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Abstract 

In the present study, we firstly investigated the spatial properties of event horizon of a two-

dimensional black hole. Then we solve Duffin-Kemmer-Petiau (DKP) equation for such a black 

hole metric depending on the signs of spatial variable. After obtaining the exact solutions, we 

determine thermal parameters related to this metric. Finally, the harmonic oscillation behavior of 

the system is evaluated. 

Keywords: DKP equation; Black hole; Thermal parameters; Harmonic oscillation. 

İki Boyutlu Bir Karadelik için DKP Denkleminin Araştırılması  

Öz 

Bu çalışmada ilk olarak iki boyutlu bir kara deliğin olay ufkunun uzaysal özellikleri 

incelendi. Daha sonra böyle bir karadelik metriği için uzaysal değişkenin işaretine bağlı olarak 

DKP denklemi çözüldü. Tam çözümler elde edildikten sonra bu metrik ile ilişkili ısıl nicelikler 

belirlendi. Son olarak sistemin harmonik salınım davranışı değerlendirildi.  

Anahtar Kelimeler: DKP Denklemi; Kara delik; Isıl parametreler; Harmonik osilasyon. 
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1. Introduction 

General relativity is one of the most attractive topics in modern theoretical physics [1-3]. 

In 1915, Einstein proposed that the gravity is a result of geometry and formulated it with the 

following equation, 

𝐺!" = 8𝜋𝐺𝑇!"                 (1) 

where 𝑇!" is the stress-energy tensor of matter fields, G is the Newtonian constant of gravitation 

and 𝐺!" is the Einstein tensor given by 

𝐺!" = 𝑅!" −
#
$
𝑔!"𝑅                (2) 

𝑅!" is the Ricci curvature tensor, 𝑔!" is the metric tensor, and 𝑅 is the scalar curvature. Black 

hole is generally evaluated as a new mathematical or physical mechanism used to construct a link 

between gravity and quantum theory [4-5]. However, the dynamics of physical properties of a 

black hole existing in a four-dimensional curved spacetime can be sometimes extremely hard to 

understand thanks to some difficulties in quantizing gravity. For this reason, one of the best ways 

of overcoming these challenges is to reduce to a two-dimensional spacetime [6-7]. In such a 

spacetime, the Einstein field equation reduces to, 

𝑅 − 𝛬 = 8𝜋𝐺𝑇                 (3) 

where 𝑇 is the trace of two-dimensional energy momentum tensor and 𝛬 is cosmological constant. 

Mann proposed to employ the following line element for a black hole by solving the above 

Einstein field equation in two dimensional spacetime [8] 

𝑑𝑠$ = −𝛼(𝑥)𝑑𝑡$ + #
%(')

𝑑𝑥$               (4) 

where 

𝛼(𝑥) = − )
$
𝑥$ + 2𝑀|𝑥| − 𝐶               (5) 

C is an arbitrary constant and M represents a positive energy source. Here, the number of distinct 

classes of solutions is dependent on the signs of 𝛬, C, and M. For 𝛬 =0, the location of event 

horizon is [8] 

|𝑥| = *
$+

                  (6) 
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According to this equation, the existence of an event horizon appears if C and M are of the same 

sign. If Eqn. (6) is plotted for 𝛬 = 0 [8], we obtain 

 
Figure 1: Dependence of 𝜶(𝒙) scale factor for setting 𝜦 = 𝟎 and different values of M and C 

As shown in Fig. 1, the horizon is surrounded by a timelike region for positive 𝑴 while it is 

enclosed by a spacelike region for negative 𝑴 at 𝑪 = 𝟎 case or right-side graph. In addition, we 

see two distinct horizons for 𝑪 ≠ 𝟎 case or center-side graph. Finally, any horizon has not been 

observed for left-side graph since the absolute value of 𝒙 is greater than zero. 

If 𝜦 ≠ 𝟎, event horizon is placed at [8] 

|𝒙| = 𝟐𝑴±/𝟒𝑴𝟐1𝟐𝑪𝜦
𝜦

                (7) 

From the above equation, one can say that the existence of an event horizon is mainly in 

accordance with the 𝑪𝜦 ≤ 𝟐𝑴𝟐 equality. If we make a plot of Eqn. (7) under this circumstance 

[8], we get  

Figure 2: Type of solutions for running values of 𝜦 

From Fig. 2, we can easily say that α(x) equation have ten distinct of solutions whose behaviour 

are anti-symmetric structure with respect to each other. Further, any exist of restriction does not 

appear in the first two columns while the presence of a restriction exists in the other columns.  
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The DKP equation was proposed by Duffin, Kemmer and Petiau [9-11] and is 

mathematically identical to the general form of Dirac equation but it is uniquely characterized by 

𝜷 matrices instead of 𝜸 matrices. However, we sometimes encounter some difficulties to solve 

the DKP equation in (3 + 1) dimensions since it is a 16-component wave equation. An alternative 

way to overcome this problem is to evaluate the DKP equation in the lower dimensions in order 

to obtain the behavior of semi-classical and quantum gravity. In the literature, we find many 

studies related to the general relativity in (1 + 1)-dimensions [12-15]. 

