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Abstract: In the present paper, we investigate the casual characterizations of W-directional
curves of null curves in Minkowski 4-space. In section two, the basic concepts of curves with
their Frenet equations in Minkowski 4-space are provided. In section three, the principal normal
directional and donor curves of null curves in Minkowski 4-space are defined and their casual
characterizations are also derived. In section four, we define the B, directional and donor curves
of null curves and show their properties as well. In the last section, the B, directional and donor
curves of null curves are also defined and their causal characterizations are provided.
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Minkowski 4-Uzayinda Null Egrilerin W-Yonlii Egrilerinin Karakterizasyonlari
Uzerine

Ozet: Bu makalede, Minkowski 4-uzayida null egrilerin W-yonlii egrilerinin basit
karakterizasyonlarini inceliyoruz. fkinci béliimde, Minkowski 4-uzayinda Frenet denklemleri ile
egrilerin temel kavramlar1 verilmistir. Ugilincii béliimde, Minkowski 4-uzayindaki null
egrilerinin temel normal yoni ve dondr egrileri tamimlanmis ve bunlarin  basit
karakterizasyonlar1 da tiiretilmistir. Dordiincii boliimde, null egrilerin B; yonii ve dondr
egrilerini tanimliyoruz ve ayrica temel dzelliklerini gosteriyoruz. Son bolimde, null egrilerin B,
yonii ve dondr egrileri de tanimlanmis ve nedensel karakterizasyonlari verilmistir.
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1. Introduction

The theory of differential geometry in Minkowski space has been studied by numerous
mathematicians and physicists since it has significant roles in the growth of modern
physics, especially in the theory of gravitation and relativity. One of the fascinating
topics in the theory of differential geometry is the differential geometry of curves in
Minkowski space. Curves in Minkowski space can be spacelike, timelike, or null
locally, depending on the causal properties of the tangent vector fields along the curve
[8,9]. In general, the properties of classical differential geometry can be extended to
those of properties of spacelike and timelike curves in Minkowski space. However,
since the arc length parameter of null curves vanishes everywhere, we need a particular
approach to find their properties.

The theory of null curves itself is very common in physics. Nersessian and Ramos
demonstrated in 1998 that a geometric particle model associated with a null curve
occurs in Minkowski space [10]. In addition, the classical relativistic string is a surface
or world-sheet in Minkowski space that satisfies the Lorentzian analogue of the minimal
surface equations. If string equations are reduced to the wave equation and a few extra
basic equations, it turns out the string that is equal to pairs of null curves or a single null
curve in the case of opening [11,12]. General studies of differential geometry of null
curves in Minkowski space have been given by Duggal, Bejancu, and Jin in [5,13] and
for additional sources, we refer to [1,2,3,4,12].

The notion of principal (binormal)-directional curve and princial-(binormal) donor
curve of Frenet curves in E3 was first introduced by Choi and Kim [14]. They present
characterizations for the general and slant helices via their associated curves and
provide the way to construct them from a planar curve. This theory was later extended
to the directional curve and donor curve of Frenet curves in Minkowski 3-space such as
those of a null curve in [16] an non null Frenet curves in [21,23]. Furthermore,
associated curves of Frenet curves in three dimentional compact Lie group has been
studied by Kiziltug and Onder and provided in [19]. Some other studies investigated the
properties of directional curve and donor curve of Frenet curves can be seen in
[15,17,18,20,22].

Motivated from the works above, this study aims to investigate the properties W-
directional curves of null curves in Minkowski 4-space. We organized our paper as
follow: In Section 2, we provide the basic theory of curves in Minkowski 4-space. In
Section 3, we define the principal normal directional and donor curves of null curves in
Minkowski 4 space and provide their causal characteristics. In the following two
sections, the definitions and the casual characteristics of the B, and B, directional and
donor curves of null curves in Minkowski 4-space are provided, respectively.

2. Preliminaries

Minkowski space E7T is the real vector space R* equipped with the standard indefinite
flat Lorenzian metric defined by

g(,) = —dx? + dx? + dx? + dx2,

where (x4, x5, x3,X,) is a coordinate system in E7.

