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Abstract 

 

Flexible job shop scheduling (FJSS) is derived by inheriting the features of the job-shop scheduling 

problem. It has an extra routing sub-problem of the job-shop scheduling. FJSS is well known as an NP-

hard problem in the literature. A new hybrid scatter search method is proposed to solve the FJSS problem. 

The objective function of the proposed hybrid scatter search method is minimizing the maximum 

completion time (Cmax) for FJSS problems. The proposed hybrid scatter search method is integrating a 

local and global search for generating an initial population. The performance of the proposed new hybrid 

scatter search method is dependent on the selected parameters. These parameters are the size of the initial 

population and reference set; the number of subsets, reference set updating and population sub updating; 

reproduction, crossover, and mutation operators, and their ratio. A full factorial experimental design is 

made to determine the best values of control parameters and operators for the proposed new hybrid scatter 

search to solve the FJSS problems. The proposed new hybrid scatter search method is tested on a set of 

the well-known benchmark flexible job shop scheduling instances from the literature. The computational 

results indicated that the proposed new hybrid scatter search is an effective method for solving the FJSS 

problems. 

 

Keywords: Flexible job shop scheduling problem, Full factorial experimental design, Hybrid scatter 

search method, Makespan. 

 

1. Introduction 

 

Job shop scheduling (JSS) is the hardest problem in this 

domain [1]. The flexible job shop scheduling is a much 

more complicated version of the JSS.  In the FJSS 

problem, processes are permitted to be committed on 

any machine chosen from inside a set of available 

machines. The FJSS is an extremely NP-hard problem 

[2]. FJSS can be solved via two main approaches called 

integrated and hierarchical. While in the integrated 

approach allocating and ordering of problems are 

concurrently considered, in hierarchical approaches, 

these two operations are processed one by one [3]. 

Though designing integrated approaches are more 

difficult, their results are better than the other in general 

[4,5]. Brucker and Schlie [6] studied first on the FJSS 

problems. They developed a polynomial algorithm for 

FJSS problems. Kacem et al. proposed an evolutionary  

 

optimization method for solving the FJSS problem [7]. 

Tay and Wibowo studied the representation of the four 

different chromosomes for the evolutionary algorithms 

to solve the FJSS [8]. They indicated that the 

representation of the chromosome also plays an 

important role in the solution success of FJSS problems. 

Ong et al. developed an algorithm with an integrated 

approach attempting based on the clonal selection 

mechanism for solving the FJSS problems with the 

repetition processing [9]. Ho et al. generated a genetic 

architecture method for FJSS problems [10]. Gao et al. 

presented a hybrid genetic algorithm for FJSS problems 

[11]. Fattahi et al. developed a heuristic approach for 

solving the FJSS problems [12]. They also presented the 

mathematical model of the problems. Gholami and 

Zandieh integrated the simulated annealing and genetic 

algorithm approaches for the dynamic FJSS problems 

[13]. Xing et al. developed a search method for the 
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multi-objective FJSS problem [14].  Zhang et al. 

presented a particle swarm optimization method for 

multi-objective FJSS problems [15]. Bagheri et al. 

developed an artificial immune algorithm based on an 

integrated approach for FJSS problems [16]. Guohui et 

al. hybridized a tabu search and genetic algorithm 

approaches for the FJSS [17]. Wang and Yu considered 

an FJSS with constraints of the machine [18]. Zhang et 

al. proposed a genetic algorithm to solve the FJSS 

problems with minimizing the makespan value [1]. 

They determined global and local selection to produce a 

high-grade starting population in the stage of 

initialization in their method. Birgin et al. presented a 

MILP model for the FJSS [19]. Demir and İşleyen 

compiled four of the most used formulations of the 

FJSS and proposed a time-indexed model for FJSS [20].  

Yuan and Xu proposed a hybrid differential evolution 

algorithm to solve FJSS with the makespan 

minimization criterion [21]. Demir and İşleyen 

considered the FJSS with overlapping in operations 

[22]. Abdelmaguid dealt with the makespan 

minimization problem in scheduling FJSS whenever 

there exist distinguishable sequence-dependent setup 

times [23]. He presented a randomized neighborhood 

searching function, and he experimentally specified its 

best parameters using modified FJSS benchmark 

samples. Gao et al. developed an artificial bee colony 

algorithm (ABCA) to schedule and reschedule with a 

new job(s) to minimize makespan for FJSS [24]. 

