
309

Research Article

Discovering Sequential Source Code Patterns in Software Engineering

 Kökten Ulaş BİRANT
a,*

, Dilara KIRNAPCI
b

a Department of Computer Engineering, Dokuz Eylul University, Izmir, TURKEY

b The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, TURKEY
* Corresponding author’s e-mail address: ulas.birant@ deu.edu.tr

DOI: 10.29130/dubited.905510

ABSTRACT

Discovering sequential patterns in source codes is an important issue in software engineering since it can provide

useful knowledge to help in a variety of tasks such as code completion, code refactoring, developer profiling, and

code complexity measurement. This paper proposes a new framework, called Source Code Miner (SCodeMiner),

which discovers frequent sequential rules within a software project. The proposed framework firstly transforms a

Java code into a sequence data and then applies a sequential pattern mining (SPM) algorithm. This study is also

original in that it compares four SPM algorithms in terms of computational time, including sequential pattern

discovery using equivalence classes (SPADE), prefix-projected sequential pattern mining (PrefixSpan), bi-

directional extension (BIDE+), and last position induction (LAPIN). The experiments that carried out on an open-

source software project showed that the proposed SCodeMiner framework is an effective mining tool in identifying

coding patterns.

Keywords: Source code patterns, Sequential pattern mining, Software engineering, Source code analysis

Yazılım Mühendisliğinde Sıralı Kaynak Kodu Modellerini Keşfetme

ÖZ
Kaynak kodlardaki sıralı örüntüleri keşfetmek yazılım mühendisliğinde önemli bir konudur, çünkü kod

tamamlama, kodu yeniden düzenleme, geliştirici profili oluşturma, ve kod karmaşıklığı ölçümü gibi çeşitli

işlemlerde yardımcı olacak yararlı bilgiler sağlayabilmektedir. Bu makale, bir yazılım projesinde sıkça geçen sıralı

kuralları keşfeden ve Kaynak Kod Madencisi (SCodeMiner) adı verilen yeni bir yazılım çerçevesi önermektedir.

Önerilen yazılım çerçevesi ilk olarak bir Java kaynak kodunu bir sıralı veri tabanına dönüştürür ve ardından bir

sıralı örüntü madenciliği (SPM) algoritması uygular. Bu çalışma aynı zamanda, dört SPM algoritmasını çalışma

süresi açısından karşılaştırması açısından da orijinaldir. Bu algoritmalar şunlardır: ön ek ile öngörülen sıralı örüntü

madenciliği (PrefixSpan), denklik sınıflarını kullanarak sıralı örüntü keşfi (SPADE), çift yönlü uzatma (BIDE+),

ve son pozisyon indüksiyonu (LAPIN). Açık kaynak kodlu bir yazılım projesi üzerinde gerçekleştirilen deneyler,

önerilen SCodeMiner yazılım çerçevesinin kodlama örüntülerini belirlemede etkili bir madencilik aracı olduğunu

göstermektedir.

Anahtar Kelimeler: Kaynak kod örüntüleri, Sıralı örüntü madenciliği, Yazılım mühendisliği, Kaynak kod analizi

Received: 29/03/2021, Revised: 16/08/2021, Accepted: 22/08/2021

Düzce University

Journal of Science & Technology

Düzce University Journal of Science & Technology, 10 (2022) 309 - 324

https://orcid.org/0000-0002-5107-6406
https://orcid.org/0000-0002-3630-9726

310

I. INTRODUCTION

One of the main concerns in the software engineering field is the improvement of productivity and

quality during software development. In this context, code analysis plays an important role since it can

be useful in finding previously unknown, potentially valuable, hidden, and accurate coding patterns.

Source Code Analysis (SCA) is the process of automatically extracting required information about

software from its source code in the software engineering process [1]. SOC is an essential step of a code

review that focuses on evaluating, monitoring, and improving software quality. Source Code Review

(SCR) is a software development activity, where a code is automatically examined for a particular

purpose such as for checking coding standard or structured design, controlling logical correctness, or

discovering faults [2]. It is a non-trivial and effective way to decrease the price and time of the software

product and improve overall productivity.

A Coding Pattern is a typical sequence of programming statements that has a particular behavior. Since

coding patterns indicate hidden rules in a software project, discovering them can help software engineers

in various ways such as (i) improving developer performance via code completion [3, 4], (ii) comparing

code versions to perform appropriate modifications and enhancements [5], (iii) profiling developers, (iv)

detecting crosscutting concerns, and (iv) measuring code complexity. In this work, we used the

sequential pattern mining technique to discover coding patterns in an efficient way.

Pattern Mining is a fundamental task in data mining, with the goal of discovering frequently recurring

patterns in a database [6]. A pattern, which is in the form of <pattern>:support, consists of the content

of the pattern and the number of the transactions which have the pattern. Sequential Patterns are formed

from ordered sequences of elements that frequently occur in a dataset. Sequential Pattern Mining (SPM)

is one of the well-known data mining methods utilized to identify any specific order of occurrences [7].

A sequence is a typical ordered list of elements (i.e., events). A typical example of a sequence of events

is a sequence of items bought by a particular customer at different times in order over an interval. For

example, if there are two sequences <a b c> and <a d b> that have three elements, the pattern <a b> is

detected since it appears two times. SPM discovers the complete collection of frequent sub-sequences

from a given sequence dataset. SPM is a significant task that has been extensively studied in many

applications such as medical record analysis, web-log analysis, and market basket analysis. Several types

of patterns may be detected from the datasets, i.e., frequent sequences, periodic patterns, and sequential

rules.

When we provide source code files to a sequential pattern mining algorithm as input, source codes are

organized in sequential transactions and then the coding patterns can be extracted to discover useful

knowledge about the software. Here, a key challenge is to automatically transform a source code into

sequences of programming statements using a tokenization approach. Another challenge is the selection

of an SPM algorithm by considering both the characteristics of the dataset and the key features of the

algorithms together. The performance of the algorithm highly depends on the number of pattern

candidates, the length of the sequences, and the number of distinct items in a dataset. An efficient SPM

algorithm should be used to speed up the computations.