Let p = (P1, P2, P3,P4), 4= (41,92,q3,q4), ad 1 = (1y,73,73,73) be vectors in Ey.
The vector product in Minkowski spacetime E7 is defined with the determinant
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where e;, e,, e3 and e, are mutually orthonormal vectors satisfying equations

el/\ez/\63=e4, 62/\63/\64281, e3/\e4/\el=62,
84/\91/\82 = —e3.

A vector v € E7 is timelike if g(v,v) < 0, spacelike if g(v,v) > 0 or v = 0 and null

(lightlike) if g(v,v) = 0 and v # 0. The norm of v € E7 is given by||v|| = /|g(v, v)|.
Locally, curves in Minkowski 4-space is timelike (resp. spacelike or null) if its tangent
vector is timelike (resp. spacelike or null) along the curves.

Let a: I — E7 be curve in Minkowski 4-space. Suppose a be a spacelike curve with non
null frame vectors parametrized by arc length s in spacetimeE?. Then, we have

_ _T'(s) _ N'(s) + k()T (s)
T =), M= K(s)’ B = (s) ’ 1)

B,(s) = uT(s) AN(s) A By(s)

and
k(s) =TI >0,  7(s) =I[IN"(s) + ()Tl (2)

where . = +1 which makes det(T(s), N(s), B;(s), By(s)) = 1.

Unit speed spacelike curve a with non null frame vectors satisfies the following
equation [1]

T' 0 kK 0 01T
N'|_ |k 0  upr OJfN @)
B 710 wmt 0 wo||Bsif
B, 0 0 puso 0]|B:

Let B:1 - E7 be a unit speed pseudo null curve that is a unit speed spacelike curve
where its principal normal and its second binormal vector fields are null vectors. The
Frenet equation of B (s) is given by

T' 0 k 0 O07]T
N’ 0 0 t Of|N
B/|"|l0 ¢ 0 —t||B1 ()
B,’ k 0 —o 0l]B;
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where {T, N, B;, B, } is orthonormal basis vectors satisfyig
g(T'T) = g(BllBl) = 1) g(N:N) = g(BZ'BZ) = 0' g(N’BZ) = 1!
g(T,N)=g(T,B,) = g(T,B;) = g(N,By) = g(B,B,) = 0.

Here, k, T and o are curvature, torsion and bitorsion of curves, respectively. The value
of curvature x is 0 when curve is straight line and 1 in all other case for pseudo null
curve [7].

Let y:1 - ET be an arbitrary null curve in Minkowski spacetime E7. Then, the Frenet
frame of y(s) is given by

(s) 1
T(s) = —= =—'(s),
/g(y”(s),y”(s)) o(s) (5)

NS =T'() = (=) 1'(s) + (o) ¥/ (s). ©)

@(s) @(s)

g(v"" ") T} (7)

1 "
Bl(s) - g(T,yHI(S)) {y (S) - Zg(T,Y”’(S))

(" &¥"®) ,
Ty A OF

(' AY" () Ay (s)),

1 122 _
=—o&7 (s)

B,(s) =T(s) ABy(s) AN(s) = (8)

1
@ (s)3

where ¢(s) = \/g(y”(s),y"(s))-

For arbitrary null curve y(s) such that ¢(s) = Jg(y”(s),y”(s)) # 0, we have an
orthonormal frame {T (s), N(s), B1(s), B,(s)} of y(s) such that it satisfies

g(T, T) = g(By,B;) =0, g(N,N) = g(By,B,) = g(T,By) =1,
g(TrN) = g(T:Bz) = g(NiBl) = g(NIBZ) = g(Bl'BZ) = 0

Frenet equations associated with the Frenet frame {T(s), N(s), B;(s), B,(s)} are given
by

T'(s) = N(s),
N'(s) = —k,(s)T(s) — B1(s), )
Bi(s) = k1(s)N(s) + ky(s)B,(s),

By(s) = —kz(s)T(s),

where
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1
i (5) = 505 (90 + 20()0" () = (9 (9)') (10)

1
ka(s) = = 5 det (Y (). y" (91" (). y @ s).

