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ABSTRACT

We define generalized semi-invariant submanifolds in locally product Riemannian manifolds.
Then we study multiply warped product generalized semi-invariant submanifolds in the same
structure. We give an existence theorem for such submanifolds. We also give necessary and
sufficient conditions for such a submanifold to be a multiply direct product submanifold.
Moreover, we establish a general inequality for such submanifolds.
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1. Introduction

Multiply warped product manifolds [12] are natural generalization of the warped product manifolds [8].
These notions play very important roles in physics as well as in differential geometry, especially in the theory
of relativity. Indeed, the standard spacetimes models such as Roberston-Walker, Schwarschild, static and
Kruskal are warped products. Also, the simplest models of neighborhoods of stars and black holes are warped
product [16].

On the other hand, warped or multiply warped product submanifolds have been studying very actively
since Chen [9] studied the warped product CR-submanifolds in Kaehler structures. The most of the studies
related to the warped or multiply warped product submanifolds can be found in the book [11] and its list of
references.

In this paper, motivated by the papers placed in [11], especially Chen and Dillen’s paper [10], we study a
certain type of multiply warped product submanifolds in locally product Riemannian manifolds. In particular,
we consider the multiply warped product submanifolds in the form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1

M⊥1 ×
. . .×σl M⊥l , where Mθ is a proper slant, MT

i is an invariant submanifold and M⊥j is an anti-invariant
submanifold of the locally product Riemannian manifold for 1 ≤ i ≤ k and 1 ≤ j ≤ l. We give necessary and
sufficient conditions for a generalized semi-invariant submanifold to be a locally multiply warped product in
the main theorem. Also, we investigate the behavior of the second fundamental form of such submanifolds
and as results, we give necessary and sufficient conditions for such submanifolds to be locally multiply direct
or usual product and get an inequality for the squared norm of the second fundamental form in terms of the
warping functions for such submanifolds.
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2. Preliminaries

In this section, we give the fundamental definitions and notions needed for further study. In subsection
2.1, we will recall the definition of the multiply warped product manifolds. In subsection 2.2, we give the
basic background for submanifolds of Riemannian manifolds. The definition of a locally product Riemannian
manifold is placed in the last subsection.

2.1. Multiply warped product manifolds

Let (M0, g0), (M1, g1), . . . , (Mk, gk) be Riemannian manifolds and let f1, f2, . . . , fk be positive smooth
functions on M0. Then the multiply warped product manifold [12] M0 ×f1 M1 × . . .×fk Mk is the multiply product
manifold M0 ×M1 × . . .×Mk furnished with the metric

g = π∗0(g0)⊕ (f1 ◦ π0)2π∗1(g1)⊕ . . .⊕ (fk ◦ π0)2π∗k(gk).

More precisely, for any vector fields X̄ and Ȳ on M̄ , we have

g(X̄, Ȳ ) = g0(π0∗X̄, π0∗ Ȳ ) +

k∑
i=1

(fi ◦ π0)2gi(πi∗X̄, πi∗ Ȳ ), (2.1)

where πi : M̄ = M0 ×M1 × . . .×Mk →Mi, i = 0, 1, . . . , k is the canonical projection, π∗i (gi) is the pullback of
gi via πi and the subscript * denotes the derivative map of πi. The functions f1, . . . , fk are called the warping
functions of M0 ×f1 M1 × . . .×fk Mk. The manifolds (M1, g1), . . . , (Mk, gk) are called the fibers and the manifold
(M0, g0) is called the base manifold of the multiply warped product manifold M0 ×f1 M1 × . . .×fk Mk. It is well
known that the base manifold is totally geodesic and the fibers are totally umbilic in M0 ×f1 M1 × . . .×fk Mk.

As mentioned in the previous section, the notion of the multiply warped product is a generalization of
direct product as well as warped product manifolds. Indeed, if we choose k = 1 in the definition above, then
we get a warped product [8] and if each warping function fi is constant in the definition above, then we get a
multiply direct product [11].

Let M0 ×f1 M1 × . . .×fk Mk be a multiply warped product manifold with the Levi-Civita connection ∇̄with
respect to the metric g given in (2.1) and ∇i denote the Levi-Civita connection of (Mi, gi) for i ∈ {0, 1, . . . , k}.
By usual convenience, we denote the set of lifts of vector fields on Mi by L(Mi) and use the same notation for
a vector field (resp. warping function) and its lift (resp. its pulback). On the other hand, since the map π0 is
an isometry and π1, . . . , πk are positive homotheties, they preserve the Levi-Civita connections. Thus there is
no confusion using the same symbol for a connection on Mi and for its pullback via πi. Then, the covariant
derivative formulas [23] of the multiply warped product manifold M0 ×f1 M1 × . . .×fk Mk are given by

∇̄ZW = ∇0
ZW (2.2)

∇̄ZX = ∇̄XZ = Z(ln fi)X (2.3)

∇̄XY =

{
0 if i 6= j,
∇iXY − g(X,Y )∇0(ln fi) if i = j,

(2.4)

where Z,W ∈ L(M0), X ∈ L(Mi) and Y ∈ L(Mj) for i, j ∈ {1, 2, . . . , k}.

2.2. Submanifolds of Riemannian manifolds

Let M be a Riemannian manifold isometrically immersed in a Riemannian manifold (M̄, g) and ∇̄ be the
Levi-Civita connection of M̄ with respect to the metric g. Also, let ∇ and ∇⊥ be the induced and induced
normal connection on M , respectively. Then the Gauss and Weingarten formulas [25] are given respectively by

∇̄VW = ∇VW + h(V,W ) and ∇̄V Z = −AZV +∇⊥V Z, (2.5)
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where the vector fields V,W are tangent to M and Z is normal to M . In addition, h is the second fundamental
form of M and AZ is the Weingarten endomorphism associated with Z. The second fundamental form h and
the shape operator A are related by

g(h(V,W ), Z) = g(AZV,W ). (2.6)

The mean curvature vector H for an orthonormal frame {e1, . . . , em} of tangent space TpM , p ∈M on M is
defined by

H =
1

m
trace(h) =

1

m

m∑
i=1

h(ei, ei) (2.7)

where m = dim(M). Also, we set

hrij = g(h(ei, ej), er) and ‖ h ‖2=

m∑
i,j=1

g(h(ei, ej), h(ei, ej)) (2.8)

r = n−m, where n = dim(M̄) and m = dim(M).

2.3. Locally product Riemannian manifolds

Let M̄ be any manifold equipped with a tensor field of type (1, 1) such that

F 2 = I, (F 6= ∓I) (2.9)

where I is the identity endomorphism on the tangent bundle TM̄ of M̄ . Then we say that (M̄, F ) is an almost
product manifold with almost product structure F . If the almost product manifold (M̄, F ) admits a metric tensor
g such that

g(FX̄, F Ȳ ) = g(X̄, Ȳ ) (2.10)

for all X̄, Ȳ ∈ Γ(TM̄), then (M̄, F, g) is called an almost product Riemannian manifold. Let ∇̄ be the Levi-Civita
connection of (M̄, F, g), then we say that (M̄, F, g) is a locally product Riemannian manifold (briefly, l.p.R. manifold)
or locally decomposable Riemannian manifold if F is parallel with respect to ∇̄, i.e.

∇̄X̄F ≡ 0 (2.11)

for all X̄ ∈ Γ(TM̄) [25].

3. Generalized semi-invariant submanifolds in locally product Riemannian manifolds

In this section, we define the definition of the generalized semi-invariant submanifolds of a l.p.R. manifold and
get some useful results for further study.

Let (M̄, F, g) be a locally product Riemannian manifold and let M be a submanifold of M̄ . A distribution
D on M is said to be a slant distribution if the angle θ between FV and Dp is constant for V ∈ Dp, i.e., it is
independent of p ∈M and V ∈ Dp. The constant angle θ is called the slant angle of the slant distribution D.
Thus, the invariant and anti-invariant distributions with respect to F are slant distributions with slant angle
θ = 0 and θ = π/2, respectively. A submanifold M of M̄ is said to be a slant submanifold if the tangent bundle
TM of M is slant [14, 17]. A slant submanifold that is neither invariant nor anti-invariant is called a proper
slant submanifold.

