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Abstract
We are interested in scattering and spectral analysis of an impulsive boundary value prob-
lem (IBVP) generated with a q-difference equation with eigenparameter in boundary con-
dition in addition to impulsive conditions. We work on the Jost solution and scattering
function of this problem, and by using the scattering solutions, we establish the resol-
vent operator, continuous spectrum and point spectrum of this problem. Furthermore, we
discuss asymptotic behavior of the Jost solution and properties of eigenvalues. Also, we
illustrate our results by a detailed example which is the special case of main problem.
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1. Introduction
Scattering problems have been a significant research area in mathematical physics.

There are many books and papers devoted exclusively to scattering analysis of differ-
ence and differential equations or boundary value problems defining with a difference and
differential expressions [2, 17–19,23,25,28,29].

Impulsive cases of such problems have received comparably little attention, although
such equations or boundary value problems are of importance in many fields of science such
as mathematical modeling, medicine, physics, economics, chemical, engineering, mathe-
matical biology, and other areas of mathematics. Since the theory of impulsive difference
equations takes form under favor of the theory of impulsive differential equations, we refer
to the monographs [8, 9, 15, 32, 37] for the mathematical theory of such impulsive equa-
tions. Note that the impulsive conditions increase the importance of scattering problem.
Because scientists formulate the mathematical research by using impulsive equations to
understand the daily life. In general, such problems are related to discontinuous material
properties. To deal with interior discontinuities, some conditions are imposed on discon-
tinuous points. These points are called impulsive conditions. Impulsive conditions are
also called transmission conditions, jump conditions, interface conditions and point con-
ditions in literature [14, 21, 26, 30, 31, 34, 35]. Recently, some researchers have paid more
attention to scattering problems of differential and difference equations with impulsive
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conditions [4,10–13,20]. Differently from these papers, we will consider a quantum impul-
sive boundary value problem (QIBVP) in this paper and differently from [4], this QIBVP
consists spectral parameter in boundary condition. Also, this paper is more comprehensive
than [4] in the way of consisting resolvent operator, continuous spectrum and additional
properties of eigenvalues. On the other hand, our problem has more applications in the
literature since it has eigenparameter-dependent boundary condition. It is well-known
that q-calculus can be treated as bridge between mathematics and physics, and it deals
with the investigation and applications of quantum derivatives and quantum integrals.
It is an interesting topic having interconnections with various problems of mathematical
physics and quantum mechanics [3,22,24,38]. Moreover, there are some papers about the
spectral analysis of q−difference equations in literature [1,5–7,16]. As a result of this, our
paper will contribute to literature in a way of different perspective.

In this study, we let q > 1 and use the notation qN0 := {qn : n ∈ N0}, where N0 denotes
the set of nonnegative integers. Let us consider the QIBVP consisting of the second order
q-difference equation

qa (t) y (qt, z) + b (t) y (t, z) + a

(
t

q

)
y

(
t

q
, z

)
= λy (t, z) , t ∈ qN\

{
qm0−1, qm0 , qm0+1} , (1.1)

the boundary conditions

(ξ0 + ξ1λ) y (q, z) + (ν0 + ν1λ) y (1, z) = 0, ξ0ν1 − ξ1ν0 ̸= 0, ξ1 ̸= ν0
a (1)

(1.2)

and the impulsive conditions

y
(
qm0+1, z

)
= γ1y

(
qm0−1, z

)
(1.3)

y
(
qm0+2, z

)
= γ2y

(
qm0−2, z

)
, γ1γ2 ̸= 0, γ1, γ2 ∈ R,

where λ = 2√
q cos z is a spectral parameter, ξi, νi are real numbers for i = 0, 1, {a (t)}t∈qN0

and {b (t)}t∈qN are real sequences satisfying the condition∑
t∈qN

ln t
ln q

{|1 − a (t)| + |b (t)|} < ∞. (1.4)

Throughout this work, we will assume that a (t) ̸= 0, for all t ∈ qN0 .
To the best of our observations, there are no results of scattering properties for (1.1)-

(1.3) boundary value problem. This paper is organized as follows: In Section 2, we give
some auxiliary results and introduce some notations. Section 3 and Section 4 feature the
main results of the paper. We get scattering function of QIBVP (1.1)-(1.3) and investigate
the properties of this function in Section 3 and we give the resolvent operator, continuous
spectrum and discrete spectrum of QIBVP (1.1)-(1.3) in Section 4. Also, we present an
asymptotic equation to get the properties of eigenvalues in this section. In Section 5, we
are interested in unperturbed form of (1.1)-(1.3). It is a special case of (1.1)-(1.3) and it
can be seen as an example of (1.1)-(1.3). This example is provided in order to illustrate
our main results. Discussing the properties of Jost solution and scattering function of
this unperturbed boundary value problem, we determine the region of eigenvalues and
continuous spectrum of unperturbed problem.