The main contributions of this study can be listed as follows. (i) This paper proposes a novel framework,

Source Code Miner (SCodeMiner), which discovers frequent sequential rules within software projects.

(ii) This study is also original in that it compares four SPM algorithms in terms of computational time,

including prefix-projected sequential pattern mining (PrefixSpan) [8], sequential pattern discovery using

equivalence classes (SPADE) [9], bi-directional extension (BIDE+) [10], and last position induction

(LAPIN) [11].

The experiments that carried out on an open-source software project showed that the proposed SCPM

framework is an effective mining tool in identifying coding patterns. Therefore, it can be successfully

used for software engineering projects. The proposed SCodeMiner framework can be useful for

311

developers, programmers, and testers as well as other professionals involved in other aspects of software

engineering.

This article is organized into five sections as follows. Section 2 discusses studies related to our work.

The proposed framework is detailed in Section 3. The experiments are given in Section 4, before

concluding the main findings in Section 5.

II. RELATED WORK

Analysis of source codes to discover patterns allows software engineers to identify frequently occurring

sequences within software projects. For this purpose, some data mining studies have been conducted

recently. Some previous studies [3]-[5], [12]-[23] on source code analysis are given in Table 1. A variety

of data mining algorithms have been used for source code analysis such as graph neural network (GNN)

[12], multi-layer perceptron (MLP) [5, 15], restricted Boltzmann machine (RBM) [4], naive Bayesian

(NB) [5, 15], Bayesian networks (BN) [3], logistic regression (LR) [5, 15], and support vector machine

(SVM) [15]. Some deep learning techniques have also been successfully applied to source code analysis,

including long short-term memory (LSTM) [4, 13, 15, 17], bidirectional long short-term memory

(BLSTM) [13, 15, 17], gated recurrent units (GRU) [13, 17], bidirectional gated recurrent unit (BGRU)

[13], deep belief network (DBN) [4], recurrent neural networks (RNN) [4, 12, 17], and convolutional

neural networks (CNN) [4, 12, 15, 17]. The sequential pattern mining algorithms that have been used

in source code analysis are Generalized Sequential Pattern (GSP) [20], PrefixSpan [16, 18, 19], BIDE

[22], and Pre-order Linked Web Access Pattern-Tree (PLWAP) [21]. Some ensemble learning

algorithms have also been used in source code analysis such as Random Forest (RF) [4, 5, 15], AdaBoost

(AB) [5], and Gradient Boosting Decision Tree (GBDT) [15].

In the literature, previous studies on source code analysis have been focused on either classification task

[4, 5, 12, 13, 15, 17] or pattern mining task [3, 14, 16], [18]-[23]. Until now, data mining techniques

have been used to analyze source codes written in a variety of programming languages such as C [4, 13,

14, 15], C++ [12, 14], Java [5, 14], [18]-[21], PHP [17], and Python [16]. In this study, we focus on the

Java programming language. The codes of various open-source software projects have been analyzed,

such as Eclipse, Linux Kernel, JFreeChart, Dnsjava, and JmDNS. In addition, some publicly available

datasets collected to evaluate the vulnerability of source codes have been used in the previous works

such as the software assurance reference dataset (SARD) [13, 15, 17] and national vulnerability database

(NVD) [13, 15].

Newman et al. [14] investigated frequent naming patterns in different identifier types, such as attribute

and class names. Date et al. [19] reported the characteristics of coding patterns over versions. They

extracted coding patterns of each program version, and then investigated the number of versions in

which the coding patterns appear.

Akbar et al. [20] applied a method categorization technique to mine API usage patterns for the purpose

of improving code completion. Kagdi et al. [24] proposed an approach to detect the call-usage patterns

and variable locations by source code analysis using sequential pattern mining algorithms. They applied

the SPADE algorithm to the Apache HTTPd v2.0.55 system source code. In another study [18], a

software clone detection method was proposed utilizing a maximal frequent SPM method. The source

codes of the Apache Struts 2.5.2 Core project were used for extracting code-matching statements in the

Java programming language. A plug-in, called Vertical Code Completion was implemented for the

Eclipse IDE [21]. The suggestions of new code sequences were made based on the patterns obtained by

using the PLWAP Algorithm, which is one of the SPM algorithms. Takei and Yamana [22] extended

the bi-directional execution (BIDE) algorithm by adding an intensity constraint (IC) and then used the

proposed IC-BIDE algorithm for coding pattern extraction. They applied the algorithm on Bullet

Physics, MySQL, and OpenCV source codes.

312

Table 1. Comparison of source code analysis studies (C: Classification P: Pattern mining).

Ref Year Description
Task

Methods Language Project
C P

[12] 2021 Vulnerability detection √ GNN, CNN, RNN C/C++

Linux Kernel

FFmpeg

Wireshark

Libav

[13] 2021 Vulnerability detection √
LSTM, BLSTM,

GRU, BGRU
C

SARD

NVD

[4] 2020 Code completion √
LSTM, RNN, CNN,

RF, RBM, DBN
C

An online

judge (AOJ)

