. .., (M, gi) are called the fibers and the manifold
(Mo, go) is called the base manifold of the multiply warped product manifold My xf, My x ... x5, M. Itis well
known that the base manifold is totally geodesic and the fibers are totally umbilic in Mo x s, M7 x ... X s M.

As mentioned in the previous section, the notion of the multiply warped product is a generalization of
direct product as well as warped product manifolds. Indeed, if we choose k = 1 in the definition above, then
we get a warped product [8] and if each warping function f; is constant in the definition above, then we get a
multiply direct product [11].

Let My xy, My X ... X, My, be amultiply warped product manifold with the Levi-Civita connection V with
respect to the metric g given in (2.1) and V* denote the Levi-Civita connection of (M;, g;) for i € {0,1,...,k}.
By usual convenience, we denote the set of lifts of vector fields on M; by £(M;) and use the same notation for
a vector field (resp. warping function) and its lift (resp. its pulback). On the other hand, since the map g is
an isometry and 1, ..., m, are positive homotheties, they preserve the Levi-Civita connections. Thus there is
no confusion using the same symbol for a connection on M; and for its pullback via 7;. Then, the covariant
derivative formulas [23] of the multiply warped product manifold My x s, My X ... X, My, are given by

VW = VLW (2.2)
VzX = VxZ=ZInf)X (2.3)
VA= { VLY —g(X.Y)VOnf)  if  i=) (2.4)

where Z, W € L(My), X € L(M;)and Y € L(M;) fori,j € {1,2,...,k}.

2.2. Submanifolds of Riemannian manifolds

Let M be a Riemannian manifold isometrically immersed in a Riemannian manifold (M, g) and V be the
Levi-Civita connection of M with respect to the metric g. Also, let V and V* be the induced and induced
normal connection on M, respectively. Then the Gauss and Weingarten formulas [25] are given respectively by

VyW =VyW +h(V,W)  and VyZ=—-AzV +ViZ, (2.5)
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where the vector fields V, W are tangent to M and Z is normal to M. In addition, h is the second fundamental
form of M and Az is the Weingarten endomorphism associated with Z. The second fundamental form » and
the shape operator A are related by

g(M(V. W), Z) = g(AzV, W). (2.6)
The mean curvature vector H for an orthonormal frame {e;,...,e,} of tangent space T,M, p € M on M is
defined by
1 1«
H= "t h) = — h(e;, e 2.7
mrace() m;(e €;) (2.7)
where m = dim(M). Also, we set
hy; = g(hleiej),er) and | h|P= " g(h(ei,e;), hleie;) (2.8)
ij=1

r =n — m, where n = dim(M) and m = dim(M).

2.3. Locally product Riemannian manifolds

Let M be any manifold equipped with a tensor field of type (1, 1) such that
F*=1 (F#%I) (2.9)

where I is the identity endomorphism on the tangent bundle TM of M. Then we say that (M, F) is an almost
product manifold with almost product structure F. If the almost product manifold (M, F') admits a metric tensor
g such that

g(FX,FY)=g(X,Y) (2.10)

for all X,Y € I'(T'M), then (M, F, g) is called an almost product Riemannian manifold. Let V be the Levi-Civita
connection of (M, F, g), then we say that (M, F, g) is a locally product Riemannian manifold (briefly, .p.R. manifold)
or locally decomposable Riemannian manifold if F is parallel with respect to V, i.e.

VeF =0 2.11)
for all X € T'(T M) [25].

3. Generalized semi-invariant submanifolds in locally product Riemannian manifolds

In this section, we define the definition of the generalized semi-invariant submanifolds of a 1.p.R. manifold and
get some useful results for further study.

Let (M, F, g) be a locally product Riemannian manifold and let M be a submanifold of M. A distribution
D on M is said to be a slant distribution if the angle 6 between FV and D, is constant for V € D,, i.e., it is
independent of p € M and V € D,,. The constant angle 0 is called the slant angle of the slant distribution D.
Thus, the invariant and anti-invariant distributions with respect to F are slant distributions with slant angle
6 = 0 and 0 = /2, respectively. A submanifold M of M is said to be a slant submanifold if the tangent bundle
TM of M is slant [14, 17]. A slant submanifold that is neither invariant nor anti-invariant is called a proper
slant submanifold.

Let M be a slant submanifold with slant angle ¢ of a Lp.R. manifold (M, g, F), for any V € T(TM) and
¢ e T(T+ M), we write
FV=TV+NV  and FE&=1&+ we. (3.1)
Here T'V is the tangential part of F'V and NV is the normal part of F'V also t£ is the tangential part of F¢ and
w¢ is the normal part of F¢. Then, using (2.10) and (3.1) we find

T? +tN =1, NT +wN =0, w?+ Nt =1, Tt + tw = 0. (3.2)

Then, for any U,V € I'(T'M) we have [17]
T?V = cos®6V, (3.3)
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g(TU,TV) = cos?0g(U,V) and g(NU,NV) = sin®0g(U,V). (3.4)

A submanifold M of a Lp.R. manifold (M, F, g) is called a generalized semi-invariant submanifold if its tangent
bundle 7'M of M has the form

T™M=D¢0Dle..0oDf oD{ ©-- & D}, (3.5)
where the distribution DI is an invariant for 1 < a < k, i.e., FDL C DI, the distribution D;- is an anti-invariant
for1 <a <l i.e. FD} C T*M and the distribution DY is slant with slant angle . In that case, the normal bundle
T+ M of M decomposed as

T*M=ND")o F(D{)®...0 F(Dj") @ DT, (3.6)
where DT is the orthogonal complementary distribution of N(DY) @ F(Di) @ ---® F(Dj") in T+ M and it is

invariant subbundle of T+ M with respect to F.. We say that a generalized semi-invariant submanifold is proper,
neither § = 0O nor § = 4.

Remark 3.1. The notion of generalized semi-invariant submanifold of a 1.p.R. manifolds is a natural generalization
of invariant, anti-invariant [1] semi-invariant [7], slant [17], semi-slant [15], hemi-slant [21] and skew semi-
invariant submanifold of order 1 [20] of a Lp.R. manifold. Also, this notion is slightly different from the
definition of the skew semi-invariant submanifold [14]. For more details, we refer to [2, 4, 6, 24].

We need the following lemma.

Lemma 3.1. [20] Let M be a generalized semi-invariant submanifold of a Lp.R. manifold (M, F, g). Then we have

g(VzW,Uy) = _CSCQH{Q(ANTWZ7 Ua) +9(ANw Z, FUa)}a (3.7)
g(VZI/V, Xa) = SeCQQ{g(AFXGZ, TW) + g(ANTWZ, Xa)}, (38)
g(VUanZ) :CSC29{g(ANTzUa,Va)+g(ANzUa,FVa)}, (39)
g(anVa,Xa) :g(AFX,anaFVa)a (310)
9(Vx, Yo, Us) =—g(Ary, X4, FU,), (3.11)

Q(VXQZ Uoc) - _CSCQG{g(ANTZXaan)+g(ANZXaaFUa)}a (312)
9(VzX.,Uy) =—-g(Arx, Z,FU,), (3.13)

9Vu,Xa, Z) =-— secQH{g(AanUa,TZ) + g(ANTZUa,Xa)}, (3.14)

for Uy, Vo e T(DL) with1 < a <k, X,,Y, e (DY) with1 < a <land Z,W € T (D).