2. Preliminaries
We now give some definitions and preliminary results. Denote the Hilbert space ℓ2

(
qN0
)

consisting of complex-valued functions with the inner product

⟨f, g⟩q :=
∑

t∈qN0

µ (t) f (t) g (t), f, g : qN0 → C
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and the norm

∥f∥q :=

 ∑
t∈qN0

µ (t) |f (t)|2


1
2
, f : qN0 → C,

where µ (t) := (q − 1) t is the graininess function for all t ∈ qN0 .
Let us define two semi-strips

D0 :=
{
z ∈ C : Imz > 0,−π

2
≤ Rez ≤ 3π

2

}
and

D := D0 ∪
[
−π

2
,
3π
2

]
.

Throughout the remainder of the paper, we suppose that P (t, z) and Q (t, z) are the
fundamental solutions of (1.1) for z ∈ D, λ = 2√

q cos z and t ∈ qN0 , satisfying the initial
conditions

P (1, z) = 0 P (q, z) = 1

Q (1, z) = 1
a (1)

Q (q, z) = 0,

respectively. For each t ∈ qN0 , P (t, z) is polynomial of degree (n− 1) and is called a
polynomial of the first kind, Q (t, z) is polynomial of degree (n− 2) and is known as a
polynomial of the second kind.

Definition 2.1. The Wronskian of two solutions y = {y (t, λ)} and u = {u (t, λ)} of (1.1)
is defined by

W [y, u] (t) = µ (t) a (t) {y (t, λ)u (qt, λ) − y (qt, λ)u (t, λ)}

for t ∈ qN0 .

It can be easily shown that the Wronskian is independent from the value of t and
W [P,Q] = (1 − q) for all z ∈ C. Note that, we can write the other solution ψ of (1.1) as
a linear combination of fundamental solutions. We can introduce this solution as
ψ (t, z) = − (ν0 + λν1)P (t, z) + a (1) (ξ0 + λξ1)Q (t, z) , t ∈

{
1, q, q2, . . . , qm0−1

}
. (2.1)

On the other hand, to introduce the Jost solution of (1.1)-(1.3), we need the bounded
solution e (t, z) of (1.1) which satisfies the condition

lim
t→∞

e (t, z) e
−i

ln t
ln q

z√
µ (t) = 1, z ∈ D (2.2)

for λ = 2√
q cos z [1]. It is represented by

e (t, z) = ρ (t) e
i ln t

ln q
z√

µ (t)

1 +
∑
r∈qN

A (t, r) ei ln r
ln q

z


t ∈

{
qm0+1, qm0+2, . . .

}
in [1], where ρ (t) and A (t, r) are given in terms of the sequences

{a (t)} and {b (t)} as

ρ (t) :=
∞∏

s∈qN

[a (s)]−1 ,

A (t, q) := − 1
√
q

∑
s∈[qt,∞)∩qN

b (s) ,



Scattering analysis of a quantum impulsive boundary value problem with spectral parameter 145

A
(
t, q2

)
:=

∑
s∈[qt,∞)∩qN

1 − a2 (s) + 1
q
b (s)

∑
p∈[qs,∞)∩qN

b (p)

 ,
A
(
t, q2r

)
:= A (qt, r) +

∑
s∈[qt,∞)∩qN

{(
1 − a2 (s)

)
A (qs, r) − b (s)

√
q
A (s, qr)

}

for r ∈ qN. It is clear from [1] that e (t, z) is asymptotically equal to the solution

ẽ (t, z) = e
i ln t

ln q
z√

µ (t)

of the equation qy (qt, z) + y

(
t

q
, z

)
= λy (t, z) for t ∈ qN and λ = 2√

q cos z. Hereafter,

by using (2.2) and Definition 2.1, we can write

W [e (t, z) , e (t,−z)] = − 2i
√
q

sin z (2.3)

for t ∈ qNm0+1 :=
{
qm0+1, qm0+2, . . .