System

[14] 2020
Patterns related to

source code identifiers
 √

Part-of-speech

(POS) tagging

C, C++,

Java

20 open-source

systems

[15] 2020 Vulnerability detection √

LR, NB, SVM,

MLP, GBDT, RF,

CNN, LSTM,

BLSTM

C
SARD

NVD

[5] 2019
Analysis of code

versions
√

NB, MLP, AB, RF,

LR
Java

JFreeChart

Heritrix

[16] 2019 Code review √ PrefixSpan Python OpenStack

[17] 2019 Vulnerability detection √
LSTM, BLSTM,

CNN, GRU, RNN
PHP

SARD

SQLI-LABS

[18] 2016
Finding Software

Clones
 √ Apriori, PrefixSpan Java

Apache Struts

2.5.2 Core

[3] 2015 Code completion √ BN OOP Eclipse

[19] 2015
Analysis of code

versions
 √ PrefixSpan Java

10 open-source

programs

[20] 2014 Code completion √ GSP Java
10 open-source

projects

[21] 2014 Code completion √ PLWAP Java

Ant

Eclipse Maven

Log4j

[22] 2013
Coding Pattern

Extraction
 √ BIDE Various

Bullet Physics

MySQL

OpenCV

[23] 2012
Analysis of code

versions
 √ PrefixSpan Java

Dnsjava

JmDNS

Proposed

Approach

Code analysis for

general-purpose
 √

PrefixSpan, SPADE,

BIDE+, LAPIN
Java

Apache

Tomcat

Code review is an important step in software development and includes source code verification,

modification, and feedback. Ueda et al. [16] detected similar code changes patterns that commonly

appear in the project history. They applied a sequential pattern mining algorithm to the OpenStack

project and detected 1476 improvement patterns from the Python source codes. Kim et al. [25]

discovered coding patterns with their characteristics by performing an evaluation. They selected several

indicators and performed an analysis by investigating relations between the characteristics and values

of the patterns. Ishio et al. [26] focused on mining the code patterns related to method calls.

While some of the previous studies [14, 20, 26] discovered the coding-related patterns from a single

version of a software project, some studies [19, 23] investigated the patterns in multiple versions of the

project. In the former one, patterns can be detected only from a particular version of the source code.

313

However, in the latter one, coding patterns were extracted from a single version separately, and after

that, the common patterns were searched in multiple versions.

Our study differs from the aforementioned studies in that it proposes a new framework that especially

focuses on nested loop and control statement blocks. Furthermore, it uses an efficient sequential pattern-

mining algorithm to provide increased computational performance. Moreover, our method can be used

for general-purpose since we are concerned with examining the general structure of the source. On the

other hand, the existing approaches typically proposed for a specific purpose such as for source code

identifiers [14], software versions [5, 19, 23], API usage patterns [20], call-usage patterns [24], software

clones [18], code review [16], crosscutting concerns [26], and vulnerability detection [12, 13, 15, 17].

III. MATERIAL AND METHODS

A. PROPOSED FRAMEWORK

In this study, we propose a novel framework: Source Code Miner (SCodeMiner), which discovers

frequent sequential rules within software projects. Figure 1 shows the general architecture of the

proposed framework. Before the data mining techniques, a source code available in a repository has to

be processed to transform it into a proper form. For this reason, the framework basically consists of two

main phases: data preprocessing and pattern mining. In the data preprocessing phase, the source code

is converted into sequences of programming statements. In the first step of this phase, a source code is

taken from the repository to be analyzed. In the next step, a parser is used for tokenization which extracts

the statements with various levels of nesting and identifies tokens, especially including loop and control

statements. Here, all keywords, delimiters, and procedures/functions in the source code are obtained

separately while comment lines are ignored. After that, a sequence generator converts tokens into

sequences and stores them in sequence data. In the pattern mining phase, a SPM algorithm is utilized to

extract frequent subsequences from a collection of sequences. Here, each pattern is a sequence of code

elements. Each pattern is evaluated by a minimum support threshold where the support value of a

sequence si in the dataset D is the number of sequences s ϵ D that contains si. The discovered patterns

are stored in a database and presented to the user in an appropriate form through an application.

Figure 1. The general architecture of the proposed SCodeMiner Framework.

314

B. DATA PREPROCESSING

Each source code file may include more than one class, each class may involve a set of methods and

each method may consist of various kinds of blocks. A block in the source code is represented by the

"{" and "}" symbols. The framework firstly extracts all the blocks and then captures the sequences of

programming tokens. Inside each code block, more than one programming statement can be existing

and all of them are listed in a sequence in the order they present in the block. In other words, all

programming statements that exist in the same block are collected in the same sequence. In order to

increase the computational power, tokens (items) in sequences are assigned with a unique index by

utilizing a mapping method.

Figure 2 shows three example sequences extracted from different source code fragments. The following

keywords are specially processed by a parser: if, else, for, while, get, set, break, math, and return. The

sequences are created by analyzing tokens using a set of rules and stack data structure. Some keywords

such as "return" and "break" are directly included in the sequence. An "if-else" statement is converted

into a series of "IF", "ELSE", and "ENDIF" terms. The code elements controlling by the "if" statement

are put between the "IF" term and its corresponding "ENDIF" term. The "for" and "while" statements

are translated into a pair of “LOOP” and "ENDLOOP" terms. In order to represent nested if and loop

statements, the "ENDIF" and "ENDLOOP" keywords are added to the sequences. The basic

mathematical operations such as addition or subtraction and the subroutines in the math library are

translated as the "MATH" keyword. The user-defined function calls are stated as the "FUNC" keyword.

The get and set function calls are separated from other user-defined function calls and the "GET" and

"SET" specific keywords are used to indicate them. The framework ignores all primitive data types (i.e.,

int, string, char), variables, and comment statements.

Figure 2. Sample sequence generation from source code fragments.

C. PATTERN MINING

Assume that Ӏ = { i1, i2, ..., in } be a finite set of elements called items. An itemset is a nonempty set of

items. A sequence is a finite ordered and consecutive list of item-sets. A typical sequence s is stated as

315

<t1 t2 ... tm>, where tj is an itemset, tj ⊆ Ӏ. In this context, tj can be also named an element of the sequence

which is stated as (x1, x2, ..., xr), where xk is an item, xk ϵ Ӏ. In our study, the brackets are ignored since

each element has only a single item, i.e., element (x) is illustrated as x. Note that an item may exist

multiple times in different parts of the same sequence; however, it can appear at most once in an element

of a sequence. The length of a sequence, denoted by l (s), is the number of items in the sequence such

that l (s) = |t1| + |t2| + ... + |tm|, i.e., 𝑙(𝑠) = ∑ |𝑡𝑖|
𝑚
𝑖=1 . For instance, the length of the sequence <(1 2 3)(1

4)(2 5)> is 7. A sequence with length l is called an l-sequence. The size of a sequence, denoted by |s|, is

the number of itemsets in the sequence. A sequence α = <a1 a2 ... au> is called a sub-sequence of another

sequence β = <b1 b2 ... bv> if there exist numbers 1 ≤ j1 < j2 < ... < ju ≤ v such that a1 ⊆ bj1, a2 ⊆ bj2, ...,

au ⊆ bju. When a sequence α is included in another sequence β, then α is called as a subsequence of β,

and β is called to be a supersequence of α. For instance, the sequence β = <(1 2 3)(3 4)> is a super-

sequence of α = <(1 2)(4)>.