Lemma 3.2. Let M be a generalized semi-invariant submanifold of a L.p.R. manifold (M, F, g). Then we have

9(Vx,Ye, Z) =— sec29{g(AFana,TZ) + g(ANTZXmYa)}, (3.15)
9(Vu,Va,Us) =g(Vu,FVa, FUg), (3.16)
9(Vx,Ye, Xp) = g(Vx FYo, FXp), (3.17)

for Ua, Vo € T(DY), Ug € T(DY) with 1 <a# 5 <k, Xo,Ya €T(Dy), Xp € T(Dy) with 1 <a#b<1and Z €
(D).
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Proof. Let X,,Y, € I'(D}) and Z € I'(DY). By using (2.5), (2.10) and (3.1), we have
9(Vx, Y0, 2)=g(Vx,FY,, FZ) = g(Vx,FY,,TZ) +g(Vx,FY, NZ).
Hence using (2.10) and (3.1) we have
9(Vx,Ye,Z) = —g(Ary, Xa,TZ) + g(Vx,Ya, tNZ) + g(Vx, Yo, wN Z).
Again using (2.5), (3.3) and (3.2), we obtain
9(Vx,Ya: Z) = —g(Ary, Xo, TZ) + sin®09(Vx, Yo, Z) — g(AnT2 X0, Ya)-

According to direct calculating we find (3.15). Let U,, V,, € I'(DL), Us, V3 € F(Dg). Then using (2.5), we have
9(Vu,Va, Ug) = g(Vu, Va, Ug). By using (2.10), we obtain g(Vy, Va, Us) = g(FVu, Va, FUg). Hence using (2.11),
we get ¢(Vy, Va,Up) = 9g(Vu, FV,, FUg), since FUgz € I'(T'M ). With the help of (2.5) we obtain (3.16)

Q(VUQVOH UB) = g(anFVa7FU3).

Let X,,Y, € ['(D;), X,Y, € ['(Dy). Then using (2.5) we have g(Vx,Ya, X;) = g(Vx,Ya, X3). By using (2.10),
we obtain g(Vx,Ya, X3) = g(FVy,Va, FX3). Hence by using (2.11), we get g(Vx,Ya, X3) = g(Vx, FYa, FX3),
since F' X, € T(TM*). With the help of (2.5) we obtain (3.16) g(Vx, Ya, X3) = 9(Vx, FYy, FXy). O

Theorem 3.1. Let M be a generalized proper semi-invariant submanifold of a I.p.R manifold (M, F, g). Then the slant
distribution D? is totally geodesic if and only if the following equations hold

9(AnTw Z,Uy) = —g(ANw Z, FU,,), (3.18)

g(flpxaz7 TW) = _g(ANTWZ7 Xa) (319)
for Z,W € T(D?), U, € I'(DL) and X, € T'(D}).
Proof. Let M be a generalized semi-invariant submanifold of a l.p.R manifold (M, F,g). Then the slant

distribution D? is totally geodesic if and only if ¢(VzW, X,) =0 and g(VzW,U,) =0 for all Z,W € I'(D?),
X, € T(D}) and U, € T(DL). Thus, the assertions (3.18) and (3.19) follow from (3.7) and (3.8), respectively. [

Theorem 3.2. Let M be a generalized proper semi-invariant submanifold of a Lp.R manifold (M, F,g). Then the
invariant distribution DX, 1 < « < k is integrable if and only if the following equations hold

9(Arx,Ua, FVy) = g(Arx,Va, FU,), (3.20)
9(ANTZUG, Vo) + 9(ANnzUo, FVy) = 9(ANT2Ve, Ua) + 9(Anz Ve, FUL), (3.21)
g(VUQFVa,FU/g) = g(VVaFUa,FUg), (3.22)

for Z € (D), Ua, Vo € D(DL), Us € T(D]), 1 < a # B < kand X, € T(DY).

Proof. Let M be a generalized semi-invariant submanifold of a 1.p.R manifold (M, F, g). Then the invariant
distribution DT is integrable if and only if g([Ua, Va], Xa) = 0, 9([Ua, Va], Z) = 0 and g([Ua, Val, Ug) = 0 for all
Z €T (DY), X, € T(Dy) and Uy, Vo € I(DY), Ug € T(DF) with 1 < « # 8 < k. Thus, the assertions (3.20), (3.21)
and (3.22) follow from (3.9), (3.10) and (3.16), respectively. O

Theorem 3.3. Let M be a generalized proper semi-invariant submanifold of a L.p.R manifold (M, F, g). Then the anti-
invariant distribution DX, 1 < a < L is integrable if and only if the following equations hold

g(AFXaYa7FUOé) :g(AFYaXaaFUOZ)a (3-23)
9(Apy,Xa, TZ) = g(Arx,Ya, TZ), (3.24)
9(Vx, FYa, X3) = g(Vy, F X4, X3), (3.25)

for Z e (D), U, € T(DY) and X,,Y, e T(DL), X, eT(D), 1 <a#b<

Proof. Let M be a generalized semi-invariant submanifold of a L.p.R manifold (M, F, g). Then the anti-invariant
distribution D is integrable if and only if g([X,, Y.], Z) =0, 9([Xa, Ya], Us) = 0 and g([X,, Ya], X;) = 0 for all
Z eI(D%), U, € (DY) and X,,Y, € I'(D3}), X, € T(Df) with 1 < a # b <. Thus, the assertions (3.23) and
(3.25) follow from (3.11), (3.15) and (3.17), respectively. O
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4. Certain Types of Multiply Warped Product Submanifolds in Locally Product
Riemannian Manifolds

In this section, we check that the existence of certain types of multiply warped product generalized semi-invariant
submanifolds in the form,

L M7 x, M x ... xg Mi- xx, M x ... xy, MO,
I M*xy MT x..oxp ME <y, MO x ..o xy, MPm,
ML M% x; ME x ..o xp M o, M- X% ... X, M-,

where M1, 1 < a < kis an invariant, M-, 1 < a < [ is an anti-invariant and Mg‘* is a proper slant submanifold
with slant angle 63, 1 < 3 < m of a Lp.R manifold (M, F, g).

M. Atceken and B. Sahin independently proved that there do not exist (non-trivial) warped product semi-
invariant submanifolds in the form M7 x; M+ in a Lp.R. manifold (M, F, g), such that M7 is an invariant
submanifold and M is an anti-invariant submanifold of (M, F, g) in Theorem 3.1([5]) and Theorem 3.1([19]),
respectively. Again, M. Atceken and B. Sahin independently proved that there do not exist (non-trivial)
warped product semi-slant submanifolds in the form M7 x; M? in a L.p.R. manifold M, such that M7 is an
invariant submanifold and M? is a proper slant submanifold of M in Theorem 3.3([3]) and Theorem 3.1([18]),
respectively. Thus, we obtain the following result.