Let M be a slant submanifold with slant angle θ of a l.p.R. manifold (M̄, g, F ), for any V ∈ Γ(TM) and
ξ ∈ Γ(T⊥M), we write

FV = TV +NV and Fξ = tξ + wξ. (3.1)

Here TV is the tangential part of FV and NV is the normal part of FV also tξ is the tangential part of Fξ and
wξ is the normal part of Fξ. Then, using (2.10) and (3.1) we find

T 2 + tN = I, NT + wN = 0, w2 +Nt = I, T t+ tw = 0. (3.2)

Then, for any U, V ∈ Γ(TM) we have [17]
T 2V = cos2θV, (3.3)
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g(TU, TV ) = cos2θg(U, V ) and g(NU,NV ) = sin2θg(U, V ). (3.4)

A submanifold M of a l.p.R. manifold (M̄, F, g) is called a generalized semi-invariant submanifold if its tangent
bundle TM of M has the form

TM = Dθ ⊕DT1 ⊕ . . .⊕DTk ⊕D⊥1 ⊕ · · · ⊕ D⊥l , (3.5)

where the distributionDTα is an invariant for 1 ≤ α ≤ k , i.e., FDTα ⊆ DTα , the distributionD⊥a is an anti-invariant
for 1 ≤ a ≤ l, i.e. FD⊥a ⊆ T⊥M and the distributionDθ is slant with slant angle θ. In that case, the normal bundle
T⊥M of M decomposed as

T⊥M = N(Dθ)⊕ F (D⊥1 )⊕ . . .⊕ F (D⊥l )⊕ D̄T , (3.6)

where D̄T is the orthogonal complementary distribution of N(Dθ)⊕ F (D⊥1 )⊕ · · · ⊕ F (D⊥l ) in T⊥M and it is
invariant subbundle of T⊥M with respect to F . We say that a generalized semi-invariant submanifold is proper,
neither θ = 0 nor θ = θ

2 .

Remark 3.1. The notion of generalized semi-invariant submanifold of a l.p.R. manifolds is a natural generalization
of invariant, anti-invariant [1] semi-invariant [7], slant [17], semi-slant [15], hemi-slant [21] and skew semi-
invariant submanifold of order 1 [20] of a l.p.R. manifold. Also, this notion is slightly different from the
definition of the skew semi-invariant submanifold [14]. For more details, we refer to [2, 4, 6, 24].

We need the following lemma.

Lemma 3.1. [20] Let M be a generalized semi-invariant submanifold of a l.p.R. manifold (M̄, F, g). Then we have

g(∇ZW,Uα) = − csc2θ

{
g(ANTWZ,Uα) + g(ANWZ,FUα)

}
, (3.7)

g(∇ZW,Xa) = sec2θ

{
g(AFXaZ, TW ) + g(ANTWZ,Xa)

}
, (3.8)

g(∇UαVα, Z) = csc2θ

{
g(ANTZUα, Vα) + g(ANZUα, FVα)

}
, (3.9)

g(∇UαVα, Xa) = g(AFXaUα, FVα), (3.10)

g(∇XaYa, Uα) = −g(AFYaXa, FUα), (3.11)

g(∇XaZ,Uα) = − csc2θ

{
g(ANTZXa, Uα) + g(ANZXa, FUα)

}
, (3.12)

g(∇ZXa, Uα) = −g(AFXaZ,FUα), (3.13)

g(∇UαXa, Z) = − sec2θ

{
g(AFXaUα, TZ) + g(ANTZUα, Xa)

}
, (3.14)

for Uα, Vα ∈ Γ(DTα ) with 1 ≤ α ≤ k, Xa, Ya ∈ Γ(D⊥a ) with 1 ≤ a ≤ l and Z,W ∈ Γ(Dθ).

Lemma 3.2. Let M be a generalized semi-invariant submanifold of a l.p.R. manifold (M̄, F, g). Then we have

g(∇XaYa, Z) = − sec2θ

{
g(AFYaXa, TZ) + g(ANTZXa, Ya)

}
, (3.15)

g(∇UαVα, Uβ) = g(∇UαFVα, FUβ), (3.16)

g(∇XaYa, Xb) = g(∇⊥XaFYa, FXb), (3.17)

for Uα, Vα ∈ Γ(DTα ), Uβ ∈ Γ(DTβ ) with 1 ≤ α 6= β ≤ k, Xa, Ya ∈ Γ(D⊥a ), Xb ∈ Γ(D⊥b ) with 1 ≤ a 6= b ≤ l and Z ∈
Γ(Dθ).
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Proof. Let Xa, Ya ∈ Γ(D⊥a ) and Z ∈ Γ(Dθ). By using (2.5), (2.10) and (3.1), we have

g(∇XaYa, Z) = g(∇̄XaFYa, FZ) = g(∇̄XaFYa, TZ) + g(∇̄XaFYa, NZ).

Hence using (2.10) and (3.1) we have

g(∇XaYa, Z) = −g(AFYaXa, TZ) + g(∇̄XaYa, tNZ) + g(∇̄XaYa, wNZ).

Again using (2.5), (3.3) and (3.2), we obtain

g(∇XaYa, Z) = −g(AFYaXa, TZ) + sin2θg(∇̄XaYa, Z)− g(ANTZXa, Ya).

According to direct calculating we find (3.15). Let Uα, Vα ∈ Γ(DTα ), Uβ , Vβ ∈ Γ(DTβ ). Then using (2.5), we have
g(∇UαVα, Uβ) = g(∇̄UαVα, Uβ). By using (2.10), we obtain g(∇UαVα, Uβ) = g(F ∇̄UαVα, FUβ). Hence using (2.11),
we get g(∇UαVα, Uβ) = g(∇̄UαFVα, FUβ), since FUβ ∈ Γ(TM). With the help of (2.5) we obtain (3.16)

g(∇UαVα, Uβ) = g(∇UαFVα, FUβ).

Let Xa, Ya ∈ Γ(D⊥a ), Xb, Yb ∈ Γ(D⊥b ). Then using (2.5) we have g(∇XaYa, Xb) = g(∇̄XaYa, Xb). By using (2.10),
we obtain g(∇XaYa, Xb) = g(F ∇̄UαVα, FXb). Hence by using (2.11), we get g(∇XaYa, Xb) = g(∇̄⊥XaFYa, FXb),

since FXb ∈ Γ(TM⊥). With the help of (2.5) we obtain (3.16) g(∇XaYa, Xb) = g(∇⊥XaFYa, FXb).

Theorem 3.1. Let M be a generalized proper semi-invariant submanifold of a l.p.R manifold (M̄, F, g). Then the slant
distribution Dθ is totally geodesic if and only if the following equations hold

g(ANTWZ,Uα) = −g(ANWZ,FUα), (3.18)

g(AFXaZ, TW ) = −g(ANTWZ,Xa) (3.19)

for Z,W ∈ Γ(Dθ), Uα ∈ Γ(DTα ) and Xa ∈ Γ(D⊥a ).

Proof. Let M be a generalized semi-invariant submanifold of a l.p.R manifold (M̄, F, g). Then the slant
distribution Dθ is totally geodesic if and only if g(∇ZW,Xa) = 0 and g(∇ZW,Uα) = 0 for all Z,W ∈ Γ(Dθ),
Xa ∈ Γ(D⊥a ) and Uα ∈ Γ(DTα ). Thus, the assertions (3.18) and (3.19) follow from (3.7) and (3.8), respectively.

Theorem 3.2. Let M be a generalized proper semi-invariant submanifold of a l.p.R manifold (M̄, F, g). Then the
invariant distribution DT

α , 1 ≤ α ≤ k is integrable if and only if the following equations hold

g(AFXaUα, FVα) = g(AFXaVα, FUα), (3.20)

g(ANTZUα, Vα) + g(ANZUα, FVα) = g(ANTZVα, Uα) + g(ANZVα, FUα), (3.21)

g(∇UαFVα, FUβ) = g(∇VαFUα, FUβ), (3.22)

for Z ∈ Γ(Dθ), Uα, Vα ∈ Γ(DTα ), Uβ ∈ Γ(DTβ ), 1 ≤ α 6= β ≤ k and Xa ∈ Γ(D⊥a ).

Proof. Let M be a generalized semi-invariant submanifold of a l.p.R manifold (M̄, F, g). Then the invariant
distribution DT

α is integrable if and only if g([Uα, Vα], Xa) = 0, g([Uα, Vα], Z) = 0 and g([Uα, Vα], Uβ) = 0 for all
Z ∈ Γ(Dθ), Xa ∈ Γ(D⊥a ) and Uα, Vα ∈ Γ(DTα ), Uβ ∈ Γ(DTβ ) with 1 ≤ α 6= β ≤ k. Thus, the assertions (3.20), (3.21)
and (3.22) follow from (3.9), (3.10) and (3.16), respectively.

Theorem 3.3. Let M be a generalized proper semi-invariant submanifold of a l.p.R manifold (M̄, F, g). Then the anti-
invariant distribution D⊥a , 1 ≤ a ≤ l is integrable if and only if the following equations hold

g(AFXaYa, FUα) = g(AFYaXa, FUα), (3.23)

g(AFYaXa, TZ) = g(AFXaYa, TZ), (3.24)

g(∇⊥XaFYa, Xb) = g(∇⊥YaFXa, Xb), (3.25)

for Z ∈ Γ(Dθ), Uα ∈ Γ(DTα ) and Xa, Ya ∈ Γ(D⊥a ), Xb ∈ Γ(D⊥b ), 1 ≤ a 6= b ≤ l.