A sequence database, denoted by D = { s1, s2, ..., sn }, is a finite set of sequences, and |D| refers to the

number of sequences in D. Given a database D and user-determined minimum support (minsup), the

algorithm extracts all the sub-sequences with support ≥ minsup. The support of a sequence s in D,

denoted by sup(s), is the number of transactions in D to which s belongs. For example, if we have two

sequences <abc> and <ace>, the support of the pattern "ac" is 2 since it appears two times. Given a

positive number minsup, a sequence s is called as frequent pattern or frequent sequence if sup(s) ≥

minsup. The projected dataset of a sequence α contains all the suffixes of sequences that include α.

Table 2 gives a sample sequence dataset in the first row and then shows the discovery of patterns step

by step. Each row of the table illustrates a k-length pattern (also called prefix), its projected dataset, and

new (k + 1)-length patterns. The symbol Ф represents an empty projected dataset. As shown in Table 2,

the PrefixSpan algorithm repeatedly generates prefix-projected itemsets to discover frequent patterns.

A typical pattern and its corresponding support value are represented in the form <pattern> : support.

The algorithm firstly finds 1-length patterns which are the following in this example: <IF>: 3, <FUNC>:

2, <MATH>: 4, and <ENDIF>: 3. Here, the pattern <MATH>: 4 was extracted from the dataset, instead

of <MATH>: 5 since the traditional SPM methods ignore the number of occurrences of an item within

one transaction. The occurrences of items in one transaction are limited to binary values (i.e., each item

may or may not appear in one transaction). The support value of an item is the number of transactions

that contain this item. In other words, the support of item ix in a database D is the number of transactions

in D to which belongs the item ix. The number of transactions is 4 in this example and MATH appears

at least one time in all transactions. It may be noted here that high-utility sequential pattern (HUSP)

mining has emerged as a new research topic, which considers the items that may appear zero, once, or

multiple times in one transaction in a quantitative sequence database [27]. Since the minimum support

is 50% (minsup = 2) in this example, the algorithm filters out "ELSE", "LOOP", "ENDLOOP", "SET",

and "RETURN" elements because each one is involved in only one sequence.

The algorithm repeatedly finds (k+1)-length patterns by considering k-length patterns. The method finds

all the sequences containing an itemset and generates a projected dataset in which each sequence is

prefixed with the first occurrence of the itemset. For instance, <FUNC>-projected dataset includes two

sequences: <MATH ENDIF> and <MATH ENDLOOP>. Frequent itemsets in a projected dataset

represent (k + 1)-length patterns. For example; the "MATH" element in <FUNC>-projected dataset

results in its corresponding 2-length patterns: <FUNC MATH> : 2. Each prefix-projected itemset is

evaluated by a minimum support (minsup) threshold. If the support of an itemset is less than minsup,

then this itemset is eliminated. For example, when considering the prefix <MATH>, the algorithm filters

out <MATH ELSE MATH ENDIF>: 1, <MATH ENDLOP>: 1, and <MATH SET RETURN ENDIF>: 1

candidate itemsets since the minimum support is 50% (minsup = 2) in this example and each one is

involved in only one transaction. On the other hand, the pattern <MATH ENDIF>: 3 is extracted since

it appears in three transactions and so its support is greater than the minsup. The algorithm finishes when

no new pattern is found in an iteration. Eventually, the algorithm with minsup = 2 finds five frequent

patterns from the sample dataset: <IF MATH>: 3, <IF ENDIF>: 3, <FUNC MATH>: 2, <MATH

ENDIF>: 3, and <IF MATH ENDIF>: 3.

316

Table 2. A sample sequence dataset and the discovery of patterns from it.

Prefix Prefix-Projected Itemsets Patterns

Original dataset <IF FUNC MATH ENDIF>

<IF MATH ELSE MATH ENDIF>

<LOOP FUNC MATH ENDLOOP>

<IF MATH SET RETURN ENDIF>

<IF>: 3

<FUNC>: 2

<MATH>: 4

<ENDIF>: 3

<IF> <FUNC MATH ENDIF>

<MATH ELSE MATH ENDIF>

<MATH SET RETURN ENDIF>

<IF MATH>: 3

<IF ENDIF>: 3

<FUNC> <MATH ENDIF>

<MATH ENDLOOP>

<FUNC MATH>: 2

<MATH> <ENDIF>

<ELSE MATH ENDIF>

<ENDLOOP>

<SET RETURN ENDIF>

<MATH ENDIF>: 3

<ENDIF> ∅

<IF MATH> <ENDIF>

<ELSE MATH ENDIF>

<SET RETURN ENDIF>

<IF MATH ENDIF>: 3

<IF ENDIF> ∅

<FUNC MATH> <ENDIF>

<ENDLOOP>

<MATH ENDIF> ∅

<IF MATH ENDIF> ∅

Patterns extracted by the SCodeMiner framework have the following properties:

• A coding pattern is a sequence of programming elements and statements. In other words, a coding

pattern is a list of tokens and each token corresponds to a coding element or statement.

• Each item in a pattern has at least minsup value. Here, the term "item" represents a special programming

element in a code fragment corresponding to the pattern.

• A pattern can comprise a different number of code elements. The length of a pattern is the number of

items in the pattern. For example, the <FUNC MATH> pattern is a 2-length pattern, while the <IF MATH

ENDIF> pattern is a 3-length pattern.