Corollary 4.1. There do not exist (non-trivial) multiply warped product generalized semi-invariant submanifold in the
form I of a Lp.R. manifold (M, F, g).

On the other hand, it was proved that there do not exist (non-trivial) warped product semi-invariant
submanifold in the form M= x; M? in a Lp.R. manifold M such that M~ is an anti-invariant submanifold
and M? is a proper slant submanifold of M in Theorem 3.4 of [3]. Thus, we deduce the following result.

Corollary 4.2. There do not exist (non-trivial) multiply warped product generalized semi-invariant submanifold in the
form II of a Lp.R. manifold (M, F, g).

Now, we consider (non-trivial) multiply warped product generalized semi-invariant submanifolds in the
form MY xp MT x ... x5 MT x5 Mi- x ... X, Mj* in a Lp.R. manifold (M, F, g) such that MT, 1 <a < kis
an invariant, M, 1 < a < is an anti-invariant and M? is a proper slant submanifold of M. We first present an
example of such a submanifold.

Example 4.1. Consider the 4k + 4/-dimensional Euclidean space R***4 with usual metric g and almost product
structure F' defined by

Fo;, = 0;, 1 <i <2k, Fo, = -0, 2k +1 < < 4k,

Faj:8j+1, F8j+1:8j 4k +1<j <4k +4l,

where 9, = a.% and {zs}1<s<4k+4 are natural coordinates of R**4. Upon straightforward calculation, we see

that (R*+4 F g) is a Lp.R. manifold. Let M be a submanifold of (R**4 F, g) given by

T, = tsinuq, To =tcosuq,
T3 = 2t sin ug, x4 = 2t cos ug,
.
Top_1 = ktsinug, Top = kt cos ug,
t .
Tok+1 = 7 COS V1, Tok+2 — —=SINVq,
p) V2
2t t .
COS Vg, Togtq = —= Sin Vg,

x = —
2k+3 NG 7

ey

www.iejgeo.com 318


http://www.iej.geo.com

M. Traore, H. M. Tastan & S. Gerdan Aydin

Typ—1 = il COS Vi, Tk = Kt sin vy,
#-1= 5 ) Tak = ;
Tap+1 = 2tsin zq, Tagt2 = 0,
Tak+3 = 2t cos 21, Tok+4 = 0,
Tag4s = 2tsin z, ZTagte = 0,
Tagq7 = 2t cos za, Zaprs = 0,

.
Tapyal—3 = 20t sin 2, Tagyar—2 = 0,
Tapqa1—1 = 2ltcos zy, Tagtar = 0.

where u;,v;, 25 € (0, %) and ¢ > 0. Then, the local frame of TM given by

T = sinu;d; + cosui0s + 2sinugd3 + 208 ug0y + - -+ + k sin ugOop_1
+ k cos upOop,
+ %{cos v102k+1 + Sinv1 0z 42 + 2 cOS V202543 + 28in V202444
+ -+ kcosvgOar—1 + ksinvgpOax }
+ 2{sin 21045 +1 + €08 2104k 13 + 280 29045 +5 + 2 €OS 2904k17
+ -+ 4 Isin 2;04p 1413 + 1 08 2;04p 1411},

Ui = tcosui0q — tsinuy 0o,
Us = 2tcosugds — 2tsinugdy,
e
Uk = kt cos Uk-agk-_l — ktsin ukagk,
Vi= —% sinvdopy1 + % cos v10 12,
— 2t g 2t
Vo = 75 800202113 + 5 COS U202k 44,
ce
okt kt
Vi, = 3 Sin Ve Oap—1 + /5 CO8 Vg O4k,
Zl = 2t cos 2184k+1 — 2tsin 2164k+3,
Zy = 2tcos 290415 — 2tSin 200417,
Zy = 2ltcos 2104 141—3 — 20t sin 2;04p+41-1-

By direct calculation, we see that DY = span{T'} is a proper slant distribution with slant angle 6 = cos™! (:1)) +

% and DI = span{U;,V;}, 1 <i < k is an invariant distribution and Dj- =span{Z;}, 1 <j<lis

an anti-invariant distribution. So far, M is a proper generalized semi-invariant submanifold. Moreover, DY is
totally geodesic and both DI and Dj are integrables distributions. If we denote the integral manifolds of D?,
D] and D; by M?, M and Mj-, respectively, then the induced metric tensor of M is

ds* = g(T,T)dt> + Y1, g(Us, Updu? + Y25, g(Vi, Vi)du? + 3, g(Z;, Z;)dz2.
Upon straightforward calculation, we have

ds? = 5[8k(k+1)(2k+ 1)+ 8L(L+ 1)(2L + 1)]dt* + t*(du? + Ldvi)+
(2)2(dud + $dv3) + ... + (kt)*(dui + Fdv?) + (2t)%dz3+
(4t)%dz3 + ... + (21t)%dz} _
= gue +Pg9ur + (22907 + .+ (K gar + (26)%gp + (40)2gags +
oot (21t)2gM’L
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Thus, M = M? x;, MT x ... x5 MT x,, Mi- x ... x,, Mj* is a (non-trivial) multiply warped product
generalized semi-invariant submanifold of (R¥*+4 F g) with warping functions f1 =t, fo =2t, ..., fr =kt
and o1 = 2t, 00 = 4t, ..., 0, = 2lt.

5. Multiply warped product generalized semi-invariant submanifolds

In this section, we give a characterization for a multiply warped product proper generalized semi-
invariant submanifold in the form MY x; MT x ... x5 MI x, M- x ... x, M-, where M? is a proper
slant submanifold, M, 1 < a <k is an invariant and M;-, 1 < a <[ is an anti invariant submanifold of a
Lp.R. manifold (M, F,g). After that we investigate the behavior of the second fundemental form of such
submanifolds and as a result, we give a necessary and sufficient condition for such submanifolds to be locally
multiply warped product generalized. We first recall the following fact given in [12] to prove our theorem.

Remark 5.1. (Remark 2.1 [12]) Suppose that the tangent bundle of a Riemannian manifold M splints into an
orthogonal sum TM =Dy ® D1 @ ... ® D;, of non-trivial distributions such that each D; is spherical and its
complement in TM is autoparallel for j € {1,2,..., k}. Then the manifold M is locally isometric to a multiply
warped product My x ¢, My x ... Xy, M.

Now, we give one of the main theorems of this paper.

