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Abstract — In this study, we consider nonlinear inequality constrained optimiza-
tion problems. We introduce l1 exact penalty function approach with a new smoothing
function based on Bezier curve. Then, we propose a new algorithm by using the dif-
ferentiation based methods to solve for solving l1 exact penalty functions. Finally,
we apply our algorithm to test problems to demonstrate the effectiveness of the algo-
rithm.
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1 Introduction
In this study, we deal with the constrained optimization problem as follows

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, 2, ...,m.
(1)

where f, gi : Rn → R, i ∈ I = {1, 2, ...,m} are continuously differentiable functions.
The set of feasible solution is defined as G0 := {x ∈ Rn|gi(x) ≤ 0, i = 1, 2, ...m}) and it
is assumed that G0 is not empty.

The penalty function is used in order to transform a constrained problem to an uncon-
strained one. The following problem is one of the well-known penalty form of problem
1:

min
x∈Rn

F2(x, ρ) = f(x) + ρ
m∑
i=1

(
g+i (x)

)2
, (2)
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where ρ > 0 is a penalty parameter and g+i (x) = max{0, gi(x)}, i ∈ I . Clearly, F2(x, ρ)
is continuously differentiable exact penalty function. According to Zangwill [1], an exact
penalty function has been defined by

min
x∈Rn

F1(x, ρ) = f(x) + ρ

m∑
i=1

g+i (x). (3)

The obvious difficulty in minimization of F1 is the non-differentiability of F1 which orig-
inates from the presence of “max” operator (when the power of max is equal 1). The
exact l1 penalty function has been studied by many interesting studies [2, 3]. The penalty
approach is used many areas such as academic problems: image processing problems [4],
min-max problems [5], PDE constrained control optimization problems [6] and also many
engineering problems [7].

One of the most popular way of solving these kind of non-smooth problems is smooth-
ing techniques. The idea of behind the smoothing techniques is based on the approx-
imation to the non-smooth objective function by smooth functions. The degree of ap-
proximation is controlled by parameters. The first studies are on smoothing techniques
[8, 9, 10, 11, 12]. In order to improve the smoothing approaches, different types of valu-
able techniques and algorithms are developed [13, 14, 16, 15, 17]. Smoothing techniques
are widely used for solving exact penalty functions. The first study is given in [18] and
many new studies has been arisen with different smoothing techniques [19, 20, 21, 22, 24,
25, 26]. The smoothing exact penalty functions has been an active research area in recent
years [27, 28, 29]

In this paper, we first present a new smoothing function based on Bezier curve. Then,
we apply smoothing approach with exact penalty functions and construct the smoothing l1
exact penalty functions. Finally, we develop a new algorithm by using the differentiation
based methods and the implementation of our algorithm to test problems is demonstrated.

2 Preliminaries
Throughout the paper, xk is denoted as local minimizer and x∗ is denoted as the global
minimizer. R+ denote the non-negative real numbers and ‖ ·‖ denote the Euclidean norm.

The smoothing function of non-smooth functions is defined by the following definition:

Definition 1. [30] Suppose that f : Rn → R is a continuous function and ε > 0. The
function f̃ : Rn×R+ → R is called a smoothing function of f(x), if f̃(·, ε) is continuously
differentiable in Rn for any fixed ε, and for any x ∈ Rn,

lim
z→x,ε→0

f̃(z, ε) = f(x).

The Bezier curve is successfully used for smoothing of the min operator in [31] to
obtain filled function for global optimization. We plan to construct a new smoothing
function for penalty problem by the help of Bezier curve. A Bezier curve is defined as
follows:

Definition 2. [32] A Bezier curve of degree n is a parametric curve with control points
P0, P1, ..., Pn, and it is expressed in terms of Bernstein polynomials given by

Bn
i (t) =

(
n
i

)
(1− t)n−i ti
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where the binomial coefficients are(
n
i

)
=

{
n!

i!(n−i)! if 0 ≤ i ≤ n

0 else

Therefore, a Bezier curve of degree n is explicitly defined by

β (t) =
n∑

i=0

Bn
i (t)Pi, t ∈ [0, 1] .

In general, finding exact solution is quite hard task for the complicated constrained
optimization problems. Therefore, the approximate solution is useful for these types of
problems.The ε−feasible solution for inequality constrained optimization problems is de-
fined as follows:

Definition 3. [20] Assume ε > 0, a point xε is called ε−feasible solution of problem (1),
if

gi(x) ≤ ε, i = 1, 2, . . . ,m.

3 A New Smoothing Approach Based on Bezier Curve for Exact Penalty
Functions

Let us define the h : R→ R such that h(t) = max{t, 0}. It easy to see that, the function
h(t) is re-written as

h(t) = tχA(t), (4)

where A = {t ∈ R : t > 0} and χA : R→ R is indicator function of a set A defined as

χA(t) =

{
1 , t ∈ A,
0 , t 6∈ A.