Curve C = y(I), which satisfies the assumption above, is called a Cartan curve with a
Cartan frame {T(s),N(s),B;(s),B,(s)} and Cartan curvatures{k,(s),k,(s)}.
Furthermore, it is easy to see that

N/\TABl = Bz, N/\Bz/\T = T, NABlABZ = Bl' TABZABI = N. (11)
The pseudo-arc length parameter for arbitrary null curve is defined by u(s) =
f:o ‘:/g(y”(t),y”(t)) dt, so that we have u(s) = 1 [2].

With analogues to the definition of the W-directional and donor curves in [6] we have
the following definition.

Definition 1. Let y: I — E7 be a curve in Minkowski 4-space parametrized by arc length
or pseudo arc length with Frenet frame {T, N, B;, B,} and W be a unit vector field along
y. The curve y:1 — E7 is said to be W-directional curve of y if the tangent vector field
T of the curve 7 equals to the vector W, i.e.,T = W. On the other hand, the curve y is
said to be W donor curve of T.

If W =T, then the tangent directional curve ¥ of the null curve y is trivially y. By this
notion, in the next part, we will not discuss further about the tangent directional-donor
curves of null curves in Minkowski 4-space.

3. Principal Normal Directional Curves of Null Curves

In this section, we define the principal normal directional curves of null curves and
investigate their casual characteristics.

Definition 2. Let y be a null curve in Ef. The curve ¥ is said to be the principal normal
directional curve of y if the tangent T of 7 equals to the principal normal vector N of y.
Conversely, y is said to be the principal normal donor curve of y.

By the definition 2, we have # = [ N(s)ds. Note also that # is a spacelike curve since
its tangent vector is spacelike along the curve.

Theorem 3. Let # be the principal normal directional curve of null curve y in E7.
Suppose {T, N, By, B,} and {T, N, By, B, } are the Frenet frames of y and 7, respectively.
Then,

__kaT+B; & _ —kqikiT+k B1—2k1k;B; 5 _ kik,T—k;B1—kiB;

1= » P2 = :
2k J|—2k1(k1)2+4k§k§| J‘—zkl(k;)2+4k§k§|

(12)

Proof. Let # be the principal normal directional curve of null curve y, then T = N.
Therefore,
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T'=N'=—k,T - B;.

Taking the norm of equation (12) yields
k2 =2k, = ||T'|| = 2k,

As a consequence,

= T’ —k,T—B;
| V2kq

Differentiating N gives us

T/ _ _le_Bl !
N _( V2K )

(=kiT—kyiN—kiN—k;B;)\/2ky  ki(=k;T—B;)

2k1 2k11/2k1

—2k, K T—4k?N—2k kyBy+k ki T+k1B;

2kq+/2k1
_ —kqkiT—4k?N+k1B;—2k1k;B,
2kq1+/2k4 )
Furthermore,
~, ~  —k{kiT—4k?N+kiBi—2kkyBy+4k?N  —k,kiT+kiB1—2k.k;B,
N 4+ kT = =
2kq+/2k1
and
= = (k)" +2k, k3
N+ «T|| = =252,
4Kk?
Therefore,
E _ IVI+KT _ —k1k£T+k£B1—2k1szz
1 = 757 F .
N'+kT 2
INTHRTIE J|-ara (k) +ar2ig]

(13)

(14)

(15)

(16)

(17)
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Taking 4 = —1 and equations (1) and (11), we have

— _Nx (—le—Bl) —kq K} T4k} B —2k k2B,
V2ka \/|—2k1(k;)2+4k§k§‘

_ kik1By—2k3ky(-T)—kyki(—B; )—2k1k; By

2ky [|-(k})*+2k, k3|

_ 2k%k,T—2kqk,B1+2k k1B,

ka |- (k1) +2k1 03|

Hence, the proof is completed.

