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Abstract

In this paper, we have introduced a new concept, called soft quasilinear operator over soft quasilinear
spaces which extends the notion of quasilinear operator. Also, we studied some properties of soft
quasilinear operators with illustrating examples. Further, we have defined inverse of a soft quasilinear
operator and its some different properties from inverse of soft linear operators are obtained.
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1. Introduction

In 1986, Aseev [1] introduced the concept of quasilinear spaces, normed quasilinear spaces and quasilinear
operators which are generalization of the linear spaces, normed linear spaces and linear operators, respectively.
Additionally, in [2], [3], [4], [5], [6], [7], [8], the authors introduced some new concepts and results on quasilinear
spaces. Recently, in [9], Y1lmaz et all. introduced the notion of inner product quasilinear space and investigated some
basic properties of inner product quasilinear spaces. Also, in [10], Levent and Yilmaz deal with bounded quasilinear
interval-valued functions and analized the Hahn Banach extension theorem for interval valued functions.

Molodtsov [11] initiated a new theory of linear functional analysis by starting the theory of soft sets. Then, Maji
et all. [12], [13] introduced several operations on soft sets. After that, many research works have been done in soft
set theory such as [14], [15], [16] . Also, Das and Samanta introduced the idea of soft linear spaces in [17]. Next,
Samanta et all. [18], [19] presented some new concepts about the soft set theory such as soft convex set, soft semi
norm, soft Minkowski’s functionals on a soft linear space and soft pseudo metric.

Based on our studies with related to quasilinear spaces and studies of Samanta and Das, in [21], Bozkurt defined
soft quasilinear spaces and soft normed quasilinear spaces which are generalization of the soft linear spaces and soft
normed linear spaces, respectively. In the same study, Bozkurt obtained new results about soft quasilinear spaces.

In this paper, we have introduced a concept of soft quasilinear operator over soft quasilinear spaces which
extends the notion of quasilinear operator. Also, we studied some properties of soft quasilinear operators with
illustrating examples. Further, we have defined inverse of a soft quasilinear operator and its some different
properties from inverse of soft linear operators are obtained.
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2. Preliminaries

Firstly, we give the definition of quasilinear space, normed quaslinear space and some its basic properties given
by Aseev [1]. After, we give the concepts of soft quasilinear space and soft normed quaslinear space given by [21].
Now, let’s continue with the definition of Aseev:

Definition 2.1. [1] A quasilinear space over a field R is a set () with a partial order relation “<”, with the operations
of addition  x @ — @ and scalar multiplication R x ) — @ satisfying the following conditions:

Qg =g,

(Q2) ¢ =X zifg<wand w < z,
(Q3)¢g=wifg2wand w < q,

(Q4) qg+w=w+gq,

(@5) ¢+ (w+2) =(g+w)+2z,

(Q6) there exists an element § € @ such that ¢ + 0 = g,
QT a-(B-q) =(a-B)-q

(@) a-(g+w)=a-g+a-w,
(Q9)1-q=gq,

(Q10)0-¢ =0,

QL) (a+B)-g=2a-q+8-4q,

(Q12) g+ 2z = w+vifg 2 wand z < v,
(QI3)a-q R a-wif g X w,

for every ¢, w, z,v € @ and every o, 8 € R.

If an element ¢ has an inverse, then it is called reqular. If an element ¢ has no inverse, then it is called
singular. Also, @, express for the set of all regular elements in () and @, imply the sets of all singular elements in ().
Besides, @, Q4 and Qs U {0} are subspaces of @), where @), regular subspace of @), Q4 symmetric subspace of @
and Q; U {0} singular subspace of @ [2].

Definition 2.2. [1] Let @ be a quasilinear space. A function .||, : @ — R is named a norm if the following
circumstances hold:

(NQ1) dllq > 0if g 70,

(NQ2) g+ wlg < lallg + wllg

(NQ3) |l allg = lal - allq

(NQ4) if ¢ 2 w, then ||‘I||Q < Hw”Q7

(NQ@5) if for any € > 0 there exists an element ¢. € Q such that, ¢ < w + ¢. and ||¢. HQ < ¢ then ¢ < w for any
elements ¢, w € () and any real number « € R.