Proof. Let M be a generalized semi-invariant submanifold of a l.p.R manifold (M̄, F, g). Then the anti-invariant
distribution D⊥a is integrable if and only if g([Xa, Ya], Z) = 0, g([Xa, Ya], Uα) = 0 and g([Xa, Ya], Xb) = 0 for all
Z ∈ Γ(Dθ), Uα ∈ Γ(DTα ) and Xa, Ya ∈ Γ(D⊥a ), Xb ∈ Γ(D⊥b ) with 1 ≤ a 6= b ≤ l. Thus, the assertions (3.23) and
(3.25) follow from (3.11), (3.15) and (3.17), respectively.
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4. Certain Types of Multiply Warped Product Submanifolds in Locally Product
Riemannian Manifolds

In this section, we check that the existence of certain types of multiply warped product generalized semi-invariant
submanifolds in the form,

I. MT ×σ1 M
⊥
1 × . . .×σl M⊥1 ×λ1 M

θ1
1 × . . .×λm Mθm

m ,

II. M⊥ ×f1 MT
1 × . . .×fk MT

k ×λ1
Mθ1 × . . .×λm Mθm

m ,

III. Mθ ×f1 MT
1 × . . .×fk MT

k ×σ1
M⊥1 × . . .×σl M⊥l ,

where MT
α , 1 ≤ α ≤ k is an invariant, M⊥a , 1 ≤ a ≤ l is an anti-invariant and M

θβ
β is a proper slant submanifold

with slant angle θβ , 1 ≤ β ≤ m of a l.p.R manifold (M̄, F, g).

M. Atçeken and B. S. ahin independently proved that there do not exist (non-trivial) warped product semi-
invariant submanifolds in the form MT ×f M⊥ in a l.p.R. manifold (M̄, F, g), such that MT is an invariant
submanifold and M⊥ is an anti-invariant submanifold of (M̄, F, g) in Theorem 3.1([5]) and Theorem 3.1([19]),
respectively. Again, M. Atçeken and B. S. ahin independently proved that there do not exist (non-trivial)
warped product semi-slant submanifolds in the form MT ×f Mθ in a l.p.R. manifold M̄ , such that MT is an
invariant submanifold and Mθ is a proper slant submanifold of M̄ in Theorem 3.3([3]) and Theorem 3.1([18]),
respectively. Thus, we obtain the following result.

Corollary 4.1. There do not exist (non-trivial) multiply warped product generalized semi-invariant submanifold in the
form I of a l.p.R. manifold (M̄, F, g).

On the other hand, it was proved that there do not exist (non-trivial) warped product semi-invariant
submanifold in the form M⊥ ×f Mθ in a l.p.R. manifold M̄ such that M⊥ is an anti-invariant submanifold
and Mθ is a proper slant submanifold of M̄ in Theorem 3.4 of [3]. Thus, we deduce the following result.

Corollary 4.2. There do not exist (non-trivial) multiply warped product generalized semi-invariant submanifold in the
form II of a l.p.R. manifold (M̄, F, g).

Now, we consider (non-trivial) multiply warped product generalized semi-invariant submanifolds in the
form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l in a l.p.R. manifold (M̄, F, g) such that MT
α , 1 ≤ α ≤ k is

an invariant, M⊥a , 1 ≤ a ≤ l is an anti-invariant and Mθ is a proper slant submanifold of M̄ . We first present an
example of such a submanifold.

Example 4.1. Consider the 4k + 4l-dimensional Euclidean spaceR4k+4l with usual metric g and almost product
structure F defined by

F∂i = ∂i, 1 ≤ i ≤ 2k, F∂i = −∂i, 2k + 1 ≤ i ≤ 4k,

F∂j = ∂j+1, F∂j+1 = ∂j 4k + 1 ≤ j ≤ 4k + 4l,

where ∂s = ∂
∂xs

and {xs}1≤s≤4k+4l are natural coordinates of R4k+4l. Upon straightforward calculation, we see
that (R4k+4l, F, g) is a l.p.R. manifold. Let M be a submanifold of (R4k+4l, F, g) given by

x1 = t sinu1, x2 = t cosu1,

x3 = 2t sinu2, x4 = 2t cosu2,

. . . . . . ,

x2k−1 = kt sinuk, x2k = kt cosuk,

x2k+1 =
t√
2

cos v1, x2k+2 =
t√
2

sin v1,

x2k+3 =
2t√

2
cos v2, x2k+4 =

2t√
2

sin v2,

. . . . . . ,
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x4k−1 =
kt√

2
cos vk, x4k =

kt√
2

sin vk,

x4k+1 = 2t sin z1, x4k+2 = 0,

x4k+3 = 2t cos z1, x4k+4 = 0,

x4k+5 = 2t sin z2, x4k+6 = 0,

x4k+7 = 2t cos z2, x4k+8 = 0,

. . . . . . ,

x4k+4l−3 = 2lt sin zl, x4k+4l−2 = 0,

x4k+4l−1 = 2lt cos zl, x4k+4l = 0.

where ui, vi, zj ∈ (0, π2 ) and t > 0. Then, the local frame of TM given by

T = sinu1∂1 + cosu1∂2 + 2 sinu2∂3 + 2 cosu2∂4 + · · ·+ k sinuk∂2k−1

+ k cosuk∂2k

+ 1√
2
{cos v1∂2k+1 + sin v1∂2k+2 + 2 cos v2∂2k+3 + 2 sin v2∂2k+4

+ · · ·+ k cos vk∂4k−1 + k sin vk∂4k}
+ 2{sin z1∂4k+1 + cos z1∂4k+3 + 2 sin z2∂4k+5 + 2 cos z2∂4k+7

+ · · ·+ l sin zl∂4k+4l−3 + l cos zl∂4k+4l−1},

U1 = t cosu1∂1 − t sinu1∂2,
U2 = 2t cosu2∂3 − 2t sinu2∂4,

. . . ,
Uk = kt cosuk∂2k−1 − kt sinuk∂2k,
V1 = − t√

2
sin v1∂2k+1 + t√

2
cos v1∂2k+2,

V2 = − 2t√
2

sin v2∂2k+3 + 2t√
2

cos v2∂2k+4,

. . . ,
Vk = − kt√

2
sin vk∂4k−1 + kt√

2
cos vk∂4k,

Z1 = 2t cos z1∂4k+1 − 2t sin z1∂4k+3,
Z2 = 2t cos z2∂4k+5 − 2t sin z2∂4k+7,

. . .
Zl = 2lt cos zl∂4k+4l−3 − 2lt sin zl∂4k+4l−1.

By direct calculation, we see that Dθ = span{T} is a proper slant distribution with slant angle θ = cos−1

(
1
3 +

k(k+1)(2k+1)
8l(l+1)(2l+1)

)
and DTi = span{Ui, Vi}, 1 ≤ i ≤ k is an invariant distribution and D⊥j = span{Zj}, 1 ≤ j ≤ l is

an anti-invariant distribution. So far, M is a proper generalized semi-invariant submanifold. Moreover, Dθ is
totally geodesic and both DTi and D⊥j are integrables distributions. If we denote the integral manifolds of Dθ,
DTi and D⊥j by Mθ, MT

i and M⊥j , respectively, then the induced metric tensor of M is

ds2 = g(T, T )dt2 +
∑k

i=1 g(Ui, Ui)du
2
i +

∑k
i=1 g(Vi, Vi)du

2
j +

∑l
j=1 g(Zj , Zj)dz

2
j .

Upon straightforward calculation, we have

ds2 = 1
12 [3k(k + 1)(2k + 1) + 8l(l + 1)(2l + 1)]dt2 + t2(du2

1 + 1
2dv

2
1)+

(2t)2(du2
2 + 1

2dv
2
2) + . . .+ (kt)2(du2

k + 1
2dv

2
k) + (2t)2dz2

1+
(4t)2dz2

2 + . . .+ (2lt)2dz2
l

= gMθ + t2gMT
1

+ (2t)2gMT
2

+ . . .+ (kt)2gMT
k

+ (2t)2gM⊥1 + (4t)2gM⊥2 +

. . .+ (2lt)2gM⊥l

.
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Thus, M = Mθ ×f1 MT
1 × . . .×fk MT

k ×σ1 M
⊥
1 × . . .×σl M⊥l is a (non-trivial) multiply warped product

generalized semi-invariant submanifold of (R4k+4l, F, g) with warping functions f1 = t, f2 = 2t, . . . , fk = kt
and σ1 = 2t, σ2 = 4t, . . . , σl = 2lt.