}
and z ∈

[
−π

2
,
3π
2

]
. It follows from (2.3) that

{e (t, z)}
t∈q

Nm0+1 and {e (t,−z)}
t∈q

Nm0+1 are fundamental system of solutions of (1.1)-(1.3)

for z ∈
[
−π

2
,
3π
2

]
\ {0, π}.

Now, we define the following solution of (1.1)-(1.3) by using P (t, z) , Q (t, z) and e (t, z)
for z ∈ D as

E (t, z) :=


α (z)P (t, z) + β (z)Q (t, z) , t ∈

{
1, q, q2, . . . , qm0−1}

e (t, z) , t ∈ qNm0+1 ,
(2.4)

where α and β are z-dependent coefficients. By using impulsive conditions (1.3) for E (t, z),
we write

E
(
qm0+1, z

)
= γ1E

(
qm0−1, z

)
E
(
qm0+2, z

)
= γ2E

(
qm0−2, z

)
and

1
γ1
e
(
qm0+1, z

)
= α (z)P

(
qm0−1, z

)
+ β (z)Q

(
qm0−1, z

)
(2.5)

1
γ2
e
(
qm0+2, z

)
= α (z)P

(
qm0−2, z

)
+ β (z)Q

(
qm0−2, z

)
.

By using the definition of Wronskian and equation (2.5), we obtain the coefficients α (z)
and β (z) for z ∈ D as

α (z) = qm0−2a
(
qm0−2)

γ1γ2
{γ2α1 (z) − γ1α2 (z)} (2.6)

β (z) = −qm0−2a
(
qm0−2)

γ1γ2
{γ2β1 (z) − γ1β2 (z)} , (2.7)

where
α1 (z) := e

(
qm0+1, z

)
Q
(
qm0−2, z

)
α2 (z) := e

(
qm0+2, z

)
Q
(
qm0−1, z

)
β1 (z) := e

(
qm0+1, z

)
P
(
qm0−2, z

)
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and
β2 (z) := e

(
qm0+2, z

)
P
(
qm0−1, z

)
.

The function E (z) := {E (t, z)} is called Jost solution of the QIBVP (1.1)-(1.3).

Lemma 2.2. The coefficients α (z) and β (z) satisfy the following equations for z ∈ D :

α (−z) = α (z) and β (−z) = β (z).

Proof. It is known that P (t, z) = P (t,−z) and Q (t, z) = Q (t,−z) for z ∈ D. It follows
from that α (−z) = α (z) and β (−z) = β (z) for z ∈ D by using (2.6) and (2.7). It
completes the proof. �

Now, we will consider the following solution F (z) = {F (t, z)} of QIBVP (1.1)-(1.3) for
z ∈

[
−π

2
,
3π
2

]
\ {0, π}

F (t, z) :=


ψ (t, z) , t ∈

{
1, q, q2, . . . , qm0−1}

c (z) e (t, z) + d (z) e (t,−z) , t ∈ qNm0+1 .
(2.8)

To get the coefficients c (z) and d (z), we will use same way as finding α (z) and β (z). By
using (1.3) and (2.3), we obtain

c (z) = −(q − 1) qm0+ 3
2a
(
qm0+1)

2i sin z
{γ1c1 (z) − γ2c2 (z)} (2.9)

and

d (z) = (q − 1) qm0+ 3
2a
(
qm0+1)

2i sin z
{γ1d1 (z) − γ2d2 (z)} , (2.10)

where

c1 (z) : = ψ
(
qm0−1, z

)
e
(
qm0+2,−z

)
c2 (z) : = ψ

(
qm0−2, z

)
e
(
qm0+1,−z

)
d1 (z) : = ψ

(
qm0−1, z

)
e
(
qm0+2, z

)
and

d2 (z) := ψ
(
qm0−2, z

)
e
(
qm0+1, z

)
.

Corollary 2.3. The coefficients c (z) and d (z) satisfy the following relationship for all
z ∈

[
−π

2
,
3π
2

]
\ {0, π}

d (z) = c (−z) = c (z).