Besides, they proposed a new rule for initializing the 

bee colony populations. González et al. developed 

influential neighborhood structures for the FJSS 

containing feasibility and non-improvement 

circumstances, as well as procedures for fast prediction 

of the quality of neighbors [25]. They included these 

neighborhoods in a scatter search (SS) algorithm that 

employs tabu search and path relinking. They 

determined a new dissimilarity measurement to 

construct these meta-heuristics. Ishikawa et al. proposed 

a novel optimization mechanism for distributing genetic 

algorithms to solve FJSS problems [26]. Singh and 

Mahapatra developed a particle swarm optimization for 

solving FJSS [27]. They introduced mutation operators 

used commonly in genetic algorithms. Zabihzadeh and 

Rezaeian presented the integer linear programming 

model for the FJSS [28]. Li et al. proposed a hybrid 

ABCA for solving FJSS problems [29]. They integrated 

tabu search and bee colony algorithm. Shen et al. 

considered the FJSS problem with sequence-dependent 

setup times [30]. Min et al. proposed a genetic 

algorithm for solving the multi-objective FJSS problem 

with transportation constraints [31]. Li et al. generated a 

java algorithm for solving the FJSS problem [32]. 

Currently, there is no reported paper on the hybrid 

scatter search (HSS) method for solving the FJSS 

problems. The main contributions of this paper are 

summarized as follows: 

 

• In this paper, the basic scatter search method is 

hybridized first by new strategies and new methods 

to obtain a good balance between exploration and 

exploitation in SS. 

• At the proposed HSS, local and global search 

methods are used to determine the initial 

populations. 

•  Also, at the proposed HSS, the crossover and 

mutation operators and ratios are used first. 

• The proposed new HSS method is the first used to 

solve the FJSS problems. The objective of the 

proposed HSS is to minimize the Cmax. 

• The proposed HSS method found the new best Cmax 

values for four benchmark problems from the 

literature. 

• A full experimental design is done for determining 

the best parameter sets of the new HSS method for 

solving the FJSS problems. 

• The proposed new HSS method is tested on a set of 

benchmark FJSS problems.  

 

The proposed new hybrid scatter search method (HSS) 

is analyzed. The results of HSS are compared to the 

Fattahi et al. [12], Özgüven et al. [33], Bagheri et al. 

[16], and Birgin et al. [19]  from the literature. 

 

The paper is organized as follows. Section 2 gives the 

FJSS formulation. Section 3 provides the proposed HSS 

method. Section 4 gives the computational results. 

Finally, the conclusion and future research are presented 

in Section 5. 

 

2. Flexible job shop scheduling 

 

This paper considers FJSS problems. The problem can 

be denoted as FJc / / Cmax, where FJc denotes the 

flexible job shop with c work center. Each work center 

has several identical machines in parallel. Cmax indicates 

the performance measure, makespan. The objective is to 

minimize the Cmax values for FJSS problems. The FJSS 

problem has m machine and n job. Each job consists of 

a sequence of operations. The assumptions in the FJSS 

problems are given as follow: 

 

• The jobs and machines numbers are known at the 

beginning of the schedule, 

• All processors, machines, and jobs are available, 

• The processing time of each job on the machine is 

given before, 

• The processing time are including the setup time of 

the jobs, 

• The processing sequence of each job on the machine 

is  known previously, 

• The objective function is minimizing the makespan 

values. 

 

The FJSS problem is formulated as a mixed integer 

linear programming model as follow [12, 33, 19]. 
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Parameters; 

n : Jobs number (j = 1,...,n) 

m : Machines number (i = 1,...,m) 

k : Number of operations  (k = 1,...kj) 

Mj,k : Job j requires operation k on Machine 

Oj,k : k th operation of the j th job 

𝑍𝑖,𝑗,𝑘 : Capable machines set Mj,k assigned to 

operation Oj,k 

ti,j,k : Processing time of operation Oj,k if 

performed on machine i (ti,j,k ˃0) 

LN : Large number 

Cmax : Makespan 

Sj,k : Start time of  operation Oj,k 

pi : The assigned operations number on 

machine i; (p = 1,...pi) 

SWTi,p :  Start of working time for machine i in 

priority p  (p = 1,...pi) 

Tj,k : Processing time of operation Oj,k after 

select a machine 

 

Decision variables; 

𝑋𝑖,𝑗,𝑘,𝑝 = {
1           𝑖𝑓 𝑂𝑗,𝑘 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒

 𝑖 𝑖𝑛 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝 
0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑌𝑖,𝑗,𝑘 = {
1             𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖  𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟  

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑂𝑗,𝑘

 0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑍𝑖,𝑗,𝑘 = { 
1                         𝑖𝑓 𝑂𝑗,𝑘  𝑐𝑎𝑛 𝑏𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 

𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 
0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The mixed integer linear programming model; 

 

The objective function is to minimize the makespan. 