5. Multiply warped product generalized semi-invariant submanifolds

In this section, we give a characterization for a multiply warped product proper generalized semi-
invariant submanifold in the form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l , where Mθ is a proper
slant submanifold, MT

α , 1 ≤ α ≤ k is an invariant and M⊥a , 1 ≤ a ≤ l is an anti invariant submanifold of a
l.p.R. manifold (M̄, F, g). After that we investigate the behavior of the second fundemental form of such
submanifolds and as a result, we give a necessary and sufficient condition for such submanifolds to be locally
multiply warped product generalized. We first recall the following fact given in [12] to prove our theorem.
Remark 5.1. (Remark 2.1 [12]) Suppose that the tangent bundle of a Riemannian manifold M splints into an
orthogonal sum TM = D0 ⊕D1 ⊕ . . .⊕Dk of non-trivial distributions such that each Dj is spherical and its
complement in TM is autoparallel for j ∈ {1, 2, . . . , k}. Then the manifold M is locally isometric to a multiply
warped product M0 ×f1 M1 × . . .×fk Mk.

Now, we give one of the main theorems of this paper.

Theorem 5.1. Let M be a (Dθ,D⊥a )-mixed geodesic multiply warped product generalized semi-invariant submanifold of
a l.p.R. manifold (M̄, F, g). Then M is a locally multiply warped product generalized submanifold of type Mθ ×f1 MT

1 ×
. . .×fk MT

k ×σ1
M⊥1 × . . .×σl M⊥l if and only if we have

ANTZXa = cos2θZ(λ)Xa, (5.1)

ANZUα +ANTZFUα = − sin2θZ(µ)FUα, (5.2)

for some functions λ and µ satisfying Xa(λ) = Uα(λ) = 0 and Xa(µ) = Uα(µ) = 0

g(AFXaZ, TW ) = −g(ANTWZ,Xa), (5.3)

g(AFXaUα, FVα) = 0, (5.4)

g(AFYaXa, FVα) = 0, (5.5)

g(AFXaZ,FUα) = 0, (5.6)

g(AFXaUα, TZ) = −g(ANTZUα, Xa), (5.7)

g(∇UβUγ , Uα) = 0, (5.8)

g(∇XbXc, Xa) = 0 (5.9)

and (3.22) and (3.25) hold, where Z,W ∈ Γ(Dθ), Uα, Vα ∈ Γ(DTα ), Uβ ∈ Γ(DTβ ) and Uγ ∈ Γ(DTγ ) for 1 ≤ α, β, γ ≤ k
with α 6= β and α 6= γ, Xa, Ya ∈ Γ(D⊥a ), Xb ∈ Γ(D⊥b ) and Xc ∈ Γ(D⊥c ) for 1 ≤ a, b, c ≤ l with a 6= b and a 6= c.

Proof. Let M be a (Dθ,D⊥a )-mixed geodesic multiply warped product generalized semi-invariant submanifold
of a l.p.R. manifold (M̄, F, g) in the form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l . Since M is (Dθ,D⊥a )-
mixed geodesic, for Z,W ∈ Γ(Dθ) and Xa ∈ Γ(D⊥a ) with 1 ≤ a ≤ l, using (2.6), we find

g(ANTZXα,W ) = g(h(Xα,W ), NTZ) = 0. (5.10)

Moreover for any Uα ∈ Γ(DTα ) with 1 ≤ α ≤ k, using (2.5) and (3.1),

g(ANTZXa, Uα) = −g(∇̄XaNTZ,Uα) = −g(∇̄XaFTZ,Uα) + g(∇̄XaT 2Z,Uα).

Then using (2.9) ∼ (2.11) and (3.3), we find

g(ANTZXa, Uα) = −g(∇̄XaTZ, FUα) + cos2θg(∇̄XaZ,Uα).

Here, using (2.5), we arrive

g(ANTZXa, Uα) = −g(∇XaTZ, FUα) + cos2θg(∇XaZ,Uα).
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So, using (2.3), we conclude

g(ANTZXa, Uα) = −TZ(lnσa)g(Xa, FUα) + cos2θZ(lnσa)g(Xa, Uα) = 0. (5.11)

Next, by a similar argument, for Ya ∈ Γ(D⊥a ), using (2.5) and (3.1) we have

g(h(Xa, Ya), NZ) = g(∇̄XaYa, NZ) = g(∇̄XaYa, FZ)− g(∇̄XaYa, TZ).

Then using (2.10),(2.11) and (2.3), we find

g(h(Xa, Ya), NZ) = g(∇̄XaFYa, Z) + TZ(lnσa)g(Xa, Ya).

Hence using (2.5) and (2.6), we arrive

g(h(Xa, Ya), NZ) = −g(AFYaXa, Z) + TZ(lnσa)g(Xa, Ya)

= −g(h(Xa, Z), FYa) + TZ(lnσa)g(Xa, Ya).
In this equation, if TZ is written instead of Z, we have

g(h(Xa, Ya), NTZ) = −g(h(Xa, TZ), FYa) + cos2θZ(lnσa)g(Xa, Ya).

Since M is (Dθ,D⊥a )-mixed geodesic, we conclude that

g(ANTZXa, Ya) = cos2θZ(lnσa)g(Xa, Ya). (5.12)

Moreover, we have Xa(lnσa) = Uα(lnσa) = 0, since σa depends on only points of Mθ. So, we conclude that
λ = lnσa. Thus, from (5.10) ∼ (5.12), it follows that (5.1). Now, we prove (5.2). For Z ∈ Γ(Dθ), Uα ∈ Γ(DTα ) and
Xa ∈ Γ(D⊥a ), using (2.5) and (3.1), we have
g(ANZUα +ANTZFUα, Xa) = g(ANZUα, Xa) + g(ANTZFUα, Xa)

= g(ANZXa, Uα) + g(ANTZXa, FUα)
= −g(∇̄XaNZ,Uα)− g(∇̄XaNTZ,FUα)
= −g(∇̄XaNZ,Uα)− g(∇̄XaFTZ, FUα)

+g(∇̄XaT 2Z,FUα).
Using (2.10), (2.11), (3.1) and (3.3) and, we arrive
g(ANZUα +ANTZFUα, Xa) = −g(∇̄XaFZ,Uα) + g(∇̄XaTZ,Uα)− g(∇̄XaTZ,Uα)

+ cos2θg(∇̄XaZ,FUα)
= −g(∇̄XaFZ,Uα) + cos2θg(∇̄XaZ,FUα).

Then, using (2.3), (2.5), (2.9)∼(2.11), we find
g(ANZUα +ANTZFUα, Xa) = −g(∇̄XaZ,FUα) + cos2θg(∇XaZ,FUα)

= − sin2θg(∇XaZ,FUα)
= − sin2θZ(lnσa)g(Xa, FUα).

Since g(Xa, FUα) = 0, we conclude that

g(ANZUα +ANTZFUα, Xa) = − sin2θZ(lnσa)g(Xa, FUα) = 0. (5.13)

Similarly, for Z,W ∈ Γ(Dθ) and Uα ∈ Γ(DTα ), using (2.5) and (3.1), we have
g(ANZUα +ANTZFUα,W ) = g(ANZUα,W ) + g(ANTZFUα,W )

= g(ANZW,Uα) + g(ANTZW,FUα)
= −g(∇̄WNZ,Uα)− g(∇̄WNTZ,FUα)
= −g(∇̄WNZ,Uα)− g(∇̄WFTZ, FUα)

+g(∇̄WT 2Z,FUα).
Using (2.10), (2.11), (3.1) and (3.3), we arrive
g(ANZUα +ANTZFUα,W ) = −g(∇̄WFZ,Uα) + g(∇̄WTZ,Uα)− g(∇̄WTZ,Uα)

+ cos2θg(∇̄WZ,FUα)
= −g(∇̄WFZ,U) + cos2θg(∇̄WZ,FUα).

Then, using (2.3), (2.5), (2.9)∼(2.11), we find

g(ANZUα +ANTZFUα,W ) = −g(∇̄WZ,FUα) + cos2θg(∇WZ,FUα)
= −g(∇WZ,FUα) + cos2 θg(∇WZ,FUα)
= − sin2θg(∇WZ,FUα) = + sin2 θg(Z,∇θWFUα).
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Since g(Z,∇θWFUα) = 0, we conclude

g(ANZUα +ANTZFUα,W ) = sin2θg(Z,∇θWFUα) = 0. (5.14)

On the other hand, for Z ∈ Γ(Dθ) and Uα, Vα ∈ Γ(DTα ), using (2.5) and we have
g(ANZUα +ANTZFUα, Vα) = g(ANZUα, Vα) + g(ANTZFUα, Vα)

= g(ANZVα, Uα) + g(ANTZVα, FUα)
= −g(∇̄VαNZ,Uα)− g(∇̄VαNTZ,FUα)
= −g(∇̄VαNZ,Uα)− g(∇̄VαFTZ, FUα)

+g(∇̄VαT 2Z,FUα).
Using (2.10), (2.11), (3.1) and (3.3), we arrive
g(ANZUα +ANTZFUα, Vα) = −g(∇̄VαFZ,Uα) + g(∇̄VαTZ,Uα)− g(∇̄VαTZ,Uα)

+ cos2θg(∇̄VαZ,FUα)
= −g(∇̄VαFZ,Uα) + cos2 θg(∇̄VαZ,FUα).