Corollary 4. Let 7 be the principal normal directional curve of null curve y in E$. Then

7 is a spacelike curve with spacelike principal normal vector field.

Proof. From equation (14), we have x? = 2k, which implies k; > 0. Therefore, taking
the norm of N in (15) gives us ||[N]| = 1 > 0. Hence, N is spacelike and it completes the

proof.

Theorem 5. Let 7 be the principal normal directional curve of null curve y in Ef. The
curvature k, torsion t and bitorsion ¢ of 7 can be written in terms of k; and k, which

are the first null curvature and the second null curvature of y, respectively by

K =2ky, (18)

1 7
T= m\/|—(k1)2 + 2k, k3], (19)

2
_ —2(Kk}) kp+2kikiky+2k k3 +2k1ky'ky,  2kqkika|—ki +kik3+2k koK) (20)

/|—(k{)2+2k1k§| \—(k§)2+2k1k§|3

Proof. By equation (2), (14) and (17), we have

k= || = 2k and v = |V + wT|| = 7= T=Ce)? + Zkak3]

From equations (18) and (19), we have

NECHEST R

so that B, becomes
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= kik,T—k;B—k}
BZ - K27 ' (21)

Taking derivative of equation (21) gives us

_ 2kikor?t+kikikit—kikox?t -2k kakk'T —kyK2T+k K%t +2k kKT

B = T B
2 K42 T K472 L (22)
n —k%KZT—ki’K2T+kiK2T’+2kiKK’TB
K472 2-
Applying equation (3), we have
_ 2(k{)2k2+2k1k{k;+2k1k§+2k1k{’k2 2k ki koK?T +8k Kk kyKK'T (23)
- K21 K472 )

Substituting equations (18) and (19) into equation (23), we get equation (20).

Theorem 6. Let y be a null curve which is a principal normal donor curve of spacelike
curve y. Suppose k, T and o are the curvature, torsion and bitorsion of 7, respectively,
then

kl = K?Z and kz = i KZTZ + (K,)z. (24)

Proof. By solving equation (18), we find

2
K =2k, = k? = 2k, :>k1="7

and from equation (18), we get

—(k)? + 2k k3 = k¥t + (kK')? = K2k

2kt = /|=(k})? + 2k k2| = K?1?

= k, = +/k271% + (k)2
This completes the proof.

4. B4 Directional Curves of Null Curves

In this section, the casual characterizations of the B, directional curves of null curves
are investigated.
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Definition 7. The curve y(s) is called the B, directional curve of a null curve y(s) if
the tangent T(s) of #(s) equals to the first binormal vector B,(s) of null curve y(s).
Conversely, y(s) is called the first binormal donor curve of 7(s).

By definition 7, we have 7(s) = | B;(s)ds. Note also that #(s) is a null curve since its
tangent vectors are null along the curve.

Theorem 8. Let y(s) be a null curve in Ef. The B, directional curve 7(s) of y(s) is
said to be parametrized by pseudo arc length s if and only if

k? +k3=1 (25)

where k, and k, are the first and the second null curvatures of y (s).

Proof. Let y be the B; directional curve of null curve y. Then, for any null curve 7 we
have ' = B, and " = kN + k,B,. Consequently, ¥ is a unit speed curve if and only
if g(7",7") = k% + k% = 1. Thus, this completes the proof.

Theorem 9. Let 7 be the B; directional curve of null curve y in Ef and jhbe
parametrized by pseudo arc length s. Suppose {T, N, By, B,} and {T, N, B, B,} are the
Frenet frames of y and ¥, respectively. Then

T = Bll (26)
N = kiN + k3B, (27)
k)? + (ky)?
B, =T—k;N—#Bl—k532, (28)
EZ == kzN + (k:,lkz - klké)Bl - lez. (29)

Proof. Since 7 is the B directional curve of null curve ¥, T = B;. Therefore,

7' = By, (30)
]7” = klN + szZa (31)
)7/// — —(k% + k%)T + kiN — lel + kéBZ =-T+ kiN — lel + kéBz; (32)

and

9T TN =+ =1 = =1, (33)
9@ 7" = 2hy + () + (kD)2 (34)