Theorem 5.1. Let M be a (DY, D,-)-mixed geodesic multiply warped product generalized semi-invariant submanifold of
al.p.R. manifold (M, F, g). Then M is a locally multiply warped product generalized submanifold of type M? x ;, M x
co X ME X0 M X .. X, M- if and only if we have

AnrzXo = cos?0Z(N) X, (5.1)

AnzUy + An7zFU, = —sin?0Z(p) FU,, (5.2)
for some functions A and p satisfying X,(\) = Uy(N) = 0and X, () = Uqs(p) =0

9(Arx, 2, TW) = —g(Antw Z, Xa), (5.3)
9(Arx,Ua, FVa) =0 (5.4)
9(Ary, Xa, FVa) =0, (5.5)
9(Arx,Z, FU,) =0 (5.6)

9(Arx,Ua,TZ) = —g(ANT2Ua Xa), (5.7)

9(Vu,Uy,Ua) =0, (5.8)
9(Vx,Xe, Xq) =0 (5.9)

and (3.22) and (3.25) hold, where Z,W € T(D?), U,, V,, € T(DY), Ug € T(D}) and U, e T(DT) for 1 < o, 8,7 < k
with o # Band o # 7y, Xa,Y, € T(Dy), Xy € T(DiF) and X. € T(DY) for 1 < a,b,c <l witha # band a # c.

Proof. Let M be a (DY, D})-mixed geodesic multiply warped product generalized semi-invariant submanifold
of a Lp.R. manifold (M, F, g) in the form M? x;, M x ... x s MI x, M x ... x, M. Since M is (DY, D})-
mixed geodesic, for Z, W € I'(D?) and X, € T'(D;}) with 1 < a < [, using (2.6), we find

9(AnT2z X0, W) = g(W(Xo, W),NTZ) = 0. (5.10)
Moreover for any U, € I'(DY) with 1 < a < k, using (2.5) and (3.1),

9(ANT2 X0, Us) = =g(Vx,NTZ,Us) = —g(Vx,FTZ,Us) + 9(Vx, T2 Z,Uy).
Then using (2.9) ~ (2.11) and (3.3), we find
9(ANT2X0,Us) = —g(Vx,TZ,FU,) + cos’09(V x, Z, Uy).

Here, using (2.5), we arrive

9(ANT2 X0, Us) = —9(Vx,TZ, FU,) + cos’0g(Vx, Z,Uy).
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So, using (2.3), we conclude
9 ANT2Xa,Us) = —TZ(In04)g(Xa, FUy) + cos?0Z(In04)g(Xa, Uy) = 0. (5.11)
Next, by a similar argument, for Y, € I'(D1), using (2.5) and (3.1) we have
9(M(Xa,Ya), NZ) = 9(Vx,Ya, NZ) = g(Vx,Ya, FZ) — 9(Vx,Ya, TZ).

Then using (2.10),(2.11) and (2.3), we find

9(W(Xa,Ya), NZ) = g(Vx,FYo, Z) + TZ(In04)g(Xa, Ya)-
Hence using (2.5) and (2.6), we arrive

9(MXa,Ya),NZ) = —g(Apy,Xa, Z) + TZ(In04)9(Xa, Ya)

=—g(WXa,Z2),FY,) +TZ(Ino,)9(Xa, Ya).
In this equation, if 77 is written instead of Z, we have

g(MX4,Y,),NTZ) = —g(h(Xa,TZ), FY,) + cos’0Z(In 0,)g(Xa, Ya).
Since M is (D?, D})-mixed geodesic, we conclude that
9(AnT2Xa,Ys) = cos’0Z(Inoy)g(X,,Yy). (5.12)

Moreover, we have X,(Ino,) = Uy(Ino,) = 0, since o, depends on only points of My. So, we conclude that
A = Ino,. Thus, from (5.10) ~ (5.12), it follows that (5.1). Now, we prove (5.2). For Z € I'(D?), U,, € T(DI) and
X, € I(D}), using (2.5) and (3.1), we have
9(ANzUs + ANT2FUy, Xo) = 9(ANzUa, Xa) + 9(ANTZF U, Xa)
= g(A]\_fZXa7 Ua) + (A]\LTZXay FUa)
= —g(VXaNZ, Ua) - g(VXaZVTZ7 FUa>
=-9(Vx,NZ,U,) — g(Vx,FTZ,FU,)
+9(Vx,T?Z,FU,).
Using (2.10), (2.11), (3.1) and (3.3) and, we arrive
g(ANZUa + AnT7FU,, Xa) = —g(VXaFZ, Ua) + g(VXaTZ, Ua) — g(VXaTZ, Ua)
+cos?09(Vx, Z, FU,)
=—g9(Vx,FZ,U,) + cos?0g9(Vx,Z, FU,).
Then, using (2.3), (2.5), (2.9)~(2.11), we find
9(AnzUs + An12FUS Xo) = —9(Vx,Z, FU,) + cos*09(Vx, Z, FU,)
= —sin®0g(Vx, Z, FU,)
= —sin?0Z(Ino,)g(Xa, FU,).
Since g(X,, FU,) = 0, we conclude that

9(ANzUs + AnT2FU,, Xo) = —sin®0Z(Ino,)g(X,, FU,) = 0. (5.13)

Similarly, for Z, W € I'(D?) and U,, € I'(DY), using (2.5) and (3.1), we have
9(AnzUy + AN72FUL W) = g(ANzUa, W) + g(ANT2F UL, W)
= g(AnzW,Us) + g(ANT2zW, FU,)
= —g(VWNZ, Ua) - g(VV[/]VTZ7 FUQ)
= —9(VwNZ,Us) — g(VwFTZ, FU,)
+9(VwT?Z, FU,).
Using (2.10), (2.11), (3.1) and (3.3), we arrive
9(ANzZUo + AnT2FU, W) = —g(VwFZ,Uys) + 9(VwTZ,Us) — g(VwTZ,U,)
+cos?0g(Vw Z, FU,)
= —g(VwFZ,U) + cos?0g(Vw Z, FU,,).
Then, using (2.3), (2.5), (2.9)~(2.11), we find

9(AnzUs + AnTzFUL, W) = —g(VwZ, FU,) + cos?0g(Vw Z, FU,,)
= —g9(VwZ,FUy,) + cos? 0g(Vw Z, FU,,)
= —sin?0g(Vw Z, FU,,) = +sin? 6g(Z, V¥, FU,).
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Since ¢(Z, VY, FU,) = 0, we conclude
9(AnzUs + AnT2FU,, W) = sin®0g(Z, V4, FU,,) = 0. (5.14)

On the other hand, for Z € T'(D?) and U,, V,, € T'(DY), using (2.5) and we have
9(ANzUa + AnT2FUo, Vo) = g(AnzUa, Vo) + 9(ANT2FUa, V)
= g(AJYZVaa Ua) + g(AN_TZVaa FUa)
= —g(VquZ, Ua) — g(VVaNTZ, FUa)
=—9(Vv,NZ,U,) — g(Vv,FTZ,FU,)
+9(Vv,T?Z,FU,).
Using (2.10), (2.11), (3.1) and (3.3), we arrive
9(ANZUa + An12FU, Vo) = —g(Vv,FZ,Us) + 9(Vv,TZ,Us) — g(Vv,TZ,Ua)
+cos?0g(Vy, Z, FU,)
= —g(Vv,FZ,Uy,) + cos® 0g(Vv, Z, FU,).
Using (2.3), (2.5), (2.9)~(2.11), we find

g(ANZUa + AnT7FU,, Va) = —g(?VaZ, FUQ) + cosQHg(VVa Z, FUa)
—9(Vv., Z, FU,) + cos?0g(Vv., Z, FU,)
—sin?0g(Vv, Z, FU,)

—sin?0Z(In f0)g(Va, FU,,).