Using (2.3), (2.5), (2.9)∼(2.11), we find

g(ANZUα +ANTZFUα, Vα) = −g(∇̄VαZ,FUα) + cos2θg(∇VαZ,FUα)
= −g(∇VαZ,FUα) + cos2θg(∇VαZ,FUα)
= − sin2θg(∇VαZ,FUα)
= − sin2θZ(ln fα)g(Vα, FUα).

So, we conclude that
g(ANZUα +ANTZFUα, Vα) = − sin2θZ(ln fα)g(FUα, Vα). (5.15)

Moreover, we have Xa(ln fα) = Uα(ln fα) = 0, since f depends on only points of Mθ. So, we conclude that
µ = ln fα. Thus from (5.13)∼(5.15), we get (5.2).
Next, we prove (5.3)∼(5.9). We know M is a multiply warped product generalized semi-invariant submanifold
of a l.p.R. manifold (M̄, F, g). Then, for Z,W ∈ Γ(Dθ), using (2.2), we get ∇ZW = ∇θZW and for Xa ∈ Γ(D⊥a ),
we have

g(∇ZW,Xa) = sec2θ{g(AFXaZ, TW ) + g(ANTWZ,Xa)} = g(∇θZW,Xa) = 0

from (3.8). Since Mθ is a proper slant submanifold, it follows that

g(AFXaZ, TW ) + g(ANTWZ,Xa) = 0.

Which is (5.3). For Uα, Vα ∈ Γ(DTα ) and Xa ∈ Γ(D⊥a ), using (2.4), we get g(∇UαVα, Xa) = g(∇TUαVα −
g(Uα, Vα)∇(ln fα), Xa) = 0. Then from (3.10) we find

g(∇UαVα, Xa) = g(AFXaUα, FVα) = 0.

Therefore, we get (5.4). For Uα ∈ Γ(DTα ) and Xa, Ya ∈ Γ(D⊥a ), using (2.4), we have g(∇XaYa, Uα) = g(∇⊥XaYa −
g(Xa, Ya)∇(lnσa), Uα) = 0. Then from (3.11) we find,

g(∇XaYa, Uα) = −g(AFYaXa, FUα) = 0.

Hence, we conclude that (5.5). For Xa ∈ Γ(D⊥a ), Z ∈ Γ(Dθ) and Uα ∈ Γ(DTα ), using (2.3), we write
g(∇ZXa, FUα) = g(Z(lnσa)Xa, FUα) = Z(lnσa)g(Xa, FUα) = 0. On the other hand, from (3.13) we find

g(∇ZXa, FUα) = −g(AFXaZ,FUα) = 0.

Thus, we get (5.6). For Xa ∈ Γ(D⊥a ), Z ∈ Γ(Dθ) and Uα ∈ Γ(DTα ), using (2.4), we have g(∇UαXa, Z) = 0. Then,
from (3.14) we find,

g(∇UαXa, Z) = − sec2θ{g(AFXaUα, TZ) + g(ANTZUα, Xa)} = 0.

It follows that (5.7).
For Uα, Vα ∈ Γ(DTα ), Uβ ∈ Γ(DTβ ) and Uγ ∈ Γ(DTγ ) for 1 ≤ α, β, γ ≤ k with α 6= β and α 6= γ then we have

g(∇UβUγ , Uα) = 0 from (2.4). Hence, we get (5.8). For Xa, Ya ∈ Γ(D⊥a ), Xb ∈ Γ(D⊥b ) and Xc ∈ Γ(D⊥c ) for
1 ≤ a, b, c ≤ l with a 6= b and a 6= c then we have g(∇XbXc, Xa) = 0 from (2.4). Thus, we get (5.9). Since M
is a multiply warped product generalized semi-invariant submanifold then all distrubutions involve in the
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definition must be integrable. Thus (3.22) and (3.25) respectively hold.

Conversely, assume that M is a (Dθ,D⊥a )-mixed geodesic multiply warped product generalized semi-
invariant submanifold of l.p.R manifold (M̄, F, g) such that (5.1)∼(5.9) and (3.22)∼(3.25) hold. From (5.3),
we satisfy (3.19). On the other hand if we write FUα instead of Uα and W instead of Z in (5.2), we find
ANWFUα +ANTWUα = − sin2 θW (µ)Uα. If we take inner product of this equation with Z ∈ Γ(Dθ), we get

g(ANWFUα +ANTWUα, Z) = g(ANWZ,FUα) + g(ANTWZ,Uα)
= − sin2θW (µ)g(Uα, Z) = 0.

So, (3.18) holds. Thus, the slant distribution Dθ is totally geodesic and as a result it is integrable. On
the other hand, from (5.4), for all Uα, Vα ∈ Γ(DTα ) and Xa ∈ Γ(D⊥a ), we write g(AFXaUα, FVα) = 0. Thus,
g(AFXaUα, FVα) = g(AFXaUα, FVα). Which is (3.20). On the other hand, in (5.2), if we write FUα instead of
Uα, we find ANZFUα +ANTZUα = − sin2θZ(µ)Uα. If we take inner product of this equation with Vα ∈ Γ(DTα ),
we arrive at

g(ANZFUα +ANTZUα, Vα) = g(ANZFUα, Vα) + g(ANTZUα, Vα)
= − sin2θZ(µ)g(Uα, Vα).

(5.16)

Here, if we interchange Uα and Vα in (5.16), we find

g(ANZFUα +ANTZUα, Vα) = g(ANZFUα, Vα) + g(ANTZUα, Vα)
= − sin2θZ(µ)g(Uα, Vα).

(5.17)

From (5.16) and (5.17), we get

g(ANZUα, FVα) + g(ANTZUα, Vα) = g(ANZVα, FUα) + g(ANTZVα, Uα).

This is (3.21). We have already (3.22). Thus, by Theorem 3.2, the invariant distribution DTα , 1 ≤ α ≤ k is
integrable. On the other hand, for all Xa, Ya ∈ Γ(D⊥a ) and Uα ∈ Γ(DTα ), we have g(AFYaXa, FUα) = 0 from (5.5).
It follows that

g(AFYaXa, FUα) = g(AFXaYa, FUα) = 0.

That is (3.23). Also, we get
g(∇XaYa, Z) = − sec2θ{g(h(Ya, TZ), Xa) + g(ANTZXa, Ya)} from (3.15). Since M is (Dθ,D⊥a )-mixed geodesic, it
follows that g(h(Ya, TZ), FXa) = 0. Then, we find

g(∇XaYa, Z) = g(∇YaXa, Z).

Thus (3.24) follows. We have already (3.25). Thus by Theorem 3.3, the totally real distributions D⊥a , 1 ≤ a ≤ l
is integrable. Let Mθ, M

T
α and M⊥a be the integral manifolds of Dθ,DTα and D⊥a respectively. If we denote the

second fundamental form of MT
α in M by hTα , for Uα, Vα ∈ Γ(DTα ) and Xa ∈ Γ(D⊥a ), using (2.5), (3.10) and (5.4),

we have
g(hTα(Uα, Vα), Xa) = g(∇UαVα, Xa) = g(AFXaUα, FVα) = 0. (5.18)

For any Uα, Vα ∈ Γ(DTα ) and Z ∈ Γ(Dθ), using (2.5) and (3.9), we get

g(hTα(Uα, Vα), Z) = g(∇UαVα, Z) = csc2θg(ANTZUα, Vα) + g(ANZUα, FVα).

At this equation, if we use (5.2), we have

g(hTα(Uα, Vα), Z) = csc2θ{g(ANTZVα +ANZFVα, Uα)} = −Z(µ)g(Vα, Uα).

After some calculation, we obtain

g(hTα(Uα, Vα), Z) = g(−g(Uα, Vα)∇µ,Z) (5.19)

where ∇µ is the gradient of µ. Thus, from (5.18) and (5.19), we conclude that

hTα(Uα, Vα) = −g(Uα, Vα)∇µ.