Therefore, by using equations (5) to (8) and (30) to (34), we have
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F=L_p

® L
N = T, = klN + szz,
_ _i i g(~III~III) -,
B, = @ 243

! ! 1 ! !
=T —kiN + k1B, — k3B, _E(Zkl + (k1)2 + (k2)2)31
, Kh)?+(k5)° ,
=T—k1N—%B — kiB, ,
1 ~I ~I! nr
By =G A7 AT

= —kyB, + kik3(—=B1) — k,(—N) + k1k; B,
= kzN + (kikz - klké)Bl - lez.

This completes the proof.

Corollary 10. Let  be the B; directional curve of null curve y in Ef and 7 be

parametrized by pseudo arc length s. Then the first null curvature k; and the second
null curvature k, of 7 are given by

Ry = ky + (k1) er(ké) , (35)

ko = ky — (kiky — kekd)' — (kok + koky) (kiky — kyk). (36)
Proof. From equations (10) and (34), we have

B = (9G,7") = 200" = 4(9"))

+ (kl) +(k2) _
2

Now, differentiating equation (29) yields

B, = kLN + kN’ + (ki ky — ky k3)'By + (k§ ky — k k5)B; — kiB, + kyB)

= (ky + (k1 kg — kyk3)k )N + ((ky ky — Ky k3)' — k3)By + (kp(kik, —
kik;) — k1)B;.

From equation (9), we have

]:72 = —9(32; 31)
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= ky = (kyky — kq k3)" — ky ky = kq ky(kq kp — kq k3) + kiky — koky (kiky —
kikz)

=k, — (ki k,— k1ké)’ - (k1k1 + kzké)(kikz - k1ké)-

5. B, Directional Curves of Null Curves

In this section, the casual characterizations of the B, directional curves of null curves
are investigated.

Definition 11. The curve y(s) is called the B, directional curve of a null curve y(s) if
the tangent vector field T(s) of #(s) equals to the second binormal vector B,(s) of
y(s). Conversely, y(s) said to be the second binormal donor curve of ¥(s).

By definition 11, we have #(s) = | B,(s)ds. Note that #(s) is a spacelike curve since
its tangent vector is spacelike along the curve.

Theorem 12. Let 7 be the B, directional curve of null curve y in Ef and 7 be
parametrized by pseudo arc length s. Suppose {T, N, By, B,} and {T, N, B, B,} are the
Frenet frame of y and ¥, respectively. Then

T = Bz, (37)
N = _sz, (38)
§1=—:—§T—N, (39)

Proof.

Let 7 be the B, directional curve of null curve y, then T = #' = B,. Therefore,

N=T =7"=—k,T.

Note that T is a null vector field. As a result, the principal normal vector field N of y
must be null. Therefore, 7 is a pseudo null curve. Differentiating 7’ again, we have

7" = —kiT — k,N and ||7"'|| = k,

such that

I I
5 ¥V kK
1 = 1 =——T-N
1yl k2
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IS a unit spacelike vector. Since ¥ is spacelike where null principal normal vector field
N is null and its binormal vector field B, is spacelike then B, is a null vector field
which is orthogonal to {T, B, } and g(N, B,) = 1. Therefore, we can take

~ 1
BZ = _k_2B1
This completes the proof.

Corollary 13. Let 7 be the B, directional curve of null curve y in Ef and ¥ be
parametrized by pseudo arc length s. Then the curvature x, torsion t and bitorsion o of
¥ are given by

_ _ ) K
k=1 1=k, 0= eaiab (41)

Proof. From equation (4), we have k = 1 by assuming that ¥ is not a straight line. We
also have

=7l = k.