A quasilinear space @ is called normed quasilinear space with a norm defined on it. Let () be a normed
quasilinear space. Then, Hausdorff or norm metric on () is defined by

ho(g,w) =inf{r >0:q 2w+ af,w = q+a,|la]|| <r}.

Definition 2.3. [1] Let () and W be quasilinear spaces. Then a quasilinear operator A : ¢ — W is a function
satisfying

(RO A(a-q) =a-A(g),

(QO2) A (g +w) 2 A(g) +A(w),

(QO3) A(¢g) 2 A(w)if g R wforany q,w € Q and « € R.

Definition 2.4. [11] Let U be an universe and E be a set of parameters. Let P(U) denote the power set of U and A
be a non-empty subset of E. A pair (F, A) is called a soft set over U, where F is mapping givenby F : A — P(U).

A soft set (F, E) over U is said to be absolute soft set denoted by Uifforalle € E, F(e) = U.

Definition 2.5. [20] Let X be a non-empty set and E be a non-empty parameter set. Then a functione : £ — X is
said to be a soft element of X. A soft element ¢ of X is said to belongs to a soft set A of X, which is denoted by e€ 4,
ife(e) € A(e),Ve € E.

Now, we will give the notion of soft quasilinear space, soft normed quasilinear space, soft quasi vector and some
results related this notions.
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Definition 2.6. [21] Let (G, P) be a non-null soft set over a quasilinear space ). Then (G, P) is called a soft
quasilinear space over Q if G (p) is a subquasilinear space of @ for every p € Supp (G, P).

Definition 2.7. [21] Let (G, P) is a soft quasilinear space of Q). A soft element of () is said to be a soft quasi vector of
(G, P). A soft element of the soft set (R, P) is said to be a soft scalar.

Definition 2.8. [21] Let (G, P) is a soft quasilinear space of ) over R and (F, P) C (G, P) is a soft set over (G, P).
Then (F, P) is called a soft subquasilinear space of (G, P) whenever (F, P) is quasilinear space with identical partial
ordering and identical operations on Q).

Proposition 2.1. [21] Let (G, P) be a soft quasilinear space over Q). Then
a)0-q=0,forallq € (G,P),
b) k- © = O, for all soft scalar k,
c)(=1)-g=—q, forallq € (G,P).

Let Q be a quasilinear space, Q is also our initial uiverse set and P be the non-empty set of parameters. Let ) be
the absolute soft quasilinear space i.e., G (p) = Q, Vp € P, where (G, P) = Q. Let SQV (@) be the collection all

soft quasi vectors over (. We use the notation g, @ to denote soft quasi vectors of a soft quasilinear space and & to
denote soft real numbers whereas @ will denote a particular type of soft real numbers such that @(\) = «, for all
AeP.

Theorem 2.1. [21] The set SQV (@) is a quasilinear space with the relation "<"
S0 &GN 2 a(\)
the sum operation
(@+w)(A)=g(\) +w ()

and the soft real-scalar multiplication

(@ g\ =a)-q()
for every q, w soft vectors of SQV (@) , YA € P and for every soft real numbers c.

Definition 2.9. [21] Let SQV (@) be a soft quasilinear space and N C SQV (@) be a subset. If N is a soft
quasilinear space, then N is said to be a soft quasilinear subspace of SQV (@) and stated by SQV (Kf ) Cc SQV (@) .

Definition 2.10. [21] Let SQV (@) be a soft quasilinear space. Then a mapping ||.|| : SQV (@) — RT (R) is said to
be a soft norm on the soft quasilinear space SQV (@) , if ||.|| satisfies the following conditions:
(SNQ1) [|7]| S0 if § # 6 for all § € SQV (@),
(SNQ2) 7+ < ] + @] for all g, € SQV Q).
(SNQ3) || - q]| = |a] ||q]| for every g € SQV (@) and for every soft scalar ¢,
(SNQ4) if =i, then ||| < ||| for all §, @ € SQV (@) ,
)

(SNQ5) if for any ¢>0 there exists an element 2 SQV (@) such that §=@ + Z and ||Z]| <€ then §=a.
Definition 2.11. [21] Let (@ - H) be a soft normed quasilinear space. Soft Hausdorff metric or soft norm metric on

i?} .