In this work, we firstly obtained the exact solution of the DKP equation for the line element 

of a two-dimensional black hole described at Eqn. (4). In the second section, we investigate 

thermal parameters related to these solutions. Then the harmonic oscillation frequency is obtained 

in section 4. Last section is devoted to discussing our results. 

 

2. The Exact Solution of the DKP Equation in (1+1) - Dimensions 

The DKP equation in curved spacetime is given by [16-18] 

A𝑖𝛽!D𝜕! − 𝛴!G − 𝑚I𝛹4(𝑡, 𝑥) = 0                           (8) 

where 𝑚 is particle mass, 𝛽! = 𝛾! ⊗ 𝐼 + 𝐼 ⊗ 𝛾! are the Kemmer matrices, 𝛾! = 𝑒(5)
! 𝛾(5), 

𝛹4(𝑡, 𝑥) shows the 16-component Kemmer wave function and 𝛴! are generally known as the 

spinorial connections defined by  

𝛴! = Г! ⊗ 𝐼 + 𝐼 ⊗ Г!                (9) 

where 𝐼 is the 4⊗ 4 identity matrices and Г! are the spin connections for spin-1/2 particle 

calculated with the following equation 

Г6 = − #
7
𝑔!%Г"6

% [𝛾! , 𝛾"]                              (10) 

and Г"6
%  are the Christoffel symbols that are directly written in terms of the metric tensor as 

Г!"% = #
$
𝑔%8D𝜕!𝑔8" + 𝜕"𝑔8! − 𝜕8𝑔!"G                          (11) 

Unal [19-21] proved that the Kemmer wave function does not change under local Lorentz 

transformations, when the DKP particles are mathematically considered as a system of the product 

of two-identical spin-1/2 particles. Hence, the Kemmer wave function and 𝛽! matrices are 

reduced to  
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𝛹4(𝑡, 𝑥) = 𝛹9(𝑡, 𝑥) ⊗𝛹9(𝑡, 𝑥) = T
𝜌
𝜑W⊗ T

𝜌
𝜑W = X

𝜌𝜌
𝜌𝜑
𝜌𝜑
𝜑𝜑

Y = Z

ℎ#
ℎ:
ℎ:
ℎ$

\ 𝑒15;<        (12) 

𝛽!(𝑥) = 𝜎!(𝑥)⊗ 𝐼 + 𝐼 ⊗ 𝜎!(𝑥)               (13) 

since the usual Dirac matrices are replaced with the Pauli spin matrices, and also the Kemmer 

wave function oscillates freely with time. If we choose the Pauli matrices as 𝜎! =

^𝜎= = _1 0
0 −1a ,−𝑖𝜎

$ = _0 −1
1 0 ab and substitute Eqn. (12) and Eqn. (13) into Eqn. (8), we 

get the following set of coupled differential equations: 

c2𝑖𝑤𝛼1
#
$ −𝑚eℎ# + 2f𝛼

#
$𝜕' −

𝛼>

2𝛼
#
$
gℎ: = 0 

c2𝑖𝑤𝛼1
#
$ +𝑚eℎ$ + 2f𝛼

#
$𝜕' −

𝛼>

2𝛼
#
$
gℎ: = 0																																																																							(14) 

 ℎ: =
%
"
#

?
𝜕'(ℎ$ − ℎ#) 

After some mathematical algebra, the above equations yields 

ℎ# + ℎ$ = 2𝑖𝑤𝛼1
"
#(ℎ$ + ℎ#)             (15) 

_ @
#

@'#
+ ;#

%#
+ ?#

A
#
%
a𝛷 = 0                               (16) 

where  𝛷 = ℎ$ − ℎ#. If we insert Eqn. (5) into Eqn. (16), we find the following equation 

_ @
#

@'#
+ A;#

()'#1A+|'|C$*)#
− ?#

$
#

)'#1A+|'|C$*
a𝛷(𝑥) = 0          (17) 

The exact solution of Eqn. (17) depends on the sign of the 𝑥 variable: 

• 𝒙 < 𝟎 case: Eqn. (17) becomes 

_ @
#

@'#
+ A;#

()'#CA+'C$*)#
− ?#

$
#

)'#CA+'C$*
a𝛷(𝑥) = 0          (18) 

This second order differential equation resembles the associated Legendre differential equation, 

and solutions are obtained as follows [22] 
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𝛷(𝑥) = √𝛬𝑥$ + 4𝑀𝑥 + 2𝐶 X𝐶#𝑃D? m
'C$%

EF$%G
#
1	#&%

n + 𝐶$𝑄D? m
'C$%

EF$%G
#
1	#&%

nY        (19) 

•  𝒙 > 𝟎 case: Eqn. (17) takes 

_ @
#

@'#
+ A;#

()'#1A+'C$*)#
+ ?#

$
#

)'#1A+'C$*
a𝛷(𝑥) = 0          (20) 

Similarly, for the solution of this equation, we find the following result [22] 

𝛷(𝑥) = √𝛬𝑥$ − 4𝑀𝑥 + 2𝐶 X𝐶#𝑃D? m
'1$%

EF$%G
#
1	#&%

n + 𝐶$𝑄D? m
'1$%

EF$%G
#
1	#&%

nY        (21) 

where 

𝑛 = #
$
D−1 + √1 + 2𝑚$𝛬G             (22) 

𝑚 = r1 +
F#'% G

#

1F$%G
#
C#&%

              (23) 

The values of m parameter are integers because of definition. Thus, the energy is obtained as 

𝐸I = ħ√2𝑀$ − 𝐶𝛬𝑙              (24) 

where 𝑙 is a positive integer number.  