 

Min Cmax     

 

Subject to 

 

𝐶𝑚𝑎𝑥 ≥ 𝑆𝑗,𝑘𝑗 + 𝑇𝑗,𝑘𝑗   ; (j=1,…,n)             (2.1) 

 

∑ (𝑌𝑖,𝑗,𝑘)(𝑡𝑖,𝑗,𝑘) =𝑖  𝑇𝑗,𝑘 ;( j=1,…,n); (k = 1,...kj)           (2.2) 

 

𝑆𝑗,𝑘 +  𝑇𝑗,𝑘  ≤  𝑆𝑗,𝑘+1 ;( j=1,…,n); (k = 1,...kj-1)       (2.3) 

 

𝑆𝑊𝑇𝑖,𝑝 + (𝑇𝑗,𝑘)(𝑋𝑖,𝑗,𝑘,𝑝) ≤  𝑆𝑊𝑇𝑖,𝑝+1 ; (i = 1,...,m) 

( j=1,…,n); (k = 1,...kj); (p = 1,...pi-1)             (2.4) 

 

𝑆𝑊𝑇𝑖,𝑝  ≤  𝑆𝑗,𝑘 + (1 −  𝑋𝑖,𝑗,𝑘,𝑝). 𝐿𝑁 ; (i = 1,...,m) 

( j=1,…,n); (k = 1,...kj); (p = 1,...pi)                   (2.5) 

 

𝑆𝑊𝑇𝑖,𝑝 + (1 − 𝑋𝑖,𝑗,𝑘,𝑝)𝐿𝑁 ≥  𝑆𝑗,𝑘 ;  (i = 1,...,m) 

( j=1,…,n); (k = 1,...kj); (p = 1,...pi)                          (2.6) 

 

𝑌𝑖,𝑗,𝑘 ≤  𝑍𝑖,𝑗,𝑘   ;(i = 1,...,m); 

( j=1,…,n); (k = 1,...kj)                                            (2.7) 

∑ ∑ 𝑋𝑖,𝑗,𝑘,𝑝 = 1𝑘𝑗   ; (i = 1,...,m); 

(p = 1,...pi)                                                                (2.8) 

 

∑ 𝑌𝑖,𝑗,𝑘 = 1𝑖  ;( j=1,…,n);   (k = 1,...kj)                          (2.9) 

 
∑ 𝑋𝑖,𝑗,𝑘,𝑝 =  𝑌𝑖,𝑗,𝑘𝑝  ;(i = 1,...,m) 

( j=1,…,n); (k = 1,...kj)                       (2.10) 

 

𝑆𝑗,𝑘  ≥ 0 ;  ( j=1,…,n); (k = 1,...kj)                          (2.11) 

 

𝑇𝑗,𝑘  ≥ 0 ;  ( j=1,…,n); (k = 1,...kj)                          (2.12) 

 

𝑆𝑊𝑇𝑖,𝑝  ≥ 0 ; (i = 1,...,m); 

(p = 1,...pi)                                                              (2.13) 

 

𝑋𝑖,𝑗,𝑘,𝑝 𝜖{0, 1}     ; (i = 1,...,m); ( j=1,…,n); 

(k = 1,...kj); (p = 1,...pi)                                          (2.14) 

 

𝑌𝑖,𝑗,𝑘𝜖{0, 1}     ; (i = 1,...,m); ( j=1,…,n); 

(k = 1,...kj)                                                              (2.15) 

 

𝑍𝑖,𝑗,𝑘𝜖{0, 1}     ; (i = 1,...,m); ( j=1,…,n); 

(k = 1,...kj)                                                              (2.16) 

 

Constraint (2.1) determines the makespan (Cmax). 

Constraint (2.2) provides the processing time of 

operation Oj,k. Constraint (2.3) determines each job to 

follow a specified operation sequence. Constraint (2.4) 

defines each machine to process one operation at a time. 