Considering the Eqn. (4), if anyone smooth out the function χA(t), then smoothing func-
tion of h(t) is obtained. Therefore, we plan to construct a new smoothing function by the
help of Bezier curves. The smoothing function is obtained as follows:

h̃(t, ε) = tχ̃A(t, ε),

where χ̃A(x, ε) is the smoothing function of indicator function χA(t) and

χ̃A(t, ε) =


0 , t ≤ −ε/2
(t+ 0.5ε)2

ε3
(3ε− 2 (t+ 0.5ε)) ,−ε/2 ≤ t < ε/2

1 , t ≥ ε/2

It can easily verify that the function h̃(t, ε) is continuously differentiable on R.

Lemma 1. Assume that ε > 0 then

0 ≤ h(t)− h̃(t, ε) ≤ ε

4
(5)

for any t ∈ R.
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Proof. Since χA(t) = χ̃A(t, ε) when t 6∈ [− ε
2
, ε
2
], it is enough to show that the inequality

(5) holds for any t ∈ [− ε
2
, ε
2
]. For ε > 0 we have

0 ≤ h(t)− h̃(t, ε) = tχA(t)− tχ̃A(t, ε)

≤ ε

4
.

It completes the proof.

It can be concluded from the Lemma 1 that h̃(t, ε)→ h(t) as ε→ 0.
By the help of the smoothing and penalty formulation we can construct the following

problem
min
x∈Rn

F̃1 (x, ε, ρ) (6)

instead of the problem given in (3). Here the function F̃1(x, ρ, ε) is defined as

F̃1(x, ε, ρ) := f(x) + ρ

m∑
i=1

h̃(gi(x), ε).

Now, we are ready to give the following theoretical results.

Theorem 3.1. Let x ∈ Rn and ε > 0 then,

0 ≤ F1(x, ρ)− F̃1(x, ε, ρ) ≤ m

4
ρε. (7)

Proof. From Lemma 1 we obtain

F1(x, ρ)− F̃1(x, ε, ρ) = ρ
m∑
i=1

h(gi(x))− ρ
m∑
i=1

h̃(gi(x), ε)

= ρ
m∑
i=1

(
h(gi(x))− h̃(gi(x), ε)

)
≤ m

4
ρε.

Theorem 3.2. Suppose that {εj} → 0 and xj is a solution of (6) for any ρ > 0. Assume
that x is an accumulation point of {xj}. Then x is an optimal solution for (3).

Proof. The proof is obtained from the Theorem 3.1.

Theorem 3.3. Let x∗ be an optimal solution for the problem (3) and x be an optimal
solution for the problem (6). Then we have the following:

0 ≤ F1(x
∗, ρ)− F̃1(x, ε, ρ) ≤ mρε

4
. (8)
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Proof. From the Theorem 3.1 we have the following:

F1(x
∗, ρ)− F̃1(x

∗, ρ, ε) ≤ F1(x
∗, ρ)− F̃1(x̄, ε, ρ)

≤ F1(x̄, ρ)− F̃1(x̄, ε, ρ)

≤ mρε

4
.

Theorem 3.4. Let x∗ be an optimal solution for (3), x be an optimal solution for (6) and
let x∗ be a feasible solution for (P ) and x be an ε− feasible solution for (P ), then we
have

0 ≤ f(x∗)− f(x̄) ≤ mρε

2
. (9)

Proof. From the Theorem 3.3, we have

F1(x
∗, ρ)− F̃1(x̄, ε, ρ) = f(x∗) + ρ

m∑
i=1

h(gi(x
∗))−

(
f(x̄) + ρ

m∑
i=1

h̃ (gi(x̄), ε)

)
≤ mρε

4

and since
∑m

i=1 h(gi(x
∗)) = 0, we obtain

ρ
m∑
i=1

h̃ (gi(x̄), ε) ≤ f(x̄)− f(x∗) ≤ ρ
m∑
i=1

h̃ (gi(x̄), ε) +
mρε

4
.

Since x̄ is ε−feasible then we have

ρ
m∑
i=1

h̃ (gi(x̄), ε) ≤ mρε

4
.

Therefore, we obtain
0 ≤ f(x∗)− f(x̄) ≤ mρε

2
.

4 Algorithm and Numerical Examples
In this section, we first propose an algorithm to solve (6) as follows:

Penalty Function Algorithm (PFA)

Step 1 Choose the initial point x0. Determine ε0 > 0, ρ0 > 0, 0 < δ < 1, and M > 1, let
k = 0 and go to Step 2.

Step 2 Use xk as an initial point to solve (6). Let xk+1 be the solution.

Step 3 If xk+1 is ε−feasible for (1), then stop and xk+1 is the optimal solution. If not,
determine ρk+1 = Mρk, εk+1 = δεk and k = k + 1, then go to Step 2.
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In order to guaranteed that the algorithm is worked straightly, we have to prove the
following theorem.

Theorem 4.1. Assume that the set

argmin
x∈Rn

F̃1(x, ε, ρ) (10)

is not empty for ρ ∈ [ρ0,∞) and ε ∈ (0, ε0]. Further assume that xk is generated by PFA
when δM < 1. If {xk} has a limit point, then the limit point of xk is the solution for the
problem (1).