This equation says that MT
α is totally umbilic in M with the mean curvature vector field −∇µ. Now, we show

that −∇µ is parallel. We have to satisfy g(∇Uα∇µ,E) = 0 for Uα ∈ Γ(DTα ) and E ∈ (DTα )⊥ = Dθ ⊕D⊥1 ⊕ . . .⊕
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D⊥l ⊕DT1 ⊕ . . .⊕ D̂Tα ⊕ . . .⊕DTk , where the symbol ˆ indicate the term to be omitted. Here, we can put E =

Z +
∑l

a=1Xa +
∑k

β=1 Uβ , where Z ∈ Γ(Dθ), Xa ∈ Γ(D⊥a ) and Uα ∈ Γ(DTα ), Vβ ∈ Γ(DTβ ) with α 6= β, then we can
write that g(∇Uα∇µ,E) = g(∇Uα∇µ,Z) +

∑l
a=1 g(∇Uα∇µ,Xa) +

∑k
β=1 g(∇Uα∇µ,Uβ). By direct computations,

we obtain
g(∇Uα∇µ,E) = {Uαg(∇µ,E)− g(∇µ,∇UαE)}

= Uα(E(µ))− [Uα, E](µ)− g(∇µ,∇EUα)
= [Uα, E](µ) + E(Uα(µ))− [Uα, E](µ)− g(∇µ,∇EUα)
= −g(∇µ,∇EUα)

= −g(∇µ,∇ZUα)−
∑l

a=1 g(∇µ,∇XaUα)−
∑k

β=1 g(∇µ,∇UβUα),

since Uα(µ) = 0. Here, for any W ∈ Γ(Dθ), we have g(∇ZUα,W ) = −g(Uα,∇ZW ) = 0, since Mθ is totally
geodesic in M . Thus, ∇ZUα ∈ Γ(DTα ) or ∇ZUα ∈ Γ(D⊥a ). In either case, we have g(∇µ,∇ZUα) = 0. And then
we get

g(∇Uα∇µ,Z) = 0. (5.20)

By the same way like (5.20) we get
∑l

a=1 g(∇Uα∇µ,Xa) = −
∑l

a=1 g(∇µ,∇XaUα).
On the other hand, from (3.12), we have g(∇XaUα,W ) = −g(Uα,∇XaW ) =
− csc2θ{g(ANTWXa, Uα) + g(ANWXa, FUα)}. Here, using (5.2), we obtain

g(∇XaUα,W ) = g(W (µ)Uα, Xa) = 0.

That is; ∇XaUα ∈ Γ(DTα ) or ∇XaUα ∈ Γ(D⊥a ). In either case, we get g(∇µ,∇XaUα) = 0. And then we find

l∑
a=1

g(∇Uα∇µ,Xa) = 0. (5.21)

Here using (2.4), directly we get g(∇UβUα,W ) = 0, directly we conclude that:

k∑
β=1

g(∇Uβ∇µ,Uα) = 0. (5.22)

And then from (5.20), (5.21) and (5.22) we find

g(∇Uα∇µ,E) = 0.

Thus, MT
α is spherical, since it is also totally umbilic. Consequently, DTα is spherical, for 1 ≤ α ≤ k.

Next, we show that D⊥a is spherical. Let h⊥a denote the second fundamental form of M⊥a in M . Then for
Xa, Ya ∈ Γ(D⊥a ) and Uα ∈ Γ(DTα ), using (2.5), (3.11) and (5.5), we have

g(h⊥a (Xa, Ya), Uα) = g(∇XaYa, Uα) = −g(AFYaXa, FUα) = 0. (5.23)

On the other hand, for any Z ∈ Γ(Dθ), using (3.15)

g(h⊥a (Xa, Ya), Z) = − sec2θ{g(h(Xa, TZ), FYa) + g(ANTZXa, Ya)}.

Since M is (Dθ,D⊥a )-mixed geodesic, g(ha(Xa, TZ), FYa) = 0. So, we have

g(h⊥a (Xa, Ya), Z) = −g(ANTZXa, Ya).

Using (5.1), we obtain
g(h⊥a (Xa, Ya), Z) = −Z(λ)g(Xa, Ya).

After some calculation, we get
g(h⊥a (Xa, Ya), Z) = −g(g(Xa, Ya)∇λ, Z), (5.24)

where ∇λ is the gradient of λ. Thus, from (5.23) and (5.24), we deduce that

h⊥a (Xa, Ya) = −g(Xa, Ya)∇λ.

It means that M⊥a is totally umbilic in M with the mean curvature vector field −∇λ. What’s
left is to show that −∇λ is parallel. We have to satisfy g(∇Xa∇λ,E) = 0 for Xa, Ya ∈ Γ(D⊥a ) and
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E ∈ (D⊥a )⊥ = Dθ ⊕DT1 ⊕ . . .⊕DTk ⊕D⊥1 ⊕ . . . D̂⊥a ⊕ . . .⊕D⊥l . The proof is similar parallelity of −∇µ. So
we omit it. −∇λ is parallel. So, M⊥a is spherical, since it is also totally umbilic. Consequently, D⊥a is spherical,
for 1 ≤ a ≤ l.

Lastly, we prove that (DTα )⊥ = Dθ ⊕D⊥1 ⊕ . . .⊕D⊥l ⊕DT1 ⊕ . . .⊕ D̂Tα ⊕ . . .⊕DTk and (D⊥a )⊥ = Dθ ⊕DT1 ⊕
. . .⊕DTk ⊕D⊥1 ⊕ · · · D̂⊥a ⊕ . . .⊕D⊥l are autoparallel, where the symbolˆindicate the term to be omitted. In fact,
Dθ ⊕D⊥1 . . .⊕D⊥l ⊕DT1 ⊕ . . .⊕ D̂Tα ⊕ . . .⊕DTk is autoparallel if and only if for all types of covariant derivatives
∇ZW,∇ZXa,∇XaZ,∇XaYa,∇UβZ,∇UβXa,∇UβUγ are again in Γ(Dθ ⊕D⊥1 ⊕ . . .⊕D⊥l ⊕DT1 ⊕ . . .⊕ D̂Tα ⊕ . . .⊕
DTk ) for Z,W ∈ Γ(Dθ) and Xa, Ya ∈ Γ(D⊥a ). It means that all seven inner products g(∇ZW,Uα), g(∇ZXa, Uα),
g(∇XaZ,Uα), g(∇XaYa, Uα), g(∇UβZ,Uα), g(∇UβXa, Uα), g(∇UβUγ , Uα), vanish, where Uα ∈ Γ(DTα ), Uβ ∈ Γ(DTβ )

with α 6= β and α 6= γ, Xa, Ya ∈ Γ(DTα ) and Z ∈ Γ(DTθ ). Using (3.7) and (5.2), we get

g(∇ZW,Uα) = − csc2θ{g(ANTWZ,Uα) + g(ANWZ,FUα)}
= − csc2θg(ANTWUα +ANWFUα, Z)
= W (µ)g(Uα, Z) = 0.

Using (3.13) and (5.6), we find
g(∇ZXa, Uα) = −g(AFXaZ,FUα) = 0.

By (3.12) and (5.2), we get

g(∇XaZ,Uα) = − csc2θ{g(ANTZXa, Uα) + g(ANZXa, FUα)} = 0.

By (3.11) and (5.5), we find
g(∇XaYa, Uα) = −g(AFYaXa, FUα) = 0.

By (3.10) and (5.4), we find

g(∇UβXa, Uα) = −g(Xa,∇UβUα) = −g(AFXaUβ , FUα) = 0.

From (2.4), we find
g(∇UβUγ , Uα) = 0.

Thus, Dθ ⊕D⊥1 ⊕ . . .⊕D⊥l ⊕DT1 ⊕ . . .⊕ D̂Tα ⊕ . . .⊕DTk is autoparallel. On the other hand, Dθ ⊕
DT1 ⊕ · · · ⊕ DTk ⊕D⊥1 ⊕ . . . D̂⊥a ⊕ . . .⊕D⊥l is autoparallel if and only if all seven inner products
g(∇ZW,Xa), g(∇ZUα, Xa), g(∇UZ,Xa), g(∇UαVα, Xa), g(∇UαVβ , Xa), g(∇YbZb, Xa), g(∇YbZc, Xa) vanish, where
Z,W ∈ Γ(Dθ), Uα, Vα ∈ Γ(DTα ), Vβ ∈ Γ(DTβ ) for α 6= β, Xa ∈ Γ(D⊥a ), Yb ∈ Γ(D⊥b ) for a 6= b and Zb, Zc ∈ Γ(DTθ )
with b 6= c. Firstly, we have already g(∇ZUα, Xa) = 0 from above. Using (3.8) and (5.3), we get

g(∇ZW,Xa) = sec2θ{g(AFXaZ, TW ) + g(ANTWZ,Xa)} = 0.

Using (3.10) and (5.4), we find
g(∇UαVα, Xa) = g(AFXaUα, FVα) = 0.

Directly we conclude that
g(∇UαVβ , Xa) = g(AFXaUα, FVβ) = 0.

Using (3.10) and (5.4), we find
g(∇YbZb, Xa) = 0, g(∇YbZc, Xa) = 0.

And then, by (3.14) and (5.7), we get

g(∇UαZ,Xa) = −g(∇UαXa, Z) = sec2θ{g(AFXaUα, TZ) + g(ANTZUα, Xa)} = 0.