Constraints (2.5) and (2.6) denote each operation Oj,k 

can be started after its assigned machine is idle. 

Constraint (2.7) defines the capable machines for each 

operation. Constraint (2.8) determines the operations to 

a machine and sequences assigned operations on all 

machines. Constraints (2.9) and (2.10) define each 

operation can be performed only on one machine at one 

priority. Constraints (2.11); (2.12) and (2.13) denote the 

non-negative parameters. Constraints (2.14); (2.15) and 

(2.16) permitted the variables  

𝑋𝑖,𝑗,𝑘,𝑝 ;  𝑌𝑖,𝑗,𝑘; 𝑍𝑖,𝑗,𝑘𝜖{0, 1}    or equivalently are binary. 

 

3. Proposed hybrid scatter search method 

3.1. Scatter search method 

 

Scatter search (SS) is one of the evolutionary methods 

[34]. The SS method was proposed in the 1970s [35]. 

Contrary to other evolutionary methods, SS is 

established on the premise which systematic designs 

and methods to generate new solutions afford 

significant benefits. It utilizes strategies for search 

diversification and concentration that have verified 

efficiency in various optimization problems [36].   

 

SS is based on an approach to solution generation and 

recombination [37]. The fundamental characteristic of 



 

Celal Bayar University Journal of Science  
Volume 17, Issue 4, 2021, p 347-359 

Doi: 10.18466/cbayarfbe.926756                                                                                                                    O. Engin 

 

350 

SS is the diversification of optimization solutions. The 

steps of the SS method are given in Fig.1. 

 

1. An initial population is created, 
2. A reference set is generated from the population, 
3. A subset is selected from the reference set, 
4. A combination procedure is applied to the subset, 
5. An improvement procedure is applied to the 
combinations, 
6. The reference set is updated, 
7. Step 3 to Step 6 are repeated until a new reference set 
is needed, 
8. Step 2 to Step 7are repeated until a population is 
needed, 
9. Step 1 to Step 8 are repeated until the stopping 
criterion is met. 
 

Figure 1. The steps of the SS method. [38, 39] 

 

The SS strategy is implemented by utilizing six 

procedures and three stopping criteria for solving an 

optimization problem. These six procedures are based 

on five components. SS has five main methods namely 

diversification generator, improvement, reference set 

update, subset generation, and solution combination 

method [40, 41, 42, 43]. A diversification generator is a 

means to start the search procedure. Improvement 

method is the procedure where local search procedure is 

defined. The reference set update method is the 

procedure by which the elements of the RefSet are 

selected. The Subset generation method declares the 

orders to choose the pairs of parents which will be 

combined later to constitute new solutions combination 

method. The method aims to generate new solutions by 

using the existing solutions. 

 

3.2. The Hybrid scatter search method 

 

In this study, we hybridized the basic SS by new 

strategies and new methods to obtain a good balance 

between exploration and exploitation in SS. These 

strategies are local and global search methods to 

determine the initial population. This global search 

method is used to escape from local optimum traps in 

the solution space. These strategies are good for 

exploration. Also, the new methods for basic SS are 

crossover and mutation operator and ratios. These new 

methods are good at exploitation. 

 

The outline of the proposed HSS is given as follows: 

 
Step 1. Setting initial parameters of HSS 

         Number of the initial population, 

         Number of reference set, 

         Number of subsets, 

         Number of updating initial population, 

         Number of updating subset, 

        Method of crossover, 

        Method of mutation, 

        The ratio of crossover, 

        The ratio of mutation, 

        Set CPU time. 

Step 2. Solving problem, 

         Determining initial population by the local and global 

search, 

         Generate reference set, 

         Select subset, 

              Choose two job sequences for crossover from the 

subset, 

                  Do crossover 

                  If new job sequences are feasible and the objective 

function is better than before; 

                  Add they subset 

                 Else    

                 Eliminate they 

                 Until crossover ratio 

              Choose a job sequence for mutation from the subset, 

                 Do mutation 

                If the new job sequences are feasible and the 

objective function is better than before 

  Add it subset 

                Else 

 Eliminate it 

 Until mutation ratio 

            Until the number of subsets 

            Update the reference set 

        Until the number of references set 

    Until the stopping criterion met 

Step 3. Output the minimum makespan (Cmax) 

 

3.2.1. Initial population 

 

The initial population is a crucial task in the scatter 

search algorithm [44]. In this study, two methods are 

presented to solve the first sub-problem by assigning 

each operation to a suitable machine.  