So, we conclude that
g(ANZUa + ANTZFUaa Va) = SiDQGZ(ln fa)g(FUom Va)' (515)

Moreover, we have X, (In f,) = Uy(In f,) = 0, since f depends on only points of My. So, we conclude that
w = In f,. Thus from (5.13)~(5.15), we get (5.2).
Next, we prove (5.3)~(5.9). We know M is a multiply warped product generalized semi-invariant submanifold
of a Lp.R. manifold (M, F, g). Then, for Z,W € I'(D?), using (2.2), we get VW = V4W and for X, € I'(D}),
we have

g(V2W, X,) = sec?0{g(Arx, Z,TW) + g(Antw Z, Xa)} = g(V5W, X,) = 0

from (3.8). Since Mjy is a proper slant submanifold, it follows that
g(AFXa Z7 TW) + g(ANTWZ, Xa) =0.

Which is (5.3). For U,,V, € I'(DL) and X, € I(D}), using (24), we get g(Viy, Vo, X,) = g(Vga Vo —
9(Uw, Vo )V(In f), X,) = 0. Then from (3.10) we find

g(VUaVaaXa) = g(AFXaUaaFVa> =0.

Therefore, we get (5.4). For U,, € I'(DL) and X,,Y, € I'(Dy}), using (2.4), we have g(Vx, Yo, Uy) = (V- x, Yo —
9(X4,Y,)V(lno,),U,) = 0. Then from (3.11) we find,

9(Vx,Ye,Uy) = —g(Apy, Xo, FU,) = 0.

)
Hence, we conclude that (5.5). For X, €I'(D}), Z e (DY) and U, € I'(DI), using (2.3), we write
9g(VzXo, FU,) = g(Z(In04)Xa, FU,) = Z(Ino,)g(Xa, FU,) = 0. On the other hand, from (3.13) we find

g(VZXa,FUa) = *g(AFX,,Z; FUa) =0.

Thus, we get (5.6). For X, € I'(D}), Z € T(D?) and U, € I'(DY), using (2.4), we have g(Vy, X4, Z) = 0. Then,
from (3.14) we find,

9(Vu, X, Z) = —sec?0{g(Arx,Ua, TZ) + g(An12Us, Xa)} = 0.

It follows that (5.7).

For Uy, Vo € T(DY), Us e T(D}) and U, € T(DI) for 1 < o, 3,7 < k with a # 8 and « # ~ then we have
9(Vu,Uy,Uy) =0 from (2.4). Hence, we get (5.8). For X,,Y, e I'(Dy), X, € (Dy) and X, € I'(D;) for
1 <a,b,c<!l with a # b and a # ¢ then we have g(Vx,X., X,) =0 from (2.4). Thus, we get (5.9). Since M
is a multiply warped product generalized semi-invariant submanifold then all distrubutions involve in the
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definition must be integrable. Thus (3.22) and (3.25) respectively hold.

Conversely, assume that M is a (DY, D;})-mixed geodesic multiply warped product generalized semi-
invariant submanifold of L.p.R manifold (M, F,g) such that (5.1)~(5.9) and (3.22)~(3.25) hold. From (5.3),
we satisfy (3.19). On the other hand if we write FU, instead of U, and W instead of Z in (5.2), we find
AnwFU, + Antw U, = — sin? OW (1)U, . If we take inner product of this equation with Z ¢ I'(D?%), we get

JANWEFUs + AntwUa, Z) = g(ANw Z, FUo) + g(AnTw Z,Uy)
= —sin?0W () g(Uy, Z) = 0.

So, (3.18) holds. Thus, the slant distribution D? is totally geodesic and as a result it is integrable. On
the other hand, from (5.4), for all U,,V, € (DY) and X, € I'(D;}), we write g(Arx, Uy, FV,) = 0. Thus,
9(Arx,Us, FV,) = g(Arx, Uy, FV,). Which is (3.20). On the other hand, in (5.2), if we write FU,, instead of
U,, we find AyzFU, + AnrzU, = —sin?0Z(p)U,. If we take inner product of this equation with V,, € I'(DI),

we arrive at
9(ANzFUy + AnT2Uo, Vo) = g(ANzFUL, Vo) + 9(AnT2Uq, Va)

— = sin®0Z(1)g(Un, Va). (5.16)

Here, if we interchange U, and V,, in (5.16), we find

9(ANzFUs + AnT2Uo, Vo) = g(ANzF UL, Vo) + 9(AnT2Uq, Va)

= —sin?0Z(u)g(Ua, V). (517)

From (5.16) and (5.17), we get
9(ANzUo, FVy) + 9(ANnTZUs, Vo) = 9(ANZVa, FUL) + 9(ANTZVa, Ua)-

This is (3.21). We have already (3.22). Thus, by Theorem 3.2, the invariant distribution DI, 1 <a <k is
integrable. On the other hand, for all X,,Y, € I'(D+) and U,, € I'(DY), we have g(Ary, X,, FU,) = 0 from (5.5).
It follows that

9(Ary, Xa, FUy) = g(Arx,Ya, FU,) = 0.

That is (3.23). Also, we get
9(Vx,Ya,Z) = —sec?0{g(h(Ya,TZ), Xo) + g(AnT2 X4, Ys)} from (3.15). Since M is (DY, D1t)-mixed geodesic, it
follows that g(h(Y,,TZ), FX,) = 0. Then, we find

9(Vx, Y., Z2)=g(Vy,Xa, Z).

Thus (3.24) follows. We have already (3.25). Thus by Theorem 3.3, the totally real distributions D, 1 < a <1
is integrable. Let My, M and M be the integral manifolds of DY, DI and D/ respectively. If we denote the
second fundamental form of M! in M by hZ, for U,,V, € I'(DL) and X, € ['(D}), using (2.5), (3.10) and (5.4),
we have

g(hZ(Ua, Va), Xa) = 9(Vu,Va: Xa) = 9(Arx,Ua, FVo) = 0. (5.18)

For any U,,V,, € I'(D) and Z € I'(D?), using (2.5) and (3.9), we get

(R (Ua, Vi), Z) = 9(Vu, Va, Z) = esc®09(AnT2Un, Vi) + 9(AN2Ua, FVa).
At this equation, if we use (5.2), we have

("L (Ua, Vi), Z) = esc®0{g(ANT2Va + ANz F Vo, Us)} = —Z(1)g(Va, U ).
After some calculation, we obtain

9(h&(Uas Va), Z2) = 9(=9(Ua, Va) Vi, Z) (5.19)
where Vu is the gradient of . Thus, from (5.18) and (5.19), we conclude that
hE (U, Va) = —g(Uq, Va) V.