• When a pattern appears in the code fragments with minimum support or higher, it is said to be frequent.

• A pattern implies its sub-patterns that have a fewer number of items. For instance, a pattern <GET

FUNC MATH RETURN> implies four sub-patterns comprising 3-items: <GET FUNC MATH>, <GET

FUNC RETURN>, <GET MATH RETURN>, and <FUNC MATH RETURN>.

D. ALGORITHMS

Over the last decade, different algorithms have been proposed in the field of SPM, each of which has

different properties [28, 29]. In this study, we chose the PrefixSpan [8], SPADE [9], BIDE+ [10], and

LAPIN [11] algorithms based on important key features supported by these methods (Table 3). Since

each algorithm uses a different approach (apriori-based, pattern-growth, constraint-based, and early-

pruning), we can perform a comparative analysis of their performances on the dataset. Apriori-based

approaches scan the original dataset several times to extract frequent itemsets of size k at each kth-

iteration, while the pattern-growth techniques build a representation of the dataset and then provide a

way to partition the search space. Early-pruning approaches rely on position induction to avoid support

counting and to prune candidates at the very early stage of the mining process as much as possible.

317

Constraint-based approaches focus on identifying the entire set of patterns satisfying a particular

constraint C to reduce the number of retrieved patterns by pruning uninteresting ones.

Table 3. The key features of the sequential pattern mining algorithms.

 Algorithms

Properties

PrefixSpan SPADE BIDE+ LAPIN

Approach Pattern-Growth Apriori-Based Constraint-Based Early-Pruning

Database Layout Horizontal Vertical Horizontal Vertical

Traverse Depth-First

Search

Breadth-First

Search

Depth-First

Search

Depth-First

Search

Search Top-Down Bottom-Up Bi-directional ─

Monotone Prefix-monotone Anti-monotone Prefix-monotone Anti-monotone

Generate-and-Test X √ X X

Candidate Pruning √ √ √ √

Search- Space

Partitioning
√ √ √ √

Single Scan of

Database
√ X X √

Prefix Growth X X X √

Position Induction X X X √

Memory-only √ X √ √

Compression or/and

Sampling
X X X X

Constraints and

Taxonomies
X X √ X

Counting Support

Without Scanning
X X X √

Pros - Scanning the

original dataset

once

- Effective when

low support

thresholds are

used

Thanks to

lattice-theoretic

approach, good

for fast mining

in large datasets

- Executing

some checking

steps to avoid

maintaining

-Memory

efficiency

- Reducing the

search space

-Effective in

mining dense

datasets

Cons Creation and

analyzing of a

large number of

projected sub-

datasets

Inefficient for

mining long

sequential

patterns

Multiple scans

(closure

checking, back-

scan, and scan-

skip)

Additional

computation

time and storage

space to convert

a dataset from

horizontal to

vertical format

Some SPM algorithms like SPADE and LAPIN use a vertical form of the dataset rather than the regular

horizontal layout. The traversal in the search space (Depth-First Search (DFS) or Breadth-First Search

(BFS)) makes a big difference in performance. The Generate-and-Test feature implies using exhaustive

join operators such that the pattern is basically grown one element at a time and tested against the

minimum support. Prefix-monotone property indicates that if for each sequence S that satisfies a

constraint C, so does every sequence having S as a prefix, while Anti-monotone property states that

every non-empty subsequence of a pattern is also a sequential pattern.

318

PrefixSpan is considered one of the efficient SPM algorithms since it scans the original dataset one time,

usually along with search space partitioning and candidate pruning. In this study, we especially chose

the PrefixSpan and SPADE algorithms since a comprehensive performance study [8] showed that they

outperformed the other alternative algorithms such as FreeSpan and GSP in terms of both memory usage

and running time. As reported in [30], PrefixSpan is faster than other hybrid or pure pattern-growth

methods, like PLWAP, although it is less memory-efficient. We also applied the BIDE+ algorithm on

the dataset due to its advantages such as no need to generate candidate sequential patterns. Besides, the

LAPIN algorithm has the advantages of reducing the search space during the sequential mining process

and being effective in mining dense databases [11].

Since the characteristics of the data (i.e., the length of the sequences, the number of distinct items, dense

vs. sparse) and input parameter settings (i.e., minimum support threshold) have an important impact on

the performance of the algorithm, we tested and compared four algorithms to determine the best one.

Therefore, a combination of theoretical analysis and empirical evaluation was used to determine the best

algorithm for the given dataset.

IV. EXPERIMENTAL STUDIES

In the experiments, we obtained the results with the PrefixSpan algorithm by utilizing the SPMF open-

source library [31]. The library can be freely downloaded from the website http://www.philippe-

fournier-viger.com/spmf/. In addition, we compared four different sequential pattern mining algorithms

in terms of runtime, including PrefixSpan [8], SPADE [9], BIDE+ [10], and LAPIN [11]. In each

experiment, the SPM algorithms were executed 5 times and the average values were reported here. All

experiments presented in this study were conducted on a laptop equipped with Intel Quad-Core 2.7 GHz

CPU and 8 GB of RAM.

A. DATASET DESCRIPTION

In the experimental studies, we used the Apache Tomcat1 v9.0.28 open-source software project for

detecting coding patterns. The Apache Tomcat is an open-source implementation of the JavaServer

Pages, Java Expression Language, Java WebSocket technologies, and Java Servlet. It contains 2460 java

files. In the data preprocessing phase, these source code files were read and translated into sequences.

Total, 17220 sequences were obtained by converting 2460 java files.

B. EXPERIMENTAL RESULTS

We carried out four experiments for the following purposes: (i) to find frequent coding patterns, (ii) to

investigate the relation between the minsup settings and the number of frequent patterns, (iii) to explore

the distribution of k-length patterns, and (iv) to compare four alternative SPM algorithms.