The steps of the first method are given as follows [1]: 

 

Step 1: A new array is created and starts each member 

to 0. 

Step 2: Choose a job randomly. 

Step 3: Add the processing time and the time of the 

corresponding machine. 

Step 4: Compare the added time to determine the 

shortest time. 

Step 5: Set the allele which corresponds with the current 

process in the machine selection part to k. 

Step 6: Add the processing time of the current chosen 

machine. 

Step 7: Select the next process of the current job and 

execute Step 3 to Step 6 until all operations of the 

current job are chosen, then go to Step 8. 

Step 8: Until all jobs are selected once, go to step 2. 

 

A local search is used as a second method.  

 

3.2.2. Generating reference set and subset selection 

 

The individual in the reference set comprises selecting 

the best individuals in the initial population. The 

individuals in the reference set rank from the worst to 

the best according to the determinate objective function.  

The objective function of this study is to minimize the 

makespan (Cmax). The sorted individuals are selected by 

starting from the best ones according to the predefined 
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reference set generation rate and the reference set is 

generated. The subsets are constituted by choosing the 

best individuals from individuals in the reference set 

because the combination and improvement procedures 

will be implemented over the best ones. 

 

3.2.3. Crossover 

 

Crossover is described as new individuals’ generation 

from between two individuals selected from within the 

whole population according to the given rules [45]. The 

objective of the crossover method is to facilitate 

achieving the optimal result by providing the formation 

of better individuals. There exist different methods used 

in the solution of several problems. In addition to these, 

some methods are privately developed according to the 

characteristic structure of the problems. In this study, 

the four crossover operators are considered, namely 

priority-based sequential, single point, operation 

sequence change, and alternative machine change 

crossover. In the priority-based sequential crossover 

method, two jobs are randomly selected from the first 

parent individual and all the processes which belong to 

those jobs are selected. However, the other jobs are 

transferred into the child individual by selecting from 

the second parent individual. In the example below, 1st 

and 3rd jobs are randomly selected from the first parent 

individual (p1); the other jobs (2nd and 4th jobs) are 

selected from the first parent individual (p2). Then, a 

new child individual (c1) is generated by using p1 and 

p2 as shown in Fig. 2. 

 

 
 

Figure 2. An example of priority-based sequential 

crossover operator. 

 

Single point crossover, a point that is randomly 

determined on any selected individual.  

 

 
 

Figure 3. An example of a single-point crossover 

operator. 

It is replaced by splitting the chromosome into two parts 

from that selected point. This method is used by 

modifying in this study. 

The part of the first chromosome until the predefined 

cut point is transferred into the new chromosome from 

the first one. However, after the genes transferred from 

the first chromosome are extracted from the second 

individual, the others are transferred into the new 

chromosome in order. A sample of single-point 

crossover is shown in Fig. 3.  

 

In the operation sequence change crossover method, it is 

operated on any single chromosome. Two jobs together 

with their whole processes are randomly selected over a 

single chromosome. Selected jobs are implemented by 

replacing over the same chromosome. An example of 

operation sequence change crossover is presented in 

Fig. 4. 

 

 
 

Figure 4. An example of operation sequence change 

crossover operator. 

 

In the alternative machine change crossover method, the 

genes are randomly selected from the first chromosome. 

The same selected genes are chosen from the second 

chromosome, too. The machines of the selected genes 

over the second chromosome are assigned to the 

selected genes over the first chromosome. In sort, the 

method is applied by changing the machine assignment 

components of the same genes. An example an 

alternative machine change crossover is presented in 

Fig. 5. 

 

3.2.4. Mutation 

 

The mutation operator is implemented after crossover. 

Mutation used to provide diversity in the population is 

generally employed in small proportions because that 

mutation rate is great can destroy the good individuals. 

 

 
 

Figure 5. An example of an alternative machine change 

crossover operator. 