Lemma 2.4. For all z ∈
[
−π

2
,
3π
2

]
\ {0, π}, we get

W [E (t, z) , F (t, z)] :=



a
(
qm0−2)

a (qm0+1)
2i sin z
γ1γ2

d (z)
q

7
2

, t ∈
{
1, q, q2, . . . , qm0−1}

−2i sin z
√
q

d (z) , t ∈ qNm0+1.
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Proof. Using the definition of Wronskian for t ∈ qNm0+1 , we write

W [E,F ] =µ (t) a (t) {E (t, z)F (qt, z) − E (qt, z)F (t, z)}

=µ
(
qm0+1

)
a
(
qm0+1

){
E
(
qm0+1, z

)
F
(
qm0+2, z

)
− E

(
qm0+2, z

)
F
(
qm0+1, z

)}

=µ
(
qm0+1

)
a
(
qm0+1

)
e
(
qm0+1, z

) [
c (z) e

(
qm0+2, z

)
+ d (z) e

(
qm0+2,−z

)]
−e
(
qm0+2, z

) [
c (z) e

(
qm0+1, z

)
+ d (z) e

(
qm0+1,−z

)]
 .

By using

W
[
e
(
qm0+1, z

)
, e
(
qm0+1,−z

)]
= − 2i

√
q

sin z,

we get

W [E (t, z) , F (t, z)] = µ
(
qm0+1

)
a
(
qm0+1

)
d (z)

(
− 2i sin z

√
qµ (qm0+1) a (qm0+1)

)

= −2i sin z
√
q

d (z) .

Similarly, if we apply the definitions E (t, z) , α (z) , β (z), F (t, z) and d (z) given in (2.4),
(2.6), (2.7), (2.8) and (2.10), respectively, we find

W [E (t, z) , F (t, z)] = a
(
qm0−2)

a (qm0+1)
2i sin z
γ1γ2

d (z)
q

7
2

for t = 1, q, q2, . . . , qm0−1. This completes the proof. �

3. Jost solution and scattering solution
Now, we define the Jost function J of QIBVP (1.1)-(1.3) by applying the boundary

conditions (1.2) to the Jost solution E (t, z) of (1.1)-(1.3) and we write

J (z) := (ξ0 + λξ1)E (q, z) + (ν0 + λν1)E (1, z)

= α (z) (ξ0 + λξ1) + β (z)
a (1)

(ν0 + λν1) . (3.1)

It is evident that

J (−z) = α (−z) (ξ0 + λξ1) + β (−z)
a (1)

(ν0 + λν1) .

Furthermore, the function J is analytic in C+ := {z ∈ C : Imz > 0} and continuous in
C+ := {z ∈ C : Imz ≥ 0}. Similarly to the Sturm-Liouville equation, the function J is
called the Jost function of QIBVP (1.1)-(1.3).

Lemma 3.1. For all z ∈
[
−π

2
,
3π
2

]
\ {0, π}, the Jost function J can be written as a

multiple of coefficient d (z)

J (z) = −a
(
qm0−2)

a (qm0+1)
2i sin z
a (1)

q− 7
2

γ1γ2 (q − 1)
d (z) .

Proof. It follows from (2.10) that

d (z) = (q − 1) qm0+ 3
2a
(
qm0+1)

2i sin z

{
γ1ψ

(
qm0−1, z

)
e
(
qm0+2, z

)
−γ2ψ

(
qm0−2, z

)
e
(
qm0+1, z

) }
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If we use (2.1) in last equation, we get

d (z) = (q − 1) qm0+ 3
2a
(
qm0+1)

2i sin z


− (ν0 + λν1) β (z) γ1γ2

qm0−2a (qm0−2)

−a (1) (ξ0 + λξ1) α (z) γ1γ2
qm0−2a (qm0−2)



= −(q − 1) qm0+ 3
2a
(
qm0+1) γ1γ2

2i sin zqm0−2a (qm0−2)

{(ν0 + λν1)
a (1)

β (z) + (ξ0 + λξ1)α (z)
}

,

this equation gives

d (z) = −(q − 1) q
7
2a
(
qm0+1) a (1) γ1γ2

2i sin za (qm0−2)
J (z)

from (3.1). It completes the proof of Lemma 3.1. �

Theorem 3.2. The coefficient d (z) is not zero for all z ∈
[
−π

2
,
3π
2

]
\ {0, π}.