In the first experiment, we discovered the frequent coding patterns by running the PrefixSpan algorithm

with %1 minimum support threshold. Table 4 shows sample patterns. The results show that source codes

usually contain frequent patterns of subroutine calls, mathematical operations, control flows, and loops.

For example, the pattern <IF GET ELSE GET ENDIF> indicates that 4.18% of the code blocks have a

get function inside an “if-else” control statement. The example pattern with ID 18 contains an "IF ELSE

IF" statement block, while the last sample pattern includes a nested-IF block. Some programming

elements such as “THROW” may not involve in the list of frequent patterns due to their sparsity in the

source codes. When a low minimum support threshold is chosen, rare programming elements can also

be extracted. However, in this case, a huge number of patterns is obtained, which increases the runtime

of the algorithm and leads to producing some uninteresting patterns.

1 http://github.com/apache/tomcat

319

Table 4. Sample discovered sequential patterns along with their lengths, frequencies, and support values.

ID Pattern Length Frequency
Support

(%)

1 IF 1 15133 87.88

2 FUNC 1 11916 69.20

3 LOOP 1 3485 20.24

4 MATH 1 3944 22.90

5 GET 1 6852 39.79

6 SET 1 1738 10.09

7 FUNC RETURN 2 2369 13.76

8 MATH RETURN 2 580 3.37

9 IF GET ENDIF 3 6187 35.93

10 IF SET ENDIF 3 1591 9.24

11 LOOP MATH ENDLOOP 3 2026 11.77

12 LOOP FUNC GET ENDLOOP 4 1316 7.64

13 IF MATH SET ENDIF 4 249 1.45

14 LOOP FUNC GET FUNC ENDLOOP 5 944 5.48

15 IF GET ELSE GET ENDIF 5 720 4.18

16 IF FUNC RETURN ELSE RETURN ENDIF 6 266 1.54

17 LOOP FUNC IF BREAK ENDIF ENDLOOP 6 201 1.17

18 IF FUNC ELSE IF FUNC ENDIF 6 570 3.31

19 LOOP IF FUNC ENDIF MATH FUNC ENDLOOP 7 234 1.36

20 IF FUNC LOOP IF FUNC ENDIF ENDLOOP ENDIF 8 242 1.41

21 IF IF FUNC MATH IF ENDIF FUNC ENDIF ENDIF 9 182 1.06

The coding patterns found can help software engineers in various ways. Code completion can be

provided to the developers according to the patterns, invoking automatically or by pressing a key. When

a programming element is initiated by the user, the possible completion proposals according to the

frequent coding patterns can be shown through a popup menu. Furthermore, coding patterns discovered

from different versions of software projects can be compared to uncover changes. It can be utilized for

the interpretation of software versions, modeling changes, and understanding the modifications and

enhancements. Moreover, the coding patterns can be used for developer profiling. For example, the

developer’s expertise or skill level can be predicted according to the patterns. Similarly, based on their

coding patterns, the developers can be ranked in terms of ability. In addition, the coding patterns can

give an idea about code quality and code complexity. As the source code gets more complex, sequences

in the dataset contain longer patterns.

In the second experiment, the relation between the minimum support settings and the number of frequent

patterns was investigated. The algorithm was run on the sequence dataset with support values varying

from 10% to 50% with an increment of 5%. Figure 3 presents the number of discovered frequent patterns

along with the minimum support threshold. Frequent patterns were obtained by the subsequences whose

support value was greater than or equal to the threshold value. However, the other subsequences that

had a lower support value than the threshold value were discarded. As can be seen in Figure 3, the

number of frequent patterns decreases exponentially when the minimum support threshold increases.

For example, when the minimum support value was 10%, the algorithm discovered 155 frequent coding

patterns, whereas it found 15 patterns for the minimum support of 35%. Therefore, it is possible to say

that we can obtain a huge number of frequent patterns by executing the algorithm with small support

thresholds. However, using a low minimum support threshold may result in generating too many patterns

including a lot of uninteresting rules. In addition, it leads to increasing computational complexity and

memory requirements. On the other hand, a high minsup value can lead to miss useful patterns. For this

320

reason, an appropriate minimum support threshold should be set to efficiently discover valuable and

interesting frequent patterns.

Figure 3. Numbers of retrieved frequent sequences

In the third experiment, the distribution of k-length patterns was investigated by running the algorithm

with different minimum support values ranging from 5 to 15. Table 5 presents the numbers of discovered

patterns separately, varying from 1-length to 8-length patterns. Hence, it shows the effect of support

threshold value on the length of frequent patterns. The results show that the number of patterns obtained

from the dataset was high when a low minimum support threshold was determined. For example, the

number of 4-length patterns is 234 when minsup = 5%, while the number of 4-length patterns was 10

when minsup = 15%. In this way, the frequent coding patterns can be found in a more manageable size.

It can be observed from Table 5 that the number of 3-length and 4-length patterns is usually higher than

others. The results construct a form quite similar to the bell curve. However, the kurtosis and skewness

of the curve change according to the minsup value.

Table 5. The number of k-length coding patterns with different minimum support values.

Support

(%)

Number of k-length patterns

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

5 10 50 147 234 225 135 39 6

6 10 47 108 139 125 54 10 1

7 10 43 82 100 68 26 3 0

8 10 40 71 77 42 11 1 0

9 10 39 65 52 20 5 0 0

10 10 36 51 38 17 3 0 0

11 9 30 40 33 11 1 0 0

12 9 25 33 21 8 1 0 0

13 9 25 27 16 4 0 0 0

14 9 22 23 12 2 0 0 0

15 9 20 20 10 1 0 0 0

C. COMPARISON RESULTS

In the last experiment, we compared four different sequential pattern mining algorithms in terms of

running time, including PrefixSpan [1], SPADE [2], BIDE+ [3], and LAPIN [4]. This comparison is

0

20

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f
P

at
te

rn
s

Minimum Support (%)

321

important since the sequential pattern mining process is costly, especially when a low minimum support

(minsup) value is given as input, or the dataset is dense and has long patterns. When handling large-

scale data, some SPM algorithms have challenges and problems, including low processing speed, huge

memory cost, and insufficient hard disk space [7]. The main reason behind this problem is the reduction

in the elimination of candidate itemsets. Therefore, the number of frequent sequential patterns increases

exponentially with respect to the minsup, instead of linearly. To increase the efficiency, an appropriate

SPM algorithm should be chosen.