 

4-1 3-1 1-1 1-2 2-1 4-2 1-3 3-2 2-2 4-3 1-4 3-3 2-2 2-4 3-4 4-4

1 2 4 3 3 2 4 2 1 3 2 4 1 2 3 1

1-1 1-2 3-1 2-1 2-2 4-1 3-2 2-3 4-2 1-3 2-4 1-4 3-3 4-3 3-4 4-4

3 2 4 3 2 1 2 4 1 2 3 2 1 4 1 2

2-1 3-1 1-1 1-2 2-2 4-1 1-3 3-2 2-3 4-2 1-4 3-3 2-4 4-3 3-4 4-4

3 2 4 3 2 1 4 2 4 1 2 4 3 4 3 2

p1

p2

c1

4-1 3-1 1-1 1-2 2-1 4-2 1-3 3-2 2-2 4-3 1-4 3-3 2-2 2-4 3-4 4-4

1 2 4 3 3 2 4 2 1 3 2 4 1 2 3 1

1-1 1-2 3-1 2-1 2-2 4-1 3-2 2-3 4-2 1-3 2-4 1-4 3-3 4-3 3-4 4-4

3 2 4 3 2 1 2 4 1 2 3 2 1 4 1 2

4-1 3-1 1-1 1-2 2-1 4-2 1-3 3-2 2-2 2-3 2-4 1-4 3-3 4-3 3-4 4-4

1 2 4 3 3 2 4 2 2 4 3 2 1 4 1 2

p1

p2

c1
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In mutation, it is altered over the genes of only one 

individual. It is decided whether mutation will be 

implemented over the individual according to a defined 

possibility value. In this study, the four mutation 

operators are considered, namely random assignment 

machine, operation relocation, best machine change, 

and last operation relocation. 

 

The random assignment machine method, a machine 

where a process randomly selected from the 

chromosome would be operated is randomly changed.  

This operation is performed regardless of the processing 

time on the machine. For example, while the machine, 

where the process 2-3 would be operated, is the 1st 

machine before mutation, the machine is changed as the 

4th machine at the end of the mutation. An example of a 

random assignment machine is presented in Fig. 6. 

 

 
 

Figure 6. An example of a random assignment machine 

mutation operator. 

 

In Operation Relocation Method, a process is randomly 

selected on the chromosome. The position of this 

process is changed by considering its predecessor and 

subsequent processes of this selected process. In the 

example below, the randomly selected process 1-2 is 

replaced with a position that is determined randomly 

between the process 1-1 and 1-3. A sample of operation 

relocation is shown in Fig. 7. 

 

 
 

Figure 7. An example of operation relocation mutation 

operator. 

 

In the best machine change method, a machine where a 

randomly selected process would be operated is 

changed by considering the processing time. In Fig. 8, 

the machine where process 2-3 would be operated is 

changed by detecting which machine process 2-3 is 

operated in the shortest time on.  

 

 
 

Figure 8. An example of the best machine change 

mutation operator. 

 

While the present machine where this process is 

operating in the 1st machine, the 3rd machine was 

assigned to operate this process after mutation. A 

sample of the best machine change is presented in Fig. 

8. The last process on the chromosome which is 

randomly selected and will be mutated is determined. 

The position of the determined last process is randomly 

replaced by considering the position of the predecessor 

process. A sample of the last operation relocation is 

given in Fig. 9. 

 

 
 

Figure 9. An example of last operation relocation 

mutation operator. 

 

3.2.5. Local search and reference set updating 

procedure 

 

In the local search procedure, before two chromosomes 

which would be crossover are subjected to the crossover 

method, the value Cmax is calculated according to the 

available machine assignment and recorded, to perform 

the assignment of the machine where the processes 

would be operated in the shortest time according to the 

determined process array. Then, indices of all the 

machines are reset. By considering the process 

sequences of the chromosomes in which the index of the 

machine has been reset, these chromosomes are 

subjected to crossover.  

 

New chromosomes generated at the end of the crossover 

are assigned to the machine which has the earliest 

completion time, by starting from the beginning of the 

chromosome via the local search procedure. In this 

procedure, for the process which would assign, the 

algorithm assigns the machine that has the earliest 

completion time by scanning all the alternative 

machines. 

 

The steps of the local search procedure are given as 

follows: 

 

Step 1: Reset the indices of machines in the 

chromosome. 

Step 2: Select operations from the chromosome 

depending on the order of the processes.  

Step 3: Determine the processing times on the 

alternative machines where the selected operation can 

be processed. 

Step 4: Find the completion time of the previous 

operation from the selected operation. 

Step 5: Find enough time spans according to the empty 

time span and the processing time on the alternative 

machine.   