Same as the definition of Hausdorff metric on normed quasilinear space, we obtain §=@+ (§ — @) and W=g+ (@ — q)
forevery g,w € SQV (@)

Q is defined by equality

or
a;

hg(g; w) = inf {?2 0: G=w + af, W=q + a3,

he (g, )< |g — |-
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Here, we should note that /5(¢, w) may not equal to [|§ — w/|| since Q is a soft quasilinear space.

Definition 2.12. [21] A sequence of soft elements {g, } in a soft normed quasilinear space (@, ||||) is said to be

converges to a soft element gy if h@((j", qo) — 0asn — oo.

Definition 2.13. [21] A sequence of soft elements {g, } in a soft normed quasilinear space (@, Il ||> is said to be a

Cquchy sequence if corresponding to every €0, 3m € N such that ha (i, gj)<c¢foralli,j > mie. ha(ai, aj) — 0 as
i,j — oo.

3. Main Results

Let @ and W be two soft quasilinear spaces over field R, P be a nonempty set of parameters, Q and W be the

corresponding absolute soft quasilinear spaces i.e. Q(\) = Q and W(X\) = W for every A € P. We use the notations
¢, w and Zz to denote soft quasi vectors of a soft quasilinear space.

Definition 3.1. Let x : SQV(Q) — SQV (W) be an operator. Then y is said to be soft quasilinear if

(SQO1) x(q + W)=x(q) + x(w),
(5QO2) x(c- q) = ¢ x(q) for every soft scalar c,
(SQOB) g=w = x(q)=x(w),

for every ¢, w € SQV(Q).

Example 3.1. If Q be a soft normed quasilinear space. Then the identity operator y : SQV (Q) — S QV(@ such that
x(q) = g, for every soft quasi element g € @, is a soft quasilinear operator.

Example 3.2. Let R(P) be the set of all soft real numbers defined over the parameter set P and consider the absolute

soft quasi set generated by Q¢ (R) i.e. Q/c_\(_]li) (A) = Q¢ (R). Let an operator

x + R(P)—=S5QV(Q0 (R))

e

for a soft quasi vector [1,2] € Q¢ (R). For every 7, m € R(P), we have

—

x(F+m) = (F+m)-[1,2]
271,24 - [1,2)
= x(r) +x(m).
For every soft scalar ¢, we get
x@) = &2
)
= ¢ x(r).
For every ¥, m € R(P), if 7 = m then 7 - [/1,\2/] =m- [/1,\5] since R(P) is a soft quasilinear space with relation "=". So,

we obtain x (7)< x(m).

Definition 3.2. The operator x : SQV(@) — SQV(W) is said to be continuous at g € Qv if for every sequence {¢,, }
of soft element of ) with ¢, — gas n — oo, we have x (¢») — x (¢) asn — oo i.e., h(¢n,q) — 0as n — oo implies

h(x (gn),x (q)) = 0asn — oo. If x is continuous at every soft quasi element of ), then Y is said to be a continuous
quasilinear operator.

Example 3.3. The identity operator given in Example 3.1 is continuous since h (x (¢r) , x (@)) = h (¢n,q) — 0 as
n — oo.
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Theorem 3.1. Let Q and W be two soft normed quasilinear spaces. If x : SQV(Q) — SQV (W) be a soft quasilinear

n . n
operator, then x (Z Cr - qu) < > kX (Gr), Ck are soft scalars.
k=1 k=1

Proof. For n = 1 the inequality is satisfied. We consider that the conclusion is true for (n — 1) i.e,,

n—1 n—1
X (Z@cﬁ) <> ax (Gr) s G-
k=1 k=1
From here,

n n—1
x(zq> _ x<zq+q>
k=1

k=1

n—1

g(Zc}m)w@m)
k=1

1

3
|

= ¢k - X (Gk) + Cn - X (n)
1

E
Il

Il
NE
A
>
’Ea
ol

S
I
-

O

Definition 3.3. Let x : SQV(Q) — SQV(W) be a soft quasilinear operator, where @ and W are soft normed
quasilinear spaces. The operator x is called bounded if there exists some positive soft real number N such that for

allg € Q, [Ix (@ <N |1l

Theorem 3.2. Let x : SQV(Q) — SQV (W) be a soft quasilinear operator, where Q and W are soft normed quasilinear
spaces. If x is bounded then x is continuous.