Proof. Assume x is a limit point of {xk}. Then there exists set K ⊂ N, such that xk → x
for k ∈ K. We have to show that x is the optimal solution for (1). Thus, it is sufficient to
show (i) x ∈ G0 and (ii) f(x) ≤ infx∈G0 f(x).

i. Let us consider the contrary that x 6∈ G0, i.e. for sufficiently large k ∈ K, there
exist τ0 > 0 and i0 ∈ {1, 2, . . . ,m} such that

gi0(x
k) ≥ τ0 > 0.

Since xj is the global minimum according k−th values of the parameters ρk, εk, for
any x ∈ G0 we have

F1(x
k, εk, ρk) = f(xk) + ρk(τ0 +

εk
2

) +
(m− 1)

2
ρkεk

= f(xk) + ρkτ0 +
m

2
ρkεk

≤ f(x) +
m

2
ρkεk.

If k →∞ then, ρ→∞, ρkεk → 0 and ρkτ0 →∞. Thus, f(x) takes infinite values
on G0 and it contradicts with the boundedness of f on G0.

ii. By considering the Step 2 in PFA and for any x ∈ G0,

F̃1(x
k, εk, ρk) ≤ F̃1(x, εk, ρk) = f(x) +

1

4
mρkεk

When k →∞, we have f(x) ≤ f(x).

Now we are ready to apply PFA to numerical examples. The PFA is programmed in
Matlab R2016A. For these tables we use some symbols in order to abbreviate the expres-
sions. The symbols are described as follows:

Iter : The total number of iterations.
Obj : The value of solution minimum point x∗.

C.val : The maximum value of error value for constraints.
Time : The total time in seconds.

We consider the 4 different test problems which are given in details [26].

75



A. Sahiner, N. Yilmaz, G. Kapusuz and G. Ozkardas

Problem 1. Let us consider the Example in [19]

min f(x) = x21 + x22 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x22 − 1.62 ≤ 0,

g2(x) = x21 + (x2 − 3)2 − 2.72 ≤ 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

The global minimum is obtained at a point x∗ = (0.7254, 0.3993) with the corresponding
value 1.8376.

Problem 2. Let us consider the example in [21],

min f(x) = 1000− x21 − 2x22 − x23 − x1x2 − x1x3
s.t. x21 + x22 + x23 − 25 = 0,

(x1 − 5)2 + x22 + x23 − 25 = 0

(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0

The global minimum is obtained at a points x∗ = (2.5000, 4.2196, 0.9721) and the value
of the point is 944.2157.

Problem 3. The Rosen-Suzuki problem in [19]

min f(x) = x21 + x22 + 2x3 + x24 − 5x1 − 21x3 + 7x4

s.t. 2x21 + x22 + x23 + 2x1 + x2 + x4 − 5 ≤ 0,

x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8 ≤ 0,

x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10 ≤ 0.

In the paper [19], the obtained global value is obtained as −44.23040.

Problem 4. Let us consider the Example in [21, 18]

min f(x) = 10x2 + 2x3 + x4 + 3x3 + 4x6

s.t. x1 + x2 − 10 = 0,

−x1 + x3 + x4 + x5 = 0,

−x2 − x3 + x5 + x6 = 0,

10x1 − 2x3 + 3x4 − 2x5 − 16 ≤ 0,

x1 + 4x3 + x5 − 10 ≤ 0,

0 ≤ x1 ≤ 12, 0 ≤ x2 ≤ 18,

0 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 12,

0 ≤ x5 ≤ 1, 0 ≤ x6 ≤ 16,

In the paper [21], the obtained global minimum value is obtained as 117.000004.
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The PFA is applied to test problems and the detailed result is presented in Table 1. In
Table 1, the total number of function iterations, the value of the objective function at
the optimal point, the maximum error values of constraints at the optimal point and the
total spending time obtained from our algorithm and competing algorithms have been
reported. The numerical results show that our algorithm is present better results among
the all algorithms.

Table 1: The numerical results
PFA Algorithm I Algorithm II

Problem No Iter Obj C.val Time Iter Obj C.val Time Iter Obj C.val Time
1 3 1.8376 −0.0000 0.446089 3 1.8376 −0.0000 0.458735 3 1.8376 −0.0000 0.482673
2 2 944.2156 0.0000 0.345145 4 944.2157 0.0000 0.486354 3 944.2157 0.0000 0.448798
3 3 −44.2338 −0.0000 0.444549 3 −44.2338 −0.0000 0.519692 4 −44.2322 −0.0000 0.552898
4 4 117.0100 0.0000 0.474952 3 117.0182 0.0000 0.795644 3 117.0071 0.0000 0.884352

5 Conclusion
In this study, we propose new smoothing technique based on Bezier Curve for l1 exact
penalty function. We design a new algorithm to solve smoothing penalty expression of
the problem (1). We perform some numerical experiments on test problems and obtain
satisfactorily results.

Our new smoothing technique needs to tune just one parameter. Thus, it is easy to
set the best parameter value in the process of the algorithm. It can be conclude that our
approach provide good approximations to this kind of penalty functions. The algorithm
is user friendly and effective. It has fast convergence properties in comparing with the
other penalty algorithms. Moreover, the numerical results consolidate the efficiency of
the algorithm.
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