Proof. Suppose that there exists a point z0 in
[
−π

2
,
3π
2

]
\ {0, π} such that d (z0) = 0. It

follows from that c (z0) = d (z0) = 0 as a result of Corollary 2.2. It gives F (t, z0) = 0 for
all t ∈ qN0 , but this gives a contradiction. Because F is not a trivial solution of QIBVP
(1.1)-(1.3). So, the assumption is not true, i.e., d (z) ̸= 0 for all z ∈

[
−π

2
,
3π
2

]
\ {0, π}. �

Definition 3.3. The function

S (z) := J (z)
J (z)

, z ∈
[
−π

2
,
3π
2

]
\ {0, π}

is called the scattering function of QIBVP (1.1)-(1.3).

It is obvious from Definition 3.1 and Lemma 3.1 that scattering function can be also
given with the help of coefficient d (z) as

S (z) = J (−z)
J (z)

= −d (−z)
d (z)

(3.2)

for all z ∈
[
−π

2
,
3π
2

]
\ {0, π}.

Theorem 3.4. For all z ∈
[
−π

2
,
3π
2

]
\ {0, π}, the function S (z) has the following prop-

erties:
i) S (−z) = S−1 (z) = S (z)
ii) |S (z)| = 1.

Proof. i) By using (3.1) and (3.2), we get

S (−z) = J (z)
J (−z)

and

S (z) = J (−z)
J (z)

= J (z)
J (−z)

= S−1 (z)

for all z ∈
[
−π

2
,
3π
2

]
\ {0, π}.
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ii) Since |S (z)|2 = S (z)S (z), the equation (3.2) gives us

|S (z)| = J (z)
J (−z)

J (−z)
J (z)

= 1

for all z ∈
[
−π

2
,
3π
2

]
\ {0, π}. �

4. Resolvent operator, continuous and discrete spectrum of QIBVP
In the following, we will define another solution G (z) := {G (t, z)} of (1.1)-(1.3) for all

z ∈ D to get the resolvent operator of QIBVP (1.1)-(1.3).

G (t, z) :=


ψ (t, z) , t ∈

{
1, q, q2, . . . , qm0−1}

r (z) e (t, z) + k (z) ê (t, z) , t ∈ qNm0+1 ,
(4.1)

where ê (t, z) denotes the unbounded solution of (1.1) for t ∈ qNm0+1 and satisfies the
condition

lim
t→∞

ê (t, z) e
i
ln t
ln q

z√
µ (t) = 1, z ∈ D.

It can be easily shown that

W [e (t, z) , ê (t, z)] = − 2i
√
q

sin z

for t ∈ qNm0+1 and z ∈ D, and e (t, z) , ê (t, z) are independent solutions for
z ∈ D\ {0, π}. Similar to previous solutions, we find the coefficients r (z) and k (z) for
z ∈ D\ {0, π} uniquely, as

r (z) = −(q − 1) q
m0+

3
2a
(
qm0+1)

2i sin z
{γ1r1 (z) − γ2r2 (z)} (4.2)

k (z) = (q − 1) q
m0+

3
2a
(
qm0+1)

2i sin z
{γ1k1 (z) − γ2k2 (z)} , (4.3)

where
r1 (z) : = ψ

(
qm0−1, z

)
ê
(
qm0+2, z

)
r2 (z) : = ψ

(
qm0−2, z

)
ê
(
qm0+1, z

)
k1 (z) : = ψ

(
qm0−1, z

)
e
(
qm0+2, z

)
k2 (z) : = ψ

(
qm0−2, z

)
e
(
qm0+1, z

)
.

The solution G is called the unbounded solution of (1.1)-(1.3), and for all
z ∈

[
−π

2
,
3π
2

]
\ {0, π}, the coefficient k (z) has the following relation between the coeffi-

cients of the solution F
k (z) = d (z) = c (z).

Moreover, using (2.4), (4.1) and Definition 2.1, we obtain

W [E (t, z) , G (t, z)] :=



a
(
qm0−2)

a (qm0+1)
2i sin z
γ1γ2

d (z)
q

7
2

, t ∈
{
1, q, q2, . . . , qm0−1}

−2i sin z
√
q

d (z) , t ∈ qNm0+1

(4.4)
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for all z ∈
[
−π

2
,
3π
2

]
\ {0, π}, samely as Lemma 2.3.