Proof. Assume that x is bounded. Then there exists a positive soft real number N such thatforall G € Q, ||x (9)|| <N
llg]l . Let ¢, — g as n — oo i.e., for every € > 0 there exists a ng € N such that

e = e = |~y ~¢
In<q+ 41, 0<qn + Gy» ||, <ﬁ

for all n > ng. Then
¥ (@) 2@ +x (65,) » x @ 2x (@) + x (5,

NG

Therefore, x (¢n) — x (¢) as n — oo. So x is continuous at ¢ € @ Since q € C~2 is arbitrary, x is continuous. O

and N
2N || <=

Theorem 3.3. Suppose a soft quasilinear operator x : SQV (Q) — SQV (W), where Q and W are soft normed quasilinear
spaces, satisfies the condition: for p € Q and X € P,

{X(@ (V) - GeQ such that G () = p}

is a singleton set. Then for each A € P, x : Q — W defined by x (1) = x (@) (N), forall p € Q, GEQ such that qg(\) =pu,
is a quasilinear operator.

Proof. From the above condition, x is well defined for every A € P. Since y is a soft quasilinear operator, x
satisfies soft quasilinear operator conditions for VA € P :



Soft Quasilinear Operators 87

For every p, v €  and soft scalar ¢, we get

Xl +v) =x @+ 7)) (\)<x (@ V) + x (¢) (V) = xalw) + xa(v),
Xa(c-p)=x(€-q)(A)=c-x(q)(N) =c-xalp),

p<v=p=qgN<¢\) =v=x@ N <x (@) =k < xr).

Therefore, the soft quasilinear operator x satisfying above condition gives a parametrized family of crisp quasilinear
operators. O

Theorem 3.4. Let {x» : Q — W, A € P} be a family of crisp quasilinear operators from quasilinear space Q) to the quasilinear

space W. Then there exists a soft quasilinear operator x : SQV(Q) — SQV (W), defined by x () (X\) = xa(n) if g(N) =
and \ € P; which satisfies Theorem 3.3 and x (\) = x for every A € P.

Proof. Let G€Q be an arbitrary soft quasi element and x : SQV(Q) — SQV(W), by x (@) (A) = xa(p) if g(N) = p
for every A € P. Also, ¢'€Q) be any soft quasi element, A € P and ¢* () = v. Then, we get
X@+a)N) = x(@N+g¢ W)
= xalp+v)
< () + xa(v)
= x@ M) +x(a) ).

For every soft scalar ¢, we obtain

x@- ) = x(EA)-q(N)
A

Il
=

Let us consider §<q* such that ¢ (A\) = pand ¢* (\) = v for arbitrary g, (17%@ and arbitrary A € P. Then, we
have g (\) <q¢" (\) for A € P. From here, we get (1) <xx(v) since x, is a soft quasilinear operator. So, we have
X (§) (\) <x (¢") (\) . Therefore, x : SQV(Q) — SQV (W) is a soft quasilinear operator. O

Lemma 3.1. Let (@, Il P) be a soft normed quasilinear space and a soft quasi norm ||.|| satisfies the condition:
Forue Qand X € P, {||q]| (A\) : ¢(\) = u} is a singleton set.

Then for every X € P, |||, : Q@ — R defined by |||y, = [|1q]| (), for every p € Q and GEQ such that §(\) = p, is a quasi
norm on Q.