This equation says that M is totally umbilic in M with the mean curvature vector field —Vx. Now, we show
that —Vy is parallel. We have to satisfy ¢(Vy,Vp, E) =0 for U, e '(DL) and E€ (DD)t =D’ oD ®...®
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D} oDl ... DI @...a D], where the symbol " indicate the term to be omitted. Here, we can put E =
Z+3  Xa+ 22:1 Ug, where Z € I'(D?), X, e T(Dy ) and U, € T'(DY), Vs € I'(D}) with a # 3, then we can

write that ¢(Vi, Vi, E) = ¢(Vu. Vi, Z) + 3 9(Vo, Vi, Xa) + 2221 9(Vu, Vi, Ug). By direct computations,
we obtain
9(Vu Vi, E) ={Uag(Vi, E) — g(Vp,Vu, E)}
=Ua(E(p) — [Ua, EJ(1) — 9(V, VEUS)
= [Ua, El(1) + E(Ua(pr)) = [Ua, E](1) — 9(V1, VEUS)
= —9(Vu, VeU,)

= _g(v,ua VZU(X) - Zi:l g(vlu” vXa Ua) - Zgzl g(vua VUB Ua)7

since U, (p) = 0. Here, for any W € I'(D?%), we have g(VzU,, W) = —g(U,, VZzW) =0, since M, is totally
geodesic in M. Thus, VU, € I'(DL) or VU, € [(D1). In either case, we have g(Vu,VzU,) = 0. And then
we get

9(Vu.Vu, Z) =0, (5.20)

By the same way like (5.20) we get 22:1 9(Vu, Vi, Xa) = — 251:1 9(Vu, Vx, Uy).
On the other hand, from (3.12), we have ¢(Vx, Uy, W) = —g(U,, Vx, W) =
—cse?0{g(AnTw X4, Us) + g(Avw X4, FU,)}. Here, using (5.2), we obtain

9(Vx,Ua, W) = g(W()Ua; Xa) = 0.
That is; Vx,U, € T(DL) or Vx U, € T(DL). In either case, we get g(Vu, Vx,U,) = 0. And then we find

l
> 9(Vu, Vi, Xa) = 0. (5.21)

a=1
Here using (2.4), directly we get g(Vy,Us, W) = 0, directly we conclude that:

k

Z g(vUﬁ Vi,Uy) = 0. (5.22)
p=1

And then from (5.20), (5.21) and (5.22) we find
9(Vu,Vu, E) =0.

Thus, MT is spherical, since it is also totally umbilic. Consequently, DI is spherical, for 1 < a < k.
Next, we show that D} is spherical. Let h} denote the second fundamental form of M; in M. Then for
X,,Y, € (D)) and U, € T(DL), using (2.5), (3.11) and (5.5), we have

9(hH (X4, Ya),Us) = 9(Vx,Ya,Us) = —g(Apy, Xa, FU,) = 0. (5.23)
On the other hand, for any Z € I'(DY), using (3.15)
9(hy (X4, Yo), Z) = —sec?0{g(h(Xo,TZ), FY,) + g(AnT2zXa, Ya)}-
Since M is (DY, D} )-mixed geodesic, g(ha(X,,TZ), FY,) = 0. So, we have
9(hy (Xa,Ya), Z) = —g(Anrz X0, Ya)-

Using (5.1), we obtain
g(hé(Xm Ya), Z) = =Z(N)g(Xa, Ya)-

After some calculation, we get
g(haL(Xa,Ya),Z) = _g(g(XmYa)V/\7Z)’ (5.24)

where V) is the gradient of A. Thus, from (5.23) and (5.24), we deduce that
ht(Xa,Ya) = —g(Xa, Ya) VA

It means that M; is totally umbilic in M with the mean curvature vector field —VA. What's
left is to show that —V\ is parallel. We have to satisfy ¢(Vx,VA E)=0 for X,,Y, € (D}) and

www.iejgeo.com 324


http://www.iej.geo.com

M. Traore, H. M. Tastan & S. Gerdan Aydin

Ec(DHt=D'aDl®...0Df eDi®...DF@...@D. The proof is similar parallelity of —Vu. So
we omit it. —V X is parallel. So, M, Lis spherical, since it is also totally umbilic. Consequently, DL is spherical,
forl1<a<l.

Lastly, we prove that (DD)t =D’ e Di@...0DfeDfe...eDI ..o DF and (DN =D’ ¢ DI @
...®DI ®Di @---D) @...@ D} are autoparallel, where the symbol " indicate the term to be omitted. In fact,
D' Di...oDF oD @...0 DL @...® D] is autoparallel if and only if for all types of covariant derivatives
VoW, V2Xa,Vx,2,Vx,Y4,Vu,2,Vu,Xa,Vu,Uy are again in (D! @D & ... 0D @Dl @ ... Dra... &
DF) for Z,W € T(D?) and X,,Y, € I'(D}). It means that all seven inner products ¢(VzW,U,), 9(VzXa, Us),
9(Vx,2,Us), 9(Vx.Ya: Ua), §(Vu, Z,Ua), 9(Vu,Xa,Ua), 9(Vu,Uy, Uy), vanish, where U, € I'(DY), U € F(Dg)
with a # fand a # v, X,, Y, € I'(DL) and Z € T'(DY). Using (3.7) and (5.2), we get

g(VzW,U,) = —csc?0{g(Antw Z,Us) + g(Anw Z, FU,)}
= —csc?0g(ANTwUa + ANwFU,, Z)
W(1)g(Ua, Z) = 0.

Using (3.13) and (5.6), we find
g(VZXa, Ua) = —g(AFXaZ7 FUa) =0.

By (3.12) and (5.2), we get
9(Vx,Z,Us) = —csc?*0{g(AnTzXa, Us) + g(ANz Xa, FU,)} = 0.
By (3.11) and (5.5), we find
g(vXaYaa Ua) = _g(AFYaXaaFUa) =0.
By (3.10) and (5.4), we find

g(ngXaa Ua) = _g(XaavUﬁUa) = _g(AFXaU[37FU0¢) =0.

From (2.4), we find
9(Vu,Uy,Uy) = 0.

Thus, D’@Di@..oDtaeDl@...eDLe...oDF is autoparallel. On the other hand, D@
Dlew--- oDl eDi®...DF@...@D} is autoparallel if and only if all seven inner products
9(VzW, Xa),9(VzUa, Xa),9(VuZ, Xa), 9(Vu,Va, Xa), 9(Vu. Vs, Xa),9(Vy, Zb, Xa), 9(Vy, Zc, Xo) vanish, where
Z,W € T(DY), Uy, Vs € (DY), V5 € F(Dg) for a # B, X, € (DY), Y, e T(Dy) for a# b and Zy, Z. € T(DY)
with b # c. Firstly, we have already g(VzU,, X,) = 0 from above. Using (3.8) and (5.3), we get

g(Vz W, X,) = sec’0{g(Apx, Z,TW) + g(AnTw Z, Xa)} = 0.
Using (3.10) and (5.4), we find
g(VUaVa,Xa) = g(AFXanuFVa) =0.