Theorem 4.1. Assume (1.4). Then the resolvent operator of QIBVP (1.1)-(1.3) is given
by

(Rh) (t) :=
∑
r∈qN

R (t, r)h (r, z) , h ∈ ℓ2
(
qN
)
,

where

Rt,z (z) :=



−
µ
(

r
q

)
G (r, z)E (t, z)
W [E,G]

, r = qk

−
µ
(

r
q

)
G (t, z)E (r, z)
W [E,G]

, r = tqk

is the Green function of (1.1)-(1.3) for r ̸= qm0.

Proof. It is necessary to solve the equation

qa (t) y (qt, z) + b (t) y (t, z) + a

(
t

q

)
y

(
t

q
, z

)
− λy (t, z) = h (t, z) (4.5)

to get the Green function of QIBVP (1.1)-(1.3). Since E (t, z) and G (t, z) are fundamental
solutions of QIBVP (1.1)-(1.3), we can write the general solution of g = {g (t, z)} of (4.5)
as

g (t, z) = m (t)E (t, z) + n (t)G (t, z) , (4.6)
wherem (t) , n (t) are coefficients and are different from zero. Using the method of variation
of parameters, we obtain m (t) and n (t) by

m (t) = −
∑
r∈qN

h (r, z)G (r, z)µ
(

r
q

)
W [E,G]

, r ̸= qm0 (4.7)

n (t) = −
∑

r∈[qt,∞)qN

h (r, z)E (r, z)µ
(

r
q

)
W [E,G]

, r ̸= qm0 . (4.8)

It follows from (4.6), (4.7) and (4.8) that the Green function of (1.1)-(1.3) is Rt,z (z) given
in Theorem 4.1 and it is easy to write the resolvent operator of QIBVP (1.1)-(1.3) given
in Theorem 4.1 by using this Green function. �

Now, we can define the discrete spectrum, i.e., the set of eigenvalues of QIBVP (1.1)-
(1.3) by using Theorem 4.1 and the definition of eigenvalues [36]. If we denote the set of
eigenvalues of (1.1)-(1.3) by σd, we can write

σd := {λ ∈ C : λ = 2√
q cos z, z ∈ D0, d (z) = 0} .

Theorem 4.2. Under the condition (1.4), d (z) satisfies the following asymptotic equation
for z ∈ D

d (z) = e4iz [A+ o (1)] , |z| → ∞, A ̸= 0.

Proof. As we know, P (t, z) is polynomial of degree (n− 1) ., and Q (t, z) is polynomial
of degree (n− 2) . with respect to λ. By considering this and using (1.2), (2.1), (2.10), we
find

lim
|z|→∞

ψ (t, z) e
i
ln t
ln q

z

 = − ν1

qn− 3
2a (q) a (q2) . . . a (qn−1)

, t ∈ qN0 (4.9)
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and

lim
|z|→∞

e (t, z) e
−i

ln t
ln q

z

 = ρ (t)√
µ (t)

, t ∈ qN0 (4.10)

where
ρ (t) :=

∞∏
s∈[t,∞)∩qN

[a (s)]−1 .

It follows from (2.10), (4.9) and (4.10) that

d (z) =
(q − 1) qm0+ 3

2 a
(
qm0+1)

2i sin z


γ1ψ

(
qm0−1, z

)
e

i
ln qm0−1

ln q
z

e
(
qm0+2, z

)
e

−i
ln qm0+2

ln q
z

e3iz

−γ2ψ
(
qm0−2, z

)
e

i
ln qm0−2

ln q
z

e
(
qm0+1, z

)
e

−i
ln qm0+1

ln q
z

e3iz


and if we write last equation in limit form, we find

lim
|z|→∞

{
d (z) e−4iz

}
= − A1γ1ν1ρ

(
qm0+2)

qm0− 5
2a (q) a (q2) . . . a (qm0−2)

√
µ (qm0+2)

lim
|z|→∞

1
e2iz − 1

+ A1γ2ν1ρ
(
qm0+1)

qm0− 7
2a (q) a (q2) . . . a (qm0−3)

√
µ (qm0+1)

lim
|z|→∞

1
e2iz − 1

,

where A1 := (q − 1) qm0+ 3
2a
(
qm0+1). Last equation gives

lim
|z|→∞

{
d (z) e−4iz

}
= −A lim

|z|→∞

1
e2iz − 1

, (4.11)

where

A := (q − 1) q5γ1ν1a
(
qm0+1) ρ (qm0+1)√

µ (qm0+1)a (q) a (q2) . . . a (qm0−3)

{
a
(
qm0+1)

q
3
2a (qm0−2)

− γ2
γ1

}
.