So, Dθ ⊕DT1 ⊕ . . .⊕DTk ⊕D⊥1 ⊕ . . . D̂⊥a ⊕ . . .⊕D⊥l is autoparallel. Thus by Remark 5.1, M is locally multiply
warped product generalized semi-invaraint submanifold of the form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1 M

⊥
1 ×

. . .×σl M⊥l .

Next, we investigate the behavior of the second fundamental form h of a non-trivial multiply warped product
generalized semi-invariant submanifold of a l.p.R. manifold (M̄, F, g) in the formMθ ×f1 MT

1 × · · · ×fk MT
k ×σ1

M⊥1 × · · · ×σl M⊥l .
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Lemma 5.1. Let M be a multiply warped product generalized semi-invariant submanifold in the form Mθ ×f1 MT
1 ×

. . .×fk MT
k ×σ1 M

⊥
1 × . . .×σl M⊥l of a l.p.R. manifold (M̄, F, g). Then for the second fundamental form h of M in

(M̄, F, g), we have

g(h(Uα, Vα), NW ) = −W (ln fα)g(Uα, FVα) + TW (ln fα)g(Uα, Vα), (5.25)

g(h(Z,Uα), NW ) = 0, (5.26)

g(h(Xa, Uα), NW ) = 0, (5.27)

g(h(Z,Uα), FXa) = 0, (5.28)

g(h(Xa, Uα), FYa) = 0, (5.29)

g(h(Uα, Vα), FXa) = 0, (5.30)

g(h(Xa, Ya), NW ) = −g(h(Xa,W ), FYa) + TW (lnσa)g(Xa, Ya), (5.31)

where Z,W ∈ Γ(Dθ), Xa, Ya ∈ Γ(D⊥a ), Yb ∈ Γ(D⊥b ) for 1 ≤ a, b, c ≤ l and Uα, Vα ∈ Γ(DTα ), Vβ ∈ Γ(DTβ ) for 1 ≤ α, β ≤
k.

Proof. The proofs are very similar to the proofs of Lemmas 1, 2 and 3 of [22] and Lemma 5.3 of [13].

Lemma 5.2. Let M be a multiply warped product generalized semi-invariant submanifold in the form Mθ ×f1 MT
1 ×

. . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l of a l.p.R. manifold (M̄, F, g). Then for the second fundamental form h of M in
(M̄, F, g), we have

g(h(Uα, Vβ), NW ) = 0, (5.32)

g(h(Uα, Vβ), FXa) = 0, (5.33)

g(h(Xa, Yb), NW ) = 0, (5.34)

where Z,W ∈ Γ(Dθ), Xa, Ya ∈ Γ(D⊥a ), Yb ∈ Γ(D⊥b ) for 1 ≤ a, b, c ≤ l, with a 6= b and Uα, Vα ∈ Γ(DTα ), Vβ ∈ Γ(DTβ )
for 1 ≤ α, β ≤ k with α 6= β.

Proof. For Uα ∈ Γ(DTα ), Vβ ∈ Γ(DTβ ) with α 6= β and W ∈ Γ(Dθ) using (2.3), (2.5), (2.9)∼(2.11) and (3.1), we have

g(h(Uα, Vβ), NW ) = g(∇̄UαVβ , NW ) = −g(Vβ , ∇̄UαNW )
= −g(Vβ , ∇̄UαFW ) + g(Vβ , ∇̄UαTW )
= −g(FVβ , ∇̄UαW ) + g(Vβ ,∇UαTW )
= −g(FVβ ,∇UαW ) + g(Vβ ,∇UαTW )
= −W (ln fα)g(FVβ , Uα) + TW (ln fα)g(Uα, Vβ).

Here FVβ ∈ Γ(DTβ ), then we have g(Uα, Vβ) = 0 and g(Uα, FVβ) = 0 therefore g(h(Uα, Vβ), NW ) = 0. Hence we
obtain (5.32). By using (2.5), (2.9)∼(2.11), (3.1) and (2.4) we get

g(h(Uα, Vβ), FXa) = g(∇̄UαVβ , FXa) = −g(Vβ , ∇̄UαFXa)
= −g(FVβ , ∇̄UαXa) = −g(FVβ ,∇UαXa) = 0,

for Uα ∈ Γ(DTα ), Vβ ∈ Γ(DTβ ) with α 6= β and Xa ∈ Γ(D⊥a ). Hence, we get (5.33). For Xa ∈ Γ(D⊥a ), Yb ∈ Γ(D⊥b )

with a 6= b and W ∈ Γ(Dθ) using (2.3), (2.5), (2.9)∼(2.11) and (3.1), we have

g(h(Xa, Yb), NW ) = g(∇̄XaYb, NW ) = −g(Yb, ∇̄XaNW )
= −g(Yb, ∇̄XaFW ) + g(Yb, ∇̄XaTW )
= −g(FYb, ∇̄XaW ) + g(Yb,∇XaTW )
= g(∇XaFYb,W ) + g(Yb,∇XaTW )
= −g(AFYbXa,W ) + TW (lnσa)g(Xa, Yb)
= −g(h(Xa,W ), FYb) + TW (lnσa)g(Xa, Yb).

Using the fact that g(Xa, Yb) = 0 and g(h(Xa,W ), FYb) = 0, consequently we get g(h(Xa, Yb), NW ) = 0. Thus,
we get (5.34).
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Lemmas 5.1 and 5.2 show us partially the behavior of the second fundamental form h of the multiply warped
product generalized semi-invariant submanifold has the form Mθ ×f1 MT

1 × · · · ×fk MT
k ×σ1 M

⊥
1 × · · · ×σl M⊥l

in the normal subbundles N(Dθ) and F (D⊥1 )⊕ . . .⊕ F (D⊥l . By using (5.26)∼(5.29) and (5.32)∼(5.33), we
immediately have the following result.

Corollary 5.1. Let M be a multiply warped-product generalized semi-invariant submanifold in the form Mθ ×f1 MT
1 ×

. . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l of a l.p.R. manifold (M̄, F, g) such that the invariant normal subbundle D̄T = {0}.
Then M is (DTα ,D⊥a ), (DTα ,Dθ) and (DTα ,DTβ )-mixed geodesic, for 1 ≤ α, β ≤ k with α 6= β and 1 ≤ a, b ≤ l.

Lastly, we give another main result of this section.

Theorem 5.2. Let M be a multiply warped product (Dθ,D⊥a )-mixed geodesic generalized semi-invariant submanifold in
the formMθ ×f1 MT

1 × . . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l of a l.p.R. manifold (M̄, F, g) such that its invariant normal
subbundle D̄T = {0}. ThenM is a locally multiply direct product in the formMθ ×MT

l × . . .×MT
k ×M⊥1 × . . .×M⊥l

if and only if g(h(D⊥a ,D⊥a ), NDθ) = 0 and M is DTα - geodesic, where 1 ≤ α ≤ k and 1 ≤ a ≤ l.

Proof. Let M be a multiply warped product (Dθ,D⊥a )-mixed geodesic generalized semi-invariant
submanifold in the form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1 M

⊥
1 × . . .×σl M⊥l of a l.p.R. manifold (M̄, F, g)

such that its invariant normal subbundle D̄T = {0}. If M is a locally multiply direct product in the form
Mθ ×MT

l × . . .×MT
k ×M⊥1 × . . .×M⊥l , for 1 ≤ α ≤ k and 1 ≤ a ≤ l, the warping functions fα and σa are

constants. By (5.31) and the fact thatM is (Dθ,D⊥a )-mixed geodesic for 1 ≤ a ≤ l, we have g(h(Xa, Ya), NW ) = 0
for Xa, Ya ∈ Γ(D⊥a ) and W ∈ Γ(Dθ). Which means that g(h(D⊥a ,D⊥a ), NDθ) = 0. On the other hand, using (5.25).
we have g(h(Uα, Vα), NW ) = 0 for Uα, Vα ∈ Γ(DTα ) and W ∈ Γ(Dθ), since W (ln fα) = TW (ln fα) = 0 for
1 ≤ α ≤ k. Using this fact and (5.30), it follows that h(Uα, Vα) = 0 for Uα, Vα ∈ Γ(DTα ). Which says us M is
DTα -geodesic for 1 ≤ α ≤ k.