Furthermore, we have

o= _9(32;31)
=-o((-2) (-t -w)
—g <(k1k2N—I:éBl+k§Bz) ’ (_:_iT _ N) )

_ &)k
K3 ky

Theorem 14. Let y be a null curve and a B, donor curve of pseudo null curve y.
Suppose k, T and o are the curvature, torsion and bitorsion of 7, respectively. Then,

N

k, =10 — (%) and k, = . (42)

Proof. By solving the equation (41), we find k, = T and

N2

2 2

k k

—(T2 —==g0 =>—1=a—(T3) :kl——ra—(—r).
T T T T T
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This completes the proof.

6. Numerical Example

In this section, a numerical example as the application of the theorems given in the

previous sections is provided. Consider the null curve

,43¥6 376 243Y6 2_3_@
()_ Via [ s* 2 +s 2 Via sz s 2\/ (2 (\/El ))-l—
YAS) =175 3V6 3v6 |’ 28 3V6 _3V6 63 cos{7'ns
2 2

2+T 2— 2+T 2

gsin (gln s) 2;/3_ (2 sin (£ln s)) - g cos (g In s))

Differentiating y (s)with respect to s and using equations (5) to (8), we obtain

3V6 3v6 3V6
T(s) = (E (51+T + 51_7),E (s1+ 51_7) S\/: cos (gln s),

28
S\/_s n (£ In s))

14

N(s) = ( 2 ((af VD)7 — (3v3 - f)52-7> ((sf 1)

2852
(3\/§ — \/E)sz_%j ,g (\/E cos (\/2—E In s) — sin (gln s)),

V7 (\/E sin (g In s) + cos (g In s))),

14

Bi(s) = <_ 5653 <(5 + \/_)SH 2 + (5 \/_)SZ_T>’ 5653 <(5 + \/_)SH
(5- ﬁ)52_32£>,£(13m cos (\/Z—Eln S) + 2sin (\/Z—Eln s)),

;/; (13\/_sm (£ln s) — 2 cos (£ln s)))

3V6 3V/6 3v/6 3v/6 ey
BZ(S) — <_£Z<SZ+— 52__2 )’_ \/72 <52+—2 +SZ__2 )’_ﬂ in (ﬁlns)’
28s 28s 14
W21 os (ﬁln s))
14 2

In addition, by using equation (10), we have

() = 1, ki (s) = — 5, and ey (s) = — 22

a. Principal normal directional curve of y.
By using equation (12), we have
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7(s) = (L2 52+¥+52_¥ VIE (243 a5
Yes 28s ’ 28s ’

ES cos (Eln s) , V2 sin (Eln s))
T(s) = (28 2<(3«/_ 3 +VZ)sH - (333 - ﬂf?) %<(m+
BeE 4 (oD 5 (VEeos () —sin (F).

ﬁ (\/E sin (£ In s) + cos (g In s)))

’V<S)—(11 z<(2x/_+9«/_)s2+ —(2v3- 9@)52-32ﬁ) ((2\/_+

’ 11252

9\/_)52+ >+ (2v3 - 9\/_)52"T>,—@(\/§cos (gln S) +

2 sin (gln s)) — E (\/— sin (£ In s) 2 cos (\/Z—E In s)))
Bi(s) = (_ 14052 <(\/_ + \/_)52+ 2 - (‘/_ \/—)SZ_T>‘ 14052 <(\/_ +

v V8
\/f)s“% + (V3 - \/5)52_32_6> ,% (25\/7 cos (\/Z—E In s) +

29 sin (g In s)) 10 (25\/— sin (£ In s) — 29 cos (£ In s)))

Bi(s) = (3360 ((3¢-+ 2)s*% + (3v6 — 2)52—32—“> <(3v‘+

’ 3360s

)2+_ (3\/_ 2)52_76>,55\/—<\/_cos(£1ns)

2 sin (\/Z—Eln s)) , 5151\/2— (\/_ sin (£ln s) — 2cos (ﬁln s))>
By using equations (18) to (20) we have
LS 5 (~2143 + 64s%).