Proof. Let|.||, : @ — R* defined by |||, = ||g]| (A), for every € Q, A € P and G€Q such that §(\) = p. For every
w e Q. llully = 3l (%) S0.1¢ Jul, = 0. then ]| (A) = [G(A)]| = 0 = 1. For every soft scalar &, we obtain |2 ], =
Ie-qll(\) =< |lgl (\) = ¢ [|ull,. Also, ¢*€Q be any soft quasi element, A € P and ¢* (\) = v. Then, for every
nv e Qweget|ut vy = g+ @ ()= 700+ W ZMFON+ [ W] = 181 Q)+ |F]] 3) = llally + 1],
If 1 < v, then ¢ (A) <¢* (A) . Since ||.|| is a soft quasi norm, we obtain ||7]| (A) < ||¢|| (A) . So, we have ||u||, < [|v],.
Lastly, for every € > 0 there exist an element &, € @ such that u < v + ¢ and |||, < €. Here, there exist an element
g. € Q such that g, (\) = &. Thus, we get 7(\) <¢* (\) + g (\) for §(\) = 1, ¢* (\) = v and g, (\) = &.. On the other
hand, we obtain [|£||, = [|gc]| (A) = [|ge (V)| <&since el < €. From (@, (Il ,P) is a soft normed quasilinear space,
we have 7 (\) <q* (). This gives u < v. O

Theorem 3.5. Let Q and W be soft normed quasilinear space which for p € Q and A € P, {||q]] (A\) : ¢(\) = u} is a
singleton set. Let x : SQV(Q) — SQV (W) be a soft quasilinear operator satisfying for p € Q and A € P,

{X(@ () : EQ such that () = p}

is a singleton set. If x is continuous then x is bounded.
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Proof. The proof is similar to the soft linear counterpart. O

Let’s examine the inverse of a soft quasilinear operator x. Let x : SQV(Q) — SQV (W) be a soft quasilinear

operator where @ and W are soft normed quasilinear spaces. {X(cj) : Jé@} is the range set of .

Theorem 3.6. Let x : SQV(Q) — SQV (W) be q soft quasilinear operator. If x~* exists then

x(q) = 0 implies ¢ = 6.

!exists i.e. x(7) = x(¢*) implies ¢ = ¢. Let ¢ = 6, then

x(q) = x(0) =0

Proof. Assume x~

implying thereby
qg=29.

But, the converse of above theorem is not true. That is, if y(¢) = 6 implies ¢ = 6, then x~! may not be exists. Clearly,

we know that this requirement exists in linear soft quasilinear spaces, that is, in soft linear spaces. Let’s give an
example related to soft quasilinear operators and it’s inverse. O

Example 3.4. R (P) be the set of all soft real numbers defined over the parameter set P. Let an operator

X R(P) = SQV(Qc (R))
_ (-7 7>0
" X(ﬂ{ 7= : 7 <0

Clearly, x (7) GNSQV(m)) for every 7 € R(P). Now, for every 7,m € R(P):
1) If 7,m > 0, then 7 + m > 0. So, we get

x(r+m) =

I
T
ol
|
E
t
_l’_

R

2Q)Ifr,m < 0, then 7 4+ m < 0. So, we have

xr+m) = [(F+m),— (T +m)]
= [F+m,—7—m]
= [r,=7] + [m,—m]
x(7) + x(m).
3) Letr > Oand m < 0. If 7+ m < 67 then, we get

x(r+m) = [(F+m),—(T+m)]

Ifr+m> 6, then, we get

xF+m) = [(T+m),— (T +m)
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4) Letr < Oand m > 0. If 7+ m < 6, then, we get
x(r+m) = [(r+m),—(+m)
= [F+m,—7—m]
27,71 + i, —7)
= x(7) +x(m).
Ifr+m> 5, then, we get
x(r+m) = [(F+m),—(T+m)]
= [F+m,—7—m]
27,7 + [, 7
= x(7) +x(m).
If 7 > 0, then &7 > 0 for every soft positive scalar ¢. Thus, we get
x(cr)=[-cr,er)=¢c-[-r,r]=¢-x (7).
If 7 < 0, then &7 < 0 for every soft positive scalar & Thus, we get
x(cr)=[cr,—crl=c¢-[r,—r]=¢-x (7).
If 7 > 0, then &7 < 0 for every soft negative scalar ¢. Thus, we get
x(cr)=[cr,—crl=c-[r,—r]=¢-x (7).
If 7 < 0, then &7 > 0 for every soft negative scalar ¢. Thus, we get
x (cr)=[-cr,er)=¢-[-r,r]=¢-x (7).
If ¢ =0, then

For every 7,m € R(P), if ¥ = m then

equal to
(i) = [-m,m]: m >0
X | [m,—m]: m<O0.
Therefore, we obtain x(7)=<x (/) for every 7, m € R(P). So, the operator x is a soft quasilinear operator. Further,
if x (7) = g then 7 = 0. But, y is not an one to one mapping. Because, —2 # 2 for —2,2 € R(P), but (—5) =

3.3 = (2).