Figure 4 shows the comparison results when we set the minimum support threshold from 2% to 5% with

an increment of 0.5%. It can be noted here that all the algorithms discover the same patterns but in

different execution times. As expected, the runtimes decrease as the minimum support value increases.

For example, the patterns were discovered in 2.20 sec. when minsup = 2, while they found in 0.76 sec.

when minsup = 3. Therefore, the minimum support is important because it greatly impacts the execution

time. The empirical results showed that the most efficient SPM algorithm is PrefixSpan in terms of

computational time. For this reason, in this study, we used the PrefixSpan algorithm.

Figure 4. Runtime (seconds) for retrieving frequent patterns

Figure 4 shows the impact of the minimum support threshold on the running times of the algorithms.

Furthermore, the minsup parameter also impacts the number of patterns as well as the interestingness of

patterns found. As reported in [6], setting it to a very high value may lead to finding no frequent patterns,

while a too-low value may generate many uninteresting and non-useful patterns. Moreover, the minsup

parameter has an impact on the length of the patterns. As one decreases the minimum support, the

number of longer patterns increases on high-dimensional datasets. Tuning the minsup parameter to an

optimum value is a challenging task, especially for inexpert analysts. Deciding on the minsup value

requires a trial-and-error process and therefore it is a tedious procedure for inexperienced users [6]. It

may be noted here that if a hierarchical relationship between items is defined, different minsup values

can be determined for different levels, instead of a uniform value. In multi-level sequential pattern

mining [32], it is required to use higher minsup values at higher levels and reduced them at lower levels.

Furthermore, it may be also stated here that the traditional SPM algorithms assume that each item has

the same importance. The concept of multiple minimum supports (MMS) [33] extends the problem by

allowing users to specify different minsup values for different items to reflect their own nature.

0

2

4

6

8

10

12

14

2 2,5 3 3,5 4 4,5 5

R
u

n
ti

m
e

(s
ec

.)

Support (%)PrefixSpan SPADE BIDE+ LAPIN

322

V. CONCLUSION AND FUTURE WORKS

This paper proposes a new framework, called Source Code Miner (SCodeMiner), which discovers

frequent coding patterns within a software project. The proposed framework firstly transforms a source

code into a sequence database and then applies a sequential pattern mining algorithm. This study is also

original in that it compares four different algorithms in terms of computational time, including

PrefixSpan, SPADE, BIDE+, and LAPIN. The experiments that carried out on an open-source software

project showed that the proposed SCodeMiner framework is an effective mining tool in identifying

coding patterns.

The main findings of the study can be concluded as follows:

 The empirical results showed that PrefixSpan outperformed the other alternative SPM algorithms

(SPADE, BIDE+, and LAPIN) in terms of computational time. The results were obtained in a shorter

time compared to the previous related studies [20-22] since it has been proven in [8, 30] that

PrefixSpan is faster than PLWAP and GSP.

 With the proposed SCodeMiner framework, the general structure of the source code is extracted for

general purposes. On the other hand, some previous approaches typically proposed for a specific

purpose such as for analyzing software versions [5, 19, 23], usage patterns [20], software clones [18],

crosscutting concerns [26], or software vulnerabilities [12, 13, 15, 17].

 The results showed that source codes usually contain frequent patterns of subroutine calls,

mathematical operations, control flows, and loops such as <LOOP MATH IF FUNC ENDIF

ENDLOOP>. On the other hand, when the source code of a graphic drawing tool is analyzed, the

patterns can contain items related to drawing commands such as <getGraphics setColor drawRect

setcolor fillRect dispose> as given in [20].

 The results showed that the number of frequent coding patterns decreased exponentially when the

minimum support threshold increased. This behavior is also similar to the cases in [18, 20]. For this

reason, an appropriate threshold value should be set to discover valuable frequent patterns.

 When the length of patterns was investigated, the frequency of results was distributed in the shape of

the “bell” curve. The number of 3-length and 4-length patterns is usually the highest. However, the

skewness and kurtosis of the curve can change according to the minimum support threshold value.

SCodeMiner has the potential to expand the application of data mining in the software engineering field,

thanks to its advantages. Although found effective, it has several limitations. It is specially designed for

the Java programming language; however, it is possible to extend the study for the other programming

languages by only changing the tokenization step. Besides, it does not consider any user-defined

constraint such as item constraint, time constraint, super-pattern constraint, or gap constraint. The

patterns can be filtered according to a user-defined constraint. As a future study, we can use a closed,

maximal, or high-utility SPM algorithm to present concise representations of coding patterns.

VI. REFERENCES

[1] A. Agrawal, M. Alenezi, R. Kumar, and R. A. Khan, “Securing web applications through a

framework of source code analysis,” J. Comput. Sci., vol. 15, no. 12, pp. 1780-1794, 2019.

[2] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “An exploratory study on confusion in code

reviews,” Empirical Software Eng., vol. 26, no. 12, pp. 1-48, 2021.

323

[3] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with Bayesian networks,”

ACM Trans. Softw. Eng. Methodol., vol. 25, no. 1, pp. 1-31, 2015.

[4] M. M. Rahman, Y. Watanobe, K. Nakamura, and M. Bures, “A neural network based intelligent

support model for program code completion,” Sci. Program., vol. 2020, pp. 1-18, 2020.

[5] L. Kaur and A. Mishra, “Cognitive complexity as a quantifier of version to version Java-based

source code change: An empirical probe,” Inf. Softw. Technol, vol. 106, pp. 31-48, 2019.