3. Calculation of the Thermal Quantities 

The partition function of the DKP particle is given by [23] 

𝑍(𝛽) = ∑ 𝑒18(J(1J)) = ∑ 𝑒1ħ8√$+#1*)IM
IN:

M
IN:            (25) 

Before determining the thermal quantities, we need to test the convergence of series of Eqn. (25) 

by using the integral test which shows whether the integral converges or diverges. The function 

from Eqn. (25) is 

𝑓(𝑥) = 𝑒1ħ8√$+#1*)I              (26) 

where ħ = 1 is adopted. If the integral test is performed to Eqn. (26), we obtain 

∫ 𝑓(𝑙)	𝑑𝑙M
: = #

√$+#1*)
#
8

                                (27) 
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so, function is convergent. In the meantime, the numerical partition function is calculated with 

the help of a method depending on the Euler–MacLaurin formula [24] defined by the following 

equation 

∑ 𝑓(𝑥)M
IN: = #

$
𝑓(0) + ∫ 𝑓(𝑥)𝑑𝑥M

: − ∑ O#*
($P)!

𝑓$P1#(0)M
PN#                       (28) 

where 𝐵$P are the Bernoulli numbers, 𝑓$P1# is the derivative of order 2𝑝 − 1. If we write the 

exact form of partition function 𝑍 by using Eqn. (28), we get 

𝑍(𝛽) = #
$
+ #

√$+#1*)
#
8
+ √$+#1*)

#$
𝛽 − R√$+#1*)S

+

T$:
𝛽=          (29) 

where the terms up to 𝑝 = 2, with 𝐵$ =
#
U
, and 𝐵U = − #

=:
 are chosen. If the following thermal 

quantities like the Helmholtz free energy, the mean energy, the entropy, and the specific heat are 

calculated by using the partition function, 

𝐹 = − #
8
ln𝑍               (30) 

𝑆 = 𝛽$ @V
@8

               (31) 

< 𝐸 >= − @ lnW
@8

                           (32) 

𝐶X = −𝛽$ @YJZ
@8

               (33) 

the resulting solutions are messy, so we will discuss these quantities numerically with the help of 

MATHEMATICA [25] and thermal quantities given by Eqn. (30-33) are plotted depending on 

some values of 𝐶 parameter for 𝑀 ≠ 0 and 𝛬 ≠ 0 by considering 𝐶𝛬 ≤ 2𝑀$ restriction and are 

shown in Fig. 3. From Fig. 3, we can say that thermal capacity is going to a fixed value at high 

temperature since a physical system has always a constant thermal capacity and also, we observe 

the same behavior in the entropy. Besides, the behaviour of mean energy is reasonable because 

the contribution coming from every dimension is almost [\
$

, and then total energy is 

approximately equal to 𝑘𝑇 like graph.  
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Figure 3: Thermal quantities depending on 𝐶 for 𝑀 ≠ 0 and 𝛬 ≠ 0 

 

4. The Harmonic Oscillator Behavior of the DKP Particles 

To determine the range of oscillations of DKP particles, the form of the quadratic 

differential equation must be transformed to resemble the form of the differential equation of the 

harmonic oscillator given by 

T @
#

@'#
+𝑤$W 𝑦(𝑥) = 0              (34) 

where w represents the behavior of harmonic oscillation frequency. If we compare Eqn. (34) with 

Eqn. (17), we get 

𝑤$ = A;#

()'#1A+|'|C$*)#
− ?#

$
#

)'#1A+|'|C$*
            (35) 

and the following inequality corresponds to the range of above equation: 

$+
)
−�_+

)
a
$
+ _$;

)
a
$
− $*

)
< |𝑥| < $+

)
+�_+

)
a
$
+ _$;

)
a
$
− $*

)
 .        (36) 
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5. Conclusions 

In this study, we solved the DKP equation for a two-dimensional black hole. In this case, 

the general solution is obtained by means of the associated Legendre Polynomials based on the 

signs of the x variable. Energy spectrum was obtained with the help of m parameter of Associated 

Legendre polynomials, and thermal quantities were calculated from energy spectrum. When the 

thermal quantities are graphically examined depending on the temperature, it is seen that the 

increases in the temperature alter these quantities. In addition, these changes show shifts 

depending on the different values of the C parameter of the metric. After all, we obtained the 

harmonic behavior of the DKP particles by determining the oscillation range. The oscillator 

behavior of particle is restricted in a spatial regime given by Eqn. (36). In conclusion, we can say 

that studying in the lower dimensions provides insights into the higher dimensions. 
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