Directly we conclude that
9(Vu, Vs, Xa) = 9(Arx,Ua, F'V5) = 0.
Using (3.10) and (5.4), we find
9(Vy, Zy, Xa) =0, 9(Vy,Ze, Xa) = 0.
And then, by (3.14) and (5.7), we get

9(Vu.Z,Xa) = —9(Vu, Xa, Z) = sec®*0{g(Arx,Una, TZ) + g(AnT2Uq, Xa)} = 0.

So, D’ D] &...®Df ©Df ©...DF @ ...® D} is autoparallel. Thus by Remark 5.1, M is locally multiply
warped product generalized semi-invaraint submanifold of the form M? x ML x ... xp MI x, Mi x
X M O

1

Next, we investigate the behavior of the second fundamenta{ form h of a non-trivial multiply warped product
generalized semi-invariant submanifold of a 1.p.R. manifold (M, F, g) in the form M% x s, M x - x5 M x4,
Mit x -+ X Mt

325 www.iejgeo.com


http://www.iej.geo.com

Multiply Warped Product Generalized Semi-Invariant Submanifolds

Lemma 5.1. Let M be a multiply warped product generalized semi-invariant submanifold in the form M? x 5, M x
o Xg ME X, M- X .. X, M- of a Lp.R. manifold (M, F,g). Then for the second fundamental form h of M in
(M, F, g), we have

9(W(Uys, Vo), NW) = -W(In f2)g(Us, FVa) + TW (I f4)g(Ua, V), (5.25)
9(MZ,Ua), NW) =0, (5.26)

9(M(Xq,Ua), NW) =0, (5.27)

9(h(Z,Us), FX,) =0, (5.28)

9(M(Xa,Ua), FY,) =0, (5.29)

9(h(Ua, Va), FXa) =0, (5.30)

9 X0, Ya), NW) = —g(h(Xa, W), FY,) +TW (In04)g(Xa, Ya), (5.31)

where Z,W € T(D?), X,,Y, € I(D+), Y, € I(D;") for 1 < a,b,c < land U,,V, € I'(DL), VﬁGFDT)forl<a,ﬁ<
k.

Proof. The proofs are very similar to the proofs of Lemmas 1, 2 and 3 of [22] and Lemma 5.3 of [13]. O

Lemma 5.2. Let M bea multiply warped product generalized semi-invariant submanifold in the form M? x 5, M x
o Xp MT X, M- X .. X, M- of a Lp.R. manifold (M, F,g). Then for the second fundamental form h of M in
(M, F, g), we have

g(h(Ua, Vi), NW) =0, (5.32)
9(h(Ua, Vp), FX,) =0, (5.33)
g(h(Xe, ), NW) =0, (5.34)

where Z,W € (DY), X,,Ya € T(D}), Y, € T(Dy) for 1 < a,b,¢ <1, with a # band U, Vo, € T(DY), Vs € T(DF)
forl<a,B < kuwitha # 3.

Proof. For U, € T(D]), Vs € T(D}) with a # and W € I'(D?) using (2.3), (2.5), (2.9)~(2.11) and (3.1), we have

g(h(Ua, Vﬂ)vNW) =9(Vu, VBvNW) = _g(vﬁ7vU NW)
= _g(Vﬂ>vU FW) + g<V,37vU TW)
= _Q(FV,B’ Vo, W )+ (Vﬂv vU(,LTVV)
= —g(FV/g, Vu, W)+ (Vﬁv vU(,LTVV)
=—W(ln fo)g(FVg,Us) + TW (I fo)g(Uq, V).

Here F'V3 € F(Dg), then we have g(U,, V3) = 0 and ¢g(Ua, F'V3) = 0 therefore g(h(U,, V), NW) = 0. Hence we
obtain (5.32). By using (2.5), (2.9)~(2.11), (3.1) and (2.4) we get

g(h(UOm Vﬁ)7 FXa) = g(anvﬁa_-F‘Xa) = _g(V57 vUD“F—X—G,)
= —g(FV3,Vy,X,) = —9(FV3,Vy,Xa) =0,

for U, € T(DY), Vs € T(Df) with a # 8 and X, € I'(D,). Hence, we get (5.33). For X, € ['(D;), Y} € T(Dy)
with a # band W € I'(DY) using (2.3), (2.5), (2.9)~(2.11) and (3.1), we have

g(h(Xa7}/b)7NW) :g(vXaYihNW) = _g(Yb,_VXaNW)
= —g(Ys, Vx, FW) + g(Yp, Vx, TW)
=—g(FY, Vx, W)+ g(Vs, Vx,TW)
=9(Vx, FYp, W)+ g(Ys, Vx, TW)
= 79(AFYbXaa W) + TW(III Ua)g(Xav }[b)
= —g(W(Xa, W), FYy) + TW(In04)g(Xa, Ys).

Using the fact that g(X,,Y;) =0 and g(h(X,, W), FY;) = 0, consequently we get g(h(X,,Y:), NW) = 0. Thus,
we get (5.34).
O
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Lemmas 5.1 and 5.2 show us partially the behavior of the second fundamental form % of the multiply warped
product generalized semi-invariant submanifold has the form M? x;, M{ x -+ x5, M x, Mit x -+ x5, M-
in the normal subbundles N(D?) and F(Di) @ ...® F(Di. By using (5.26)~(5.29) and (5.32)~(5.33), we
immediately have the following result.

Corollary 5.1. Let M be a multiply warped-product generalized semi-invariant submanifold in the form M? x 5, M x
coo X M ) MR X X, M- of a Lp.R. manifold (M, F, g) such that the invariant normal subbundle DT = {0}.
Then M is (DY, Dy ), (DX, D?) and (DX, DF)-mixed geodesic, for 1 < a, f < k with a # fand 1 < a,b <.

Lastly, we give another main result of this section.

Theorem 5.2. Let M bea multiply warped product (DY, DL) mixed geodesic generalized semi-invariant submanifold in
the form M? x ;, MT x X MI Xy Mi- x ... X, Mi- ofal.p.R. manifold (M, F, g) such that its invariant normal
subbundle DT = {0}. Then M isa locally multlply direct product in the form M x MT X ME x Mit x ..o x M
if and only if g(h(D-, DL), ND%) = 0 and M is DI- geodesic, where 1 < o < k and 1 <a S l.

Proof. Let M be a multiply warped product (De,Dj—)-mixed geodesic generalized semi-invariant

submanifold in the form M? x; MT x fo MIE X0 MiE % ... x5, M- of a lp.R. manifold (M,F,g)
such that its invariant normal subbundle DT {O} If Mis a locally multlply direct product in the form
MO x MU' x...x M x M- x ... x M+, for 1 <a <k and 1 <a <, the warping functions f, and o, are

constants. By (5.31) and the fact that M is (DY, D )-mixed geodesic for 1 < a < I, we have g(h(X,, Y,), NW) =0
for X,,,Y, € T(D}) and W € T'(D?). Which means that g(h(DL, DL), NDY) = 0. On the other hand, using (5.25).
we have g(h(U,,V,),NW)=0 for U,,V, € (D) and W € I'(D%), since W(lnf,) =TW(Inf,) =0 for
1 < a < k. Using this fact and (5.30), it follows that h(U,,V,) =0 for U,,V, € I'(DL). Which says us M is
DT -geodesic for 1 < o < k.