Remark 3.1. We know from the soft linear operators, if x ! exists for a soft linear operator x, then x ! is a soft linear.
But, this situation may not be true for a soft quasilinear operators. Now, let ’s give an example to illlustrate this
situation.

Example 3.5. Let R(P) be the set of all soft real numbers defined over the parameter set P and consider the absolute
soft quasi set generated by Q¢ (R) i.e. Q¢ (R)(A) = Q¢ (R). Let an operator

x o R(P) = SQV(Qc (R))
o= x (/) =7 [-1,0]

for a soft quasi vector [—1,0] € Q¢ (R). x is a soft quasilinear operator. So, x ! is exists since x is an one to one soft

—_— e~ A Y~ e~

quasilinear operator. Also, for 1 - [~1,0] € SQV(Q¢ (R)) and 1-[-1,0] € SQV(Qc (R)), we have
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DO

|
—
=
N
—

|
—_
=

but _
1~
—# 1.
57
Thus, x ! is not a soft quasilinear operator since x ' does not satisfy condition §=@ = x(§)=x(@).

Theorem 3.7. Let Q and W be a soft normed quasilinear spaces which satisfy the condition: {||g|| (\) : ¢(A\) = p} isa

singleton set for p € Q and X\ € P. Let x : SQV (Q) — SQV (W) be a soft quasilinear operator, x ! be a continuous soft
quasilinear operator and x~' which satisfy the condition:

{Xfl (@) (\) : WEW such that @ (\) = n}

is a singleton set for k € W and A € P. Then there exists a soft real number k>0 such that k |3 < ||x (@) for every GEQ.

Proof. Assume that x ! is exists and continuous. We obtain x ~! bounded by Theorem 3.5 since {||q]| (A) : ¢ (\) = u}
is a singleton set for y € Q and A € P and {X_l (W) (A) : WEW such that @ (\) = H} is a singleton set for kK € W

and A € P. Thus, there exists a positive soft real number N >0 such that x=* (@) <N ||@|| for every @ € W . There
exists GeQ such that x ! (@) = §. Thus, we obtain ||§]| <N ||x ()|. If we take k = %, thenwe get k||| < ||x (@)]. O

Theorem 3.8. Let Q bea soft Banach quasilinear space and W bea soft normed quasilinear spaces which satisfy the condition:

{lIgll (N) : G (N) = p} is a singleton set for ;€ Q and X € P. Also, x : SQV(Q) — SQV (W) be a bijective continuous soft
quasilinear operator satisfying the condition: {X (@) () : GEQ such that §(\) = u} is a singleton set for i € Q and A € P.

If x~ 1 is continuous then Wisa soft Banach quasilinear space.
Proof. Let {w,} be a Cauchy sequence in W . Then there exists a ng € N such that

~ €

Wn SWipy + Wi, W <Wp + W5,

€
‘wm

for all n, m > ng. Since x~! is continuous

) 2 ) oy () ) 2 () v (w5,
i.e. B . B .
Gn<qm + iy Im=qn + q5,

for every x (¢n) = W, for ¢, €Q. There exists ¢, €Q such that ! (ZU\EJ ) = ¢¢,. Thus, from the above theorem, we

in

obtain

<e.

v | ()

Thus, {¢,} is a Cauchy sequence in @ Since @ is complete, g, — go for some ¢p € @ So, there exists a ng € N such
that

j— \T €

€
Ain

a5, || <€

for all n > ng. Thus, we get

@il + W, oSty + g, ||uf, | €

for x (¢n) = w,, and x (go) = wy since x is continuous. Therefore, W is a soft Banach quasilinear space. O

4. Conclusion

In this work, the notion of soft quasilinear operator is defined. Also, some consistent theorems and conclusions
related with soft quasilinear operators are obtained. Lastly, the inverse of a soft quasilinear operator is described
and its some basic properties are worked.
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