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 4

Before 

Mutation

After 

Mutation

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 2-2 3-1 1-2 3-2 1-3 2-3

2 1 4 3 3 2 3 4

After 

Mutation

Before 

Mutation

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 3

Before 

Mutation

After 

Mutation

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 1-2 2-2 3-1 2-3 1-3 3-2

2 1 3 4 3 4 3 2

Before 

Mutation

After 

Mutation



 

Celal Bayar University Journal of Science  
Volume 17, Issue 4, 2021, p 347-359 

Doi: 10.18466/cbayarfbe.926756                                                                                                                    O. Engin 

 

353 

Step 6: Assign the machine which has the earliest 

completion time and enough time spans as the machine 

where the operation will be processed. 

Step 7: Go to Step 2 until all the processes are selected. 

 

The main objective of the local search procedure is to 

determine the span where the operations at the 

chromosome with the process sequence which occurs in 

the end of the crossover and mutation are earliest 

processed. Therefore, by assuming that the end of the 

previous operation is the lower limit, the whole 

alternative machines should be scanned for finding the 

machine where the operation would be earliest 

processed when assigning. 

 

The solutions occurring at the end of the local search are 

compared to the solutions in the reference set and after 

new solutions are included in the reference set, the 

worst solutions in the reference set are removed. 

 

3.2.6. Reference set population updating and 

stopping criteria 

 

The values Cmax obtained in the result of mutation are 

compared to the values in the reference set, if the new 

value is the better solution, by including it in the 

reference set the worst result is removed from the set 

and therefore the reference set is updated. This loop is 

executed until a new reference set is needed.   

The generation and updating procedure of both 

population and the reference set included in the SS 

method contains 3 stopping criteria. These are given as 

follows [38]: 

 

1. New Reference Set Criterion; contains the decision 

about when a new reference set should be created 

from the population. 

 

2. New Population Criterion; contains the decision 

about when a new initial population should be 

generated. 

3. Stopping Criterion; contains the decision about 

when the whole searching operations set should be 

stopped. 

 

4. Computational results 

4.1. Parameter test 

 

A full factorial experimental design is made to 

determine the best values of control parameters and 

operators for the proposed new HSS to solve the FJSS 

problems. 

 

The developed new HSS algorithm is examined on the 

benchmark instances. First studies are conducted on the 

problem group that belongs to Fattahi et al. [46].  

Besides, the algorithm is also carried out for the 

problem groups formed by Kacem et al. [7,47] and 

Fattahi et al. [12].  

 

The parameters used in the HSS method are utilized as 

fixed in all the problems. The optimization where all the 

levels are examined is carried out by dividing 20 parts 

which have Intel Xenon CPU E5-1650 3Ghz and 8GB 

RAM. The parameters and the ratio (levels) are given in 

Tables 1, 2, 3, and 4. 

 

Table 1. The ratios of the global, local, and random 

methods. 

 

 

The best values of global, local, and random search 

methods rations are found as follows: 

 

• Global search method : 0.6 

• Local search method : 0.3 

• Random method : 0.1

 

Table 2. Parameter ratios. 

  

Parameter Ratio (Level) 

Initial population size 20 30 40 50 60 70 80 90 100 

Size of reference set (%) 20 30 40 50 60 70 80 90 100 

Number of subsets 2 4 6 
      

Number of reference set updating 50 100 150 200 250 
    

Number of population set updating 50 100 150 200 250 
    

  

Table 3. Parameter ratios for crossover methods. 

 

Crossover Methods Ratio  

Priority-based sequential  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Single point  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Operation sequence change  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Alternative machine change  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Method Ratio 

Global search  0.6 0.5 0.4 0.3 

Local search  0.3 0.4 0.5 0.6 

Random  0.1 0.1 0.1 0.1 
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Table 4. Parameter ratios for mutations methods.

 

Mutation methods Ratio  

Random assignment machine  0.05 0.1 0.15 

Operation relocation  0.05 0.1 0.15 

Best machine change  0.05 0.1 0.15 

Last operation relocation  0.05 0.1 0.15 

 

The best parameter values are found by the full factorial 

experimental design. These parameters are given in 

Tables 5, 6, and 7. 

 

Table 5. Initial parameter values. 

 

Initial parameters of proposed HSS 

Size of the initial population 40 

Size of reference set (%) 30 

Number of subsets 6 

Number of reference set updating 200 

Number of population set updating 40 

 

Table 6. The best ratios for crossover methods. 

 

Crossover methods                                             Ratio 

Priority-based sequential  0.6 

Single point  0.2 

Operation sequence change  0.2 

Alternative machine change  0.7 

 

Table 7. The best ratios for mutation methods. 