Conversely, let g(h(D}, D), NDY) = 0 and M is DI- geodesic for 1 < a < k and 1 < a <. Then, we have
TW(Ino,) = 0 from (5.31), where W € T'(D?). Hence, it follows that o, is a constant for 1 < a < [. On the other
hand, for any U,,V,, € I'(DL) and W € I'(D?), we have

W(ln f0)g(Us, FVy) = TW(In f4)9(Ua, V) (5.35)
from (5.25). If we take W = T'W in (5.35) and using (3.3), we obtain
W(ln £4)g9(Us, FV,) = cos?0W (In £4,)g(Ua, V). (5.36)
By replacing V,, by FV, in (5.36), then (5.36) becomes
TW(In fo)g(Uq, Va) = cos”0W (In fo)g(Ua, FV,,). (5.37)

From (5.35) and (5.37), we get
cos’0W (In £o)g(Us, FV,) = 0, (5.38)

for any U,,V, € I'(DY), 1 < a < k. Since M is proper, cosf # 0, we can deduce that W (In f,) = 0 from (5.38).
Namely, we find each f, as a constant. Thus, M must be a locally multiply direct product in the form
MO x M x ... x M x Mi- x ... x M. O

6. An inequality for multiply warped product generalized semi-invariant submanifolds

In this section, we shall establish an inequality for the squared norm of the second fundamental form in
terms of the warping functions for multiply warped product generalized semi-invariant submanifold in the
form MY x s ML x ... x5 M X,y Mi- X ... X5, M.

Remark 6.1. Let M =M’ xz MI x ... x5 MT Xo Mi- x ... X, M;* be a multiply warped product
generalized semi-invariant submanifold of a L.p.R. manifold (M, F,g) and let d = dim M?, m, = dim MT
and n, = dim M;-. We choose orthonormal basis of M?, MT and M, respectively as

{el =seclTe],... e =secOTe}}, {ef =Fef,...,e2 =Feg el =—Fel  ....en, =—Fep } and
{wf,...,w? }. Then the orthonormal basis of ND? and F D7, respectively are {¢; = cscONej,..., 5 = cscONej}

and {Fw{,...,Fw} },wherel<a<kand1<a<lI
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Theorem 6.1. Let M =M% xz M x ... xp MI xg, Mi- X ... % M- be a multiply warped product (D, D})-
mixed geodesic generalized semi-invariant submanifold of a Lp.R. manifold (M, F,g) such that its invariant normal
subbundle DT = {0}. Then the squared norm of the second fundamental form of M satisfies

!
Ih]* > cot?0> na | V(o) |
o=l (6.1)
+ csc? GZ | V(n f.) |I? <(1 + cos 0)%m, — 4C0892a>,

a=1

where ng, = dim M-, mq, = dim M and z,, as in Remark 6.1. Moreover, the equality sign in (6.1) holds, identically if
and only if M? is also totally geodesic in M.

Proof. Let M = M? x5, M{ x ... x5 M x5, Mi- x ... s, M- be a multiply warped product (D, D{_,,)-
mixed geodesic generalized semi-invariant submanifold of a 1.p.R. manifold (M, F, g) such that its invariant
normal subbundle DT = {0}. From (2.8), we derive

k
IRl = [ DD |* +> || (DL, DL) |?
l o=t k
+> I MDE D) IIP 42> | h(D?, D) |
=i o=t (6.2)
+2) D", Dy 1P +2 Y || DL DE) |?
a=1 1<o¢<,3<k
+2 > || h(DE, DY) |? +2ZZIIh DI, DH 7.
1<a<b<l a=1a=1

Here by Corollary 5.5 and the fact that (DY, D})-mixed geodesic, we have h(D? DL)=0,h(D? D}) =0,
hDY,Dy) =0and h(D},Df) =0for1 <o < f < kand 1 < a <I.So we obtain

k
Ihl® > DD > +> || (DL, DY) |?
a=1 (6.3)

+Z||hz>l Dhy 2.

In view of (3.6), we have

a=1 a=1b=1 (6 4)
! 2 ! 2 :
+ Zg( h(DF, D) NDe) + g(h(Dj,Dj), prl)
a=1 a,b=1
Hence by (5.30), we know
koo 2
> zg(hwzmz),m;) =0
a=1b=1
Thereby, we arrive
k 2 1 2
I > Zg(hm?;,DZ),NDe) n Zg(hw;mj),me) | (65)

a=1
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In view of decomposition (3.5) and (3.6) the inequality (6.5) can be explicitly written as follows

| h|? > i{zi ( csc@Net)Z}

a=1 *1i,j=1t=1

+§l:{ i zd:g<h(wf7w§),csc0Nej>2}.

a=1 r,s=1t=1

By (5.31) and the fact that M is (Da, DL)-mixed geodesic for 1 < a <, we have

Ng d 2
Z Zg(h(wf,w?),csc@]\fet> = csc? 6 Z Z (Tet Ino,) (wf,w?)) .

r,s=1t=1 r,s=1t=1

By Remark 6.1 and (3.3), we obtain

Ng d 2
Z Zg(h(w?,w?),csc@Net> —cotZGZ Z( (Inoy)g(w ,w?)) .
r,s=1t=1

r,s=1t=1

By direct calculation, we get

Ng d 2
Z Zg(h(wf,w?),csc@Nef) =cot?0 || V(Inay,) ||* na.
r,s=1t=1

On the other hand, by (5.25) and Remark 6.1, we have

Me d 2
Z g(h(ez, e5), csc@Net)
i,j=1t=1
Ma d 2
— 0 30 3 (il ater Fe) + T n o))
ij=1t=1
d Za 2
= csc? HZ { Z (— e;(In fa)g(ef, Fef) + cosfe;(In fo)g(e; ,ef))
e =L L= ,
b3 (et gt o)+ costein ot ) |
,J=2a+1
d ) Zo )
= csc? OZ (e;(In fa)) { Z ((cos® — 1)9(6‘5‘,6?))
t=1 ij=1
+ Z ((cosf + 1)g(e Z,e‘;‘))Q}.
,J=2a+1

Upon direct calculation, we find

Mg 2
ZZQ( e, €5) CSCHNet>
i,7=1t=1

=csc?0 || V(In f,) |2 ((1 + cos6)?mg, — 4cos¢9za>.

(6.6)

6.7)

(6.8)

If we use (6.7) and (6.8) in the inequality (6.6), we find the inequality (6.1). Now, in view of Lemmas 5.1 and

5.2, the inequality sign in (6.1) holds identically if and only if

h(D’, D) = {0}, g(h(Dy, D), FDy) = {0}.

(6.9)

Since M is totally geodesic in M, it follows from the first condition in (6.9) that M? is totally geodesicin M. [
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