[6] A. A. Abdelaal, S. Abed, M. Al-Shayeji, and M. Allaho, “Customized frequent patterns mining

algorithms for enhanced Top-Rank-K frequent pattern mining,” Expert Syst. Appl., vol. 169, pp. 1-14,

2021.

[7] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and P. S. Yu, “A survey of parallel

sequential pattern mining,” ACM Trans. Knowl. Discovery Data, vol. 13, no. 3, pp. 1-34, 2019.

[8] J. Pei et al., “Mining sequential patterns by pattern-growth: The PrefixSpan approach,” IEEE

Trans. Knowl. Data Eng., vol. 16, no. 10, pp. 1-17, 2004.

[9] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” Mach. Learn., vol.

42, pp. 31-60, 2001.

[10] J. Wang and J. Han, “BIDE: Efficient mining of frequent closed sequences,” in Proc. 20th Int.

Conf. on Data Eng., Boston, MA, USA, 2004, pp. 79-90.

[11] Z. Yang, Y. Wang, and M. Kitsuregawa, “LAPIN: Effective sequential pattern mining

algorithms by last position induction for dense databases,” in 12th Int. Conf. on Database Syst. for Adv.

Appl., Bangkok, Thailand, 2007, pp. 1020-1023.

[12] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, "BGNN4VD: Constructing bidirectional graph neural-

network for vulnerability detection," Inf. Softw. Technol., vol. 136, pp. 1-11, 2021.

[13] S. Jeon and H. K. Kim, "AutoVAS: An automated vulnerability analysis system with a deep

learning approach," Comput. Secur., vol 106, pp. 1-24, 2021.

[14] C. D. Newman et al., “On the generation, structure, and semantics of grammar patterns in source

code identifiers,” J. Syst. Softw., vol. 170, pp. 1-21, 2020.

 [15] X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, "Automated vulnerability detection in source

code using minimum intermediate representation learning," Appl. Sci., vol. 10, pp. 1-16, 2020.

[16] Y. Ueda, T. Ishio, A. Ihara, and K. Matsumoto, “Mining source code improvement patterns from

similar code review works,” in IEEE 13th Int. Workshop on Softw. Clones, Hangzhou, China, Mar. 2019,

pp. 13–19.

[17] Y. Fang, S. Han, C. Huang, and R. Wu, "TAP: A static analysis model for PHP vulnerabilities

based on token and deep learning technology," Plos One, vol. 14, no 11, pp. 1-19, 2019.

[18] Y. Udagawa, “Maximal frequent sequence mining for finding software clones,” in Proc. of the

18th Int. Conf. on Inf. Integration and Web-based Appl. and Services, Singapore, Nov. 2016, pp. 26-33.

[19] H. Date, T. Ishio, M. Matsushita, and K. Inoue, “Analysis of coding patterns over software

versions,” Inf. Media Technol., vol. 10, no. 2, pp. 226–232, 2015.

324

[20] R. J. Akbar, T. Omori, and K. Maruyama, “Mining API usage patterns by applying method

categorization to improve code completion,” IEICE Trans. Inf. Syst., vol. E97.D, no. 5, pp. 1069–1083,

May 2014.

[21] L. L. N. da Silva Junior, A. Plastino, and L. G. P. Murta, “What should I code now? ” J. Univers.

Comput. Sci., vol. 20, no. 5, pp. 797-821, 2014.

[22] H. Takei and H. Yamana, “IC-BIDE: Intensity constraint-based closed sequential pattern mining

for coding pattern extraction” in Proc. Int. Conf. on Adv. Inf. Networking and Appl., 2013, pp. 976-983.

[23] H. Date, T. Ishio, and K. Inoue, “Investigation of coding patterns over version history,” in 4th

Int. Workshop on Empirical Softw. Eng. in Practice, Osaka, Japan, 2012, pp. 40-45.

[24] H. Kagdi, M. L. Collard, and J. I. Maletic, “An approach to mining call-usage patterns with

syntactic context,” in ACM/IEEE Int. Conf. on Automated Softw. Eng., 2007, pp. 457-460.

[25] Y.-T. Kim, H.-T. Kong, and C.-S. Kim, “Analysis of characteristics and location of the

appearance for codding pattern in the source code,” J. Digit. Policy Manag., vol. 11, no. 7, pp. 165-171,

2013.

[26] T. Ishio, H. Date, T. Miyake, and K. Inoue, “Mining coding patterns to detect crosscutting

concerns in Java programs,” in Proc. Working Conf. on Reverse Eng., 2008, pp. 123–132.

[27] H. Tang, Y. Liu, and L. Wang, "A new algorithm of mining high utility sequential pattern in

streaming data," Int. J. Computational Intell. Syst., vol. 12, no. 1, pp. 342–350, 2019.

[28] I. Matloob, S. A. Khan, and H. U. Rahman, "Sequence mining and prediction-based healthcare

fraud detection methodology," IEEE Access, vol. 8, pp. 143256-143273, 2020.

[29] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, “A Survey of

Sequential Pattern Mining,” Data Sci. Pattern Recognit., vol. 1, no. 1, pp. 54-77, 2017.

[30] A. Palacios, A. Martinez, L. Sanchez, I. Couso, "Sequential pattern mining applied to aeroengine

condition monitoring with uncertain health data," Eng. Appl. Artif. Intell., vol. 44, pp. 10–24, 2015.

[31] P. Fournier-Viger et al., “The SPMF open-source data mining library version 2,” in European

Conf. on Machine Learn. and Princ. and Practice of Knowl. Discovery in Databases, 2016, pp. 36-40.

[32] S. Lianglei, L. Yun, and Y. Jiang, "Multi-level sequential pattern mining based on prime

encoding," Phys. Procedia, vol. 24, pp. 1749-1756, 2012.

[33] Y.-H. Hu, F. Wu, and Y.-J. Liao, "An efficient tree-based algorithm for mining sequential

patterns with multiple minimum supports," J. Syst. Softw., vol. 86, pp. 1224-1238, 2013.