Conversely, let g(h(D⊥a ,D⊥a ), NDθ) = 0 and M is DTα - geodesic for 1 ≤ α ≤ k and 1 ≤ a ≤ l. Then, we have
TW (lnσa) = 0 from (5.31), where W ∈ Γ(Dθ). Hence, it follows that σa is a constant for 1 ≤ a ≤ l. On the other
hand, for any Uα, Vα ∈ Γ(DTα ) and W ∈ Γ(Dθ), we have

W (ln fα)g(Uα, FVα) = TW (ln fα)g(Uα, Vα) (5.35)

from (5.25). If we take W = TW in (5.35) and using (3.3), we obtain

TW (ln fα)g(Uα, FVα) = cos2θW (ln fα)g(Uα, Vα). (5.36)

By replacing Vα by FVα in (5.36), then (5.36) becomes

TW (ln fα)g(Uα, Vα) = cos2θW (ln fα)g(Uα, FVα). (5.37)

From (5.35) and (5.37), we get
cos2θW (ln fα)g(Uα, FVα) = 0, (5.38)

for any Uα, Vα ∈ Γ(DTα ), 1 ≤ α ≤ k. Since M is proper, cosθ 6= 0, we can deduce that W (ln fα) = 0 from (5.38).
Namely, we find each fα as a constant. Thus, M must be a locally multiply direct product in the form
Mθ ×MT

1 × . . .×MT
k ×M⊥1 × . . .×M⊥l .

6. An inequality for multiply warped product generalized semi-invariant submanifolds

In this section, we shall establish an inequality for the squared norm of the second fundamental form in
terms of the warping functions for multiply warped product generalized semi-invariant submanifold in the
form Mθ ×f1 MT

1 × . . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l .
Remark 6.1. Let M = Mθ ×f1 MT

l × . . .×fk MT
k ×σ1

M⊥1 × . . .×σl M⊥l be a multiply warped product
generalized semi-invariant submanifold of a l.p.R. manifold (M̄, F, g) and let d = dimMθ, mα = dimMT

α

and na = dimM⊥a . We choose orthonormal basis of Mθ, MT
α and M⊥a , respectively as

{e∗1 = sec θTe∗1, . . . , e
∗
d = sec θTe∗d}, {eα1 = Feα1 , . . . , e

α
zα = Feαzα , e

α
zα+1

= −Feαzα+1
. . . , eαmα = −Feαmα} and

{wa1 , . . . , wana}. Then the orthonormal basis ofNDθ and FD⊥a , respectively are {ē1 = csc θNe∗1, . . . , ēd = csc θNe∗d}
and {Fwa1 , . . . , Fwana}, where 1 ≤ α ≤ k and 1 ≤ a ≤ l.
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Theorem 6.1. Let M = Mθ ×f1 MT
1 × . . .×fk MT

k ×σ1 M
⊥
1 × . . .×σl M⊥l be a multiply warped product (Dθ,D⊥a )-

mixed geodesic generalized semi-invariant submanifold of a l.p.R. manifold (M̄, F, g) such that its invariant normal
subbundle D̄T = {0}. Then the squared norm of the second fundamental form of M satisfies

‖ h ‖2 ≥ cot2 θ

l∑
a=1

na ‖ ∇(lnσa) ‖2

+ csc2 θ

k∑
α=1

‖ ∇(ln fα) ‖2
(

(1 + cos θ)2mα − 4 cos θzα

)
,

(6.1)

where na = dimM⊥a , mα = dimMT
α and zα as in Remark 6.1. Moreover, the equality sign in (6.1) holds, identically if

and only if Mθ is also totally geodesic in M̄ .

Proof. Let M = Mθ ×f1 MT
1 × . . .×fk MT

k ×σ1 M
⊥
1 × . . .×σl M⊥l be a multiply warped product (Dθ,D⊥1≤a≤l)-

mixed geodesic generalized semi-invariant submanifold of a l.p.R. manifold (M̄, F, g) such that its invariant
normal subbundle D̄T = {0}. From (2.8), we derive

‖ h ‖2 = ‖ h(Dθ,Dθ) ‖2 +

k∑
α=1

‖ h(DTα ,DTα ) ‖2

+

l∑
a=1

‖ h(D⊥a ,D⊥a ) ‖2 +2

k∑
α=1

‖ h(Dθ,DTα ) ‖2

+2

l∑
a=1

‖ h(Dθ,D⊥a ) ‖2 +2
∑

1≤α<β≤k

‖ h(DTα ,DTβ ) ‖2

+2
∑

1≤a<b≤l

‖ h(D⊥a ,D⊥b ) ‖2 +2

k∑
α=1

l∑
a=1

‖ h(DTα , ,D⊥a ) ‖2 .

(6.2)

Here by Corollary 5.5 and the fact that (Dθ,D⊥a )-mixed geodesic, we have h(Dθ,DTα ) = 0, h(Dθ,D⊥a ) = 0,
h(DTα ,D⊥a ) = 0 and h(DTα ,DTβ ) = 0 for 1 ≤ α < β ≤ k and 1 ≤ a ≤ l. So we obtain

‖ h ‖2 ≥ ‖ h(Dθ,Dθ) ‖2 +

k∑
α=1

‖ h(DTα ,DTα ) ‖2

+

l∑
a=1

‖ h(D⊥a ,D⊥a ) ‖2 .
(6.3)

In view of (3.6), we have

‖ h ‖2 ≥
k∑

α=1

g

(
h(DTα ,DTα ), NDθ

)2

+

k∑
α=1

l∑
b=1

g

(
h(DTα ,DTα ), FD⊥b

)2

+

l∑
a=1

g

(
h(D⊥a ,D⊥a ), NDθ

)2

+

l∑
a,b=1

g

(
h(D⊥a ,D⊥a ), FD⊥b

)2

.

(6.4)

Hence by (5.30), we know
k∑

α=1

l∑
b=1

g

(
h(DTα ,DTα ), FD⊥b

)2

= 0.

Thereby, we arrive

‖ h ‖2 ≥
k∑

α=1

g

(
h(DTα ,DTα ), NDθ

)2

+

l∑
a=1

g

(
h(D⊥a ,D⊥a ), NDθ

)2

. (6.5)
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In view of decomposition (3.5) and (3.6) the inequality (6.5) can be explicitly written as follows

‖ h ‖2 ≥
k∑

α=1

{ mα∑
i,j=1

d∑
t=1

g

(
h(eαi , e

α
j ), csc θNe∗t

)2}
+

l∑
a=1

{ na∑
r,s=1

d∑
t=1

g

(
h(war , w

a
s ), csc θNe∗t

)2}
.

(6.6)

By (5.31) and the fact that M is (Dθ,D⊥a )-mixed geodesic for 1 ≤ a ≤ l, we have

na∑
r,s=1

d∑
t=1

g

(
h(war , w

a
s ), csc θNe∗t

)2

= csc2 θ

na∑
r,s=1

d∑
t=1

g

(
Te∗t (lnσa)g(war , w

a
s )

)2

.

By Remark 6.1 and (3.3), we obtain

na∑
r,s=1

d∑
t=1

g

(
h(war , w

a
s ), csc θNe∗t

)2

= cot2 θ

na∑
r,s=1

d∑
t=1

(
e∗t (lnσa)g(war , w

a
s )

)2

.

By direct calculation, we get

na∑
r,s=1

d∑
t=1

g

(
h(war , w

a
s ), csc θNe∗t

)2

= cot2 θ ‖ ∇(lnσa) ‖2 na. (6.7)

On the other hand, by (5.25) and Remark 6.1, we have

mα∑
i,j=1

d∑
t=1

g

(
h(eαi , e

α
j ), csc θNe∗t

)2

= csc2 θ

mα∑
i,j=1

d∑
t=1

(
− e∗t (ln fα)g(eαi , F e

α
j ) + Te∗t (ln fα)g(eαi , e

α
j )

)2

= csc2 θ

d∑
t=1

{ zα∑
i,j=1

(
− e∗t (ln fα)g(eαi , Fe

α
j ) + cos θe∗t (ln fα)g(eαi , e

α
j )

)2

+

mα∑
i,j=zα+1

(
− e∗t (ln fα)g(eαi , F e

α
j ) + cos θe∗t (ln fα)g(eαi , e

α
j )

)2}
= csc2 θ

d∑
t=1

(
e∗t (ln fα)

)2{ zα∑
i,j=1

(
(cos θ − 1)g(eαi , e

α
j )
)2

+

mα∑
i,j=zα+1

(
(cos θ + 1)g(eαi , e

α
j )
)2}

.

Upon direct calculation, we find

mα∑
i,j=1

d∑
t=1

g

(
h(eαi , e

α
j ), csc θNe∗t

)2

= csc2 θ ‖ ∇(ln fα) ‖2
(

(1 + cos θ)2mα − 4 cos θzα

)
.

(6.8)

If we use (6.7) and (6.8) in the inequality (6.6), we find the inequality (6.1). Now, in view of Lemmas 5.1 and
5.2, the inequality sign in (6.1) holds identically if and only if

h(Dθ,Dθ) = {0}, g(h(D⊥a ,D⊥a ), FD⊥b ) = {0}. (6.9)

SinceMθ is totally geodesic inM , it follows from the first condition in (6.9) thatMθ is totally geodesic in M̄ .
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