5
T=——ando =
4s T 25055

B; directional curve of y.
V6 V6
7(s) = (—g—j((s@ F37)sE - (53 - 3@)5-2—6) | _g_j((s@ +
V6 V6
3\/5)332_6 + (5\/§ — 3\/?)5_32_6) ,— g (\/E cos (\/2—E In s) —

13 sin (\/Z—Elns)),—g(\/ﬁsin (glns) + 13 cos (\/Z—Elns)) ),
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56 s3

7(s) = (- 207 ((m + 203)s* 5 + (592 - z@)sz-i—ﬁ) - ((5\/— 4
23 = (VT - 235 ) 22 (13vFcos (Z1ns) 4

2sin (?ln s)) ,ﬂ (13\/5 sin (gln s) — 2cos (gln s)))

28s

N(s) _< <(11\/_+4\/_)SZ+ 2 — (11V3 -

56 s4

4x/§)sz‘sz£), <(11\/—+4\/—)52+ 2 + (11V3 -

56 s*
4\/5)52‘%6) ,— 23;/; (4\/5 cos (gln s) -
13 sin (ﬁln 5)) (4\/§sm (ﬁln s) + 13 cos (ﬁln s)))

Bae) = (nz ° (M( O s )— (1323 + 48ﬁ)s6+7 +

(13243 — 48Y2)s 5 +(1026\/—+2565\/—)52+ — (1026v3 —
2565\/5)52‘32—%), (42 (s 104332 ‘T)—(132\/§ +

282

.
48\/—)56+ — (132v3 — 48+2)s° =5 + (1026V3 + 2565v2)s** 2 +

(1026V3 — 2565\/5)52_7) ) 5\6/:7 (458\/5 cos (\/Z—E In s) —
48s*\/2 cos (\/Z—Eln s) + 156s% sin (E In s) — 2223+/2 cos (g In s) -
342 sin (\/2—E In s)) V7 (458\/_ sin (ﬁln s) 48s5*y/2 sin (g In s) -

56S 7
15654 cos (ans) — 2223+/2 sin (ﬁln 5) + 342 cos (\/Z—Eln s)) )

By(s) = (— _— ((13 + \/_)52+ 2 — (13 - \/‘)52—7>, — ((13 +
\/5)5”32_\/g + (13 - \/g)sz_%j ,— 2£ (\/? cos (gln s) +

11 sin (\/Z—Eln s)) , 2;/5_ (\/7 sin (ﬁln s) — 11 cos (?ln s)))

By using equations (35) and (36), we have
P= 12s5* 3v3
L=—

and k, = — ==
B, directional curve of y.

256 252"
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)7(5‘) = <— F\/ZS <(3\/€ - 2)524_32_\/3 + (3\/8 + 2)52_?’2—\@) * T 200s ((3\/_ -

2)52+32£ - (3Ve + 2)52_37\/3) ) Sﬁ_l (\/E cos (g In s) -
2 sin (?ln s)) V21 (\/E sin (£ln s) + 2 cos (Eln s)) >

14
~ 3v/6 3v/6 3v6 3V6
T(s) = (— %(sZJ’T SZ_T) , —%(SZJ’T + SZ_T>,
3¢_ V2 3v21 V2
14 (_l ) Tz €08 (7lns)>,
oo (3VEL [ 24308 | 2 3O\ 3vzI [ 43 5 36
N(S)—(@(S 2 +s 2),@<s 2 —s§ 2),
3\/ﬁcos (ans) EAZEY (ﬁlns))
28s 2 28s

§1(5)=( 562((3\/— 2)s2+ — (3V6 +2)s*” ) 562((3\/‘—

G NG
2)52+¥ + (3V6 + 2)52_32_6> ,g (\/f cos (gln s) +

sin (g In s)) ,g (\/E sin (gln s) — cosS (gln s))),

By(s) = (— %((5@ 1 2v3)s25 4 (5vZ - z@)sz—%, v

2\/_)52+ (5\/_ 2\/_)52_76> S\/_(13\/§cos (glns

2 sin (\/2—E In s)) V21 (13\/_ sin (£ In s) 2 cos (\/2—E In S)))

By using equation (41), we have

K=1,T=—3\/—and %.
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