(4.11) gives us, lim
|z|→∞

{
d (z) e−4iz

}
= A for all z ∈ D and it completes the proof of Theorem

4.2. �
We can say that the set of eigenvalues of QIBVP (1.1)-(1.3) is bounded under the

assumption (1.4) by using Theorem 4.2. If we denote the continuous spectrum of QIBVP
(1.1)-(1.3) by σc, we present the following theorem.

Theorem 4.3. Assume (1.4). Then the continuous spectrum of the operator L generated
by QIBVP (1.1)-(1.3) is

[
−2√

q, 2√
q
]
, i.e., σc (L) =

[
−2√

q, 2√
q
]
.

Proof. Let L1 and L2 denote q-difference operators generated in ℓ2
(
qN
)

by the following
q-difference expressions

(ℓ1y) := y

(
t

q
, z

)
+ qy (qt, z) , t ̸= qm0−1, qm0+1

and for t ̸= qm0−1, qm0 , qm0+1

(ℓ2y) :=
(
a

(
t

q

)
− 1

)
y

(
t

q
, z

)
+ b (t) y (t, z) + q (a (t) − 1) y (qt, z) ,

respectively, with the boundary condition (1.2). It is evident that L = L1 + L2 and L2 is
a compact operator in ℓ2

(
qN
)

under the assumption (1.4) (see [33]). We can also write
the operator L1 by the sum of two operators L3 and L4, i.e; L1 = L3 + L4, where L3
is a self-adjoint operator with σc (L3) =

[
−2√

q, 2√
q
]

and defined by the q−difference
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expression ℓ1 and the boundary condition y(0) = 0. On the other hand, L4 is a finite
dimensional operator in ℓ2

(
qN
)
. Since L4 is a finite dimensional operator in ℓ2

(
qN
)
, it

is also a compact operator. It gives that the sum of two compact operators L2 + L4 is
a compact operator, too. It follows from that L = L3 + L4 + L2 and by using the Weyl
Theorem (see [27]) of a compact perturbation, we get

σc (L3) = σc (L) = [−2√
q, 2√

q] .

�

Note that from the definition of eigenvalues of QIBVP (1.1)-(1.3), we write

σd ⊂ (−∞,−2√
q) ∪ (2√

q,∞) .

Theorem 4.4. Assume (1.4). Then the operator L has a finite number of real eigenvalues.

Proof. As we know, {a (t)}t∈qN0 and {b (t)}t∈qN are real sequences. It follows from that
the operator L is selfadjoint. Since the operator L is selfadjoint, its eigenvalues are real. To
complete the proof of Theorem 4.4, we have to show that the function d has finitely many
zeros in D0. By using formula σd ⊂

(
−∞,−2√

q
)
∪
(
2√

q,∞
)

of (1.1)-(1.3), we obtain that
the limit points of the set of all eigenvalues of (1.1)-(1.3) or of L could not be different
from ∓2√

q, ∓∞. Since λ = 2√
q cos z, the limit points of the set of all eigenvalues of L

could not be ∓∞ for z ∈ D0. On the other hand for z = 0 and z = π, the limit points
of the set of all eigenvalues could be ∓2√

q. But from operator theory and Theorem 4.3,
the eigenvalues of selfadjoint operators are not the elements of its continuous spectrum.
Because of this reason, we also cannot consider z = 0 and z = π as zeros of the function
d, i.e., the set of all eigenvalues of the operator L has not any limit points. This result
with Bolzano-Weierstrass Theorem gives that the set of zeros of the function d in D0 is
finite. �

5. Example
We conclude the paper by defining an unperturbed q-difference equation with impulsive

and boundary condition, as a special case of (1.1)-(1.3). This special case introduces our
example and it illustrates our theoretical findings. We will discuss our main results on
this example. Let us consider the q-discrete unperturbed impulsive problem

qy (qt, z) + y

(
t

q
, z

)
= 2√

q cos zy (t, z) , t ∈ qN\
{
q2, q3, q4

}
(ξ0 + ξ1λ) y (q, z) + (ν0 + ν1λ) y (1, z) = 0 (5.1)

y
(
q4, z

)
= γ1y

(
q2, z

)
y
(
q5, z

)
= γ2y (q, z) ,

where ξ0, ξ1, ν0, ν1, γ1, γ2 ∈ R and γ1γ2 ̸= 0. It is evident that in problem (1.1)-(1.3), we
suppose a (t) ≡ 1, b (t) ≡ 0 for all t ∈ qN0 and m0 = 3 for the problem (5.1). Then the
solution e (t, z) turns into

e (t, z) = e
i
ln t
ln q

z√
µ (t)

and the fundamental solutions P (t, z) and Q (t, z) of (1.1)-(1.3) have the following values
for t = 1, q, q2

P (1, z) = 0 P (q, z) = 1 P
(
q2, z

)
= λ

q
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Q (1, z) = 1
a (1)

Q (q, z) = 0 Q
(
q2, z

)
= − 1

qa (1)
.

Thus by using (2.4) and (2.10), we find d (z) and Jost solution of this problem

d (z) = (q − 1) q
9
2a
(
q4)

2i sin z

{
γ1ψ

(
q2, z

)
e
(
q5, z

)
− γ2ψ (q, z) e

(
q4, z

)}
(5.2)

E (t, z) =



α (z)P (t, z) + β (z)Q (t, z) , t ∈
{
1, q, q2}

e
i
ln t
ln q

z√
µ (t)

, t ∈
{
q4, q5, . . .

}
,

respectively. By using equation (5.2), we find the scattering function of (5.1)

S (z) = e−10iz

{
γ1ψ

(
q2, z

)√
q − γ2ψ (q, z) eiz

γ1ψ (q2, z) √
q − γ2ψ (q, z) e−iz

}
.

Moreover, continuous spectrum of the problem (5.1) is
[
−2√

q, 2√
q
]

from Theorem 4.3.
To get the eigenvalues of the problem (5.1), it is necessary to find the zeros of d (z) for
z ∈ D0. Because from the definition of eigenvalues, we write

σd = {λ = 2√
q cos z : d (z) = 0, z ∈ D0} (5.3)

for this problem, where d (z) is defined by (5.2). From the values of P (t, z) , Q (t, z) for
t = q, q2, we obtain

ψ (q, z) = − (ν0 + λν1)

ψ
(
q2, z

)
= −(ν0 + λν1)λ

q
− (ξ0 + λξ1)

q
.

It follows from that last equation and (5.2) that

d (z) = (q − 1) q
9
2a
(
q4)

2i sin z


γ1

{
−(ν0 + λν1)λ

q
− (ξ0 + λξ1)

q

}
e5iz√
µ (q5)

−γ2 {− (ν0 + λν1)} e4iz√
µ (q4)

 . (5.4)

Equation (5.4) implies that d (z) = 0 if and only if
γ2
γ1

= λeiz

q3/2 + (ξ0 + λξ1)
ν0 + λν1

eiz

q3/2 . (5.5)

For the simplicity on calculations, if we choose ξ1 = ν0 = 1 and ξ0 = ν1 = 0 in (5.5), we
find

e2iz = qγ2
2γ1

− 1.

Let γ2 = (2/q)Bγ1, B ∈ R. By using last equation, we get e2iz = B − 1. It gives us
2izk = ln |B − 1| + iArg (B − 1) + 2ikπ, k ∈ Z

i.e.,
zk = − i

2
ln |B − 1| + 1

2
Arg (B − 1) + kπ, k ∈ Z. (5.6)

It is clear from (5.3) and (5.6) that the boundary value problem (5.1) has eigenvalues if
and only if ln |B − 1| < 0. It implies that −1 < B − 1 < 1. Consequently, the necessary
condition for the QIBVP (5.1) to have an eigenvalue is that 0 < B < 2. These eigenvalues
are real and lie on

(
−∞,−2√

q
)

∪
(
2√

q,∞
)
. Also, for k = 0, we obtain λ0 = 2√

q, for
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k = 1, we obtain λ1 = −2√
q. Since λ = ∓2√

q are continuous spectrum, they are not an
eigenvalue of (5.1).
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