 

Mutation methods                                             Ratio 

Random assignment machine 0.05 

Operation relocation 0.1 

Best machine change 0.1 

Last operation relocation 0.05 

 

4.1.1. Performance comparison of HSS 

 

The objective function of the proposed HSS is 

minimizing the maximum completion time (Cmax). The 

algorithm is examined on two different benchmark sets 

of problems. 

 

The first test set of the problem is SFJS and MFJS 

group containing 20 problems and developed by Fattahi 

et al. [12]. While 10 of the problems in this group 

consist of small jobs; the remaining 10 problems consist 

of major jobs. To solve these problems, Fattahi et al. 

[12] proposed a mathematical model and heuristic 

approach. For small jobs (SFJS1,…, SFJS10) their 

mathematical model achieved optimal solution but for 

major jobs did not find any optimal solutions in a 

reasonable time by mathematical model since FJSS 

problem is NP-hard. Then, Özgüven et al. [33] 

developed a mixed-integer linear programming model 

for solving FJSS problems. They used the same 

benchmark problems with Fattahi et al. [12]. They 

obtained optimal solutions for small jobs (SFJS1,…, 

SFJS10) like Fattahi et al. [12]. They also found for 

only five of major jobs problems optimal solutions in a 

reasonable time. Later, Birgin et al. [19] proposed a new 

a mixed-integer linear programming model for solving 

FJSS problems. They used the same benchmark 

problems with Fattahi et al. [12]. They obtained optimal 

solutions for small jobs (SFJS1,…, SFJS10) like Fattahi 

et al. [12] and Özgüven et al. [33]. They also found for 

only seven of major jobs problems optimal solutions in 

a reasonable time. For this reason, we proposed a new 

HSS method for solving the FJSS problems. 

 

The results, in Table 8, acquired by running the 

algorithm are compared to the studies which are 

conducted for this set of problems in the literature. For 

all benchmark problems relative percentage deviation is 

calculated. The performance of the heuristic is 

calculated as the relative percentage deviation (RPD) 

with Equation 4.1 [12, 33, 16, 19]. 

 

RPD = 
Heuristic Algorithm( 𝐶𝑚𝑎𝑥)−Lower Bound

Lower Bound
x100          (4.1) 

 

In Equation 4.1, Lower Bound (LB) states the known 

lower bound of Cmax obtained from the literature for 

benchmark problems. In Table 8, the proposed HSS 

method found the known best Cmax value for eighteen 

problems. Only two benchmark problems, the proposed 

HSS couldn’t find the best Cmax. 

 

The RPD and average relative percentage deviation 

(ARPD) of the proposed HSS method are compared 

with the Fattahi et al. [12]; Özgüven et al. [33]; Bagheri 

et al. [16] and  Birgin et al. [19]  from the literature. The 

ARPD is evaluated with Equation 4.2. The number of 

instances for each method is defined as I (L = 1,...,I) 

notation at Equation 4.2. 

 

𝐴𝑅𝑃𝐷 =  ∑
𝑅𝑃𝐷

𝐼

𝐼
𝐿=1                                       (4.2) 

 

In Table 8, the proposed HSS method found the 

minimum ARPD value for all twenty benchmark 

problems. When the obtained results are analyzed; the 

proposed HSS method is effective for the FJSS 

problems.   

 

The proposed HSS method found the new job sequence 

for the MFJS9 benchmark problem The Gant schema of 

the MFJS9 benchmark problem is given in Fig. 10. It 

can be seen from Fig. 10, the best Cmax is found 1060. 

 

The second test instance is consisting of three different 

problems (K-A1, K-A2 and K-B1). The instances are 

developed by Kacem et al. [7,47]. These problems are 

also used by several studies in the literature for testing. 

The proposed new HSS’s results are compared with the 

Kacem et al. [7,47], Xia and Wu [48]; Gao et al. [11] 

and Bagheri et al. [16] results from the literature.  



 

Celal Bayar University Journal of Science  
Volume 17, Issue 4, 2021, p 347-359 

Doi: 10.18466/cbayarfbe.926756                                                                                                                    O. Engin 

 

355 

The results are given in Table 9. It can be seen from 

Table 9 the proposed new HSS is found the best values 

of these three benchmark instances. The Gant schema of 

K-B1 in this problem group is presented in Fig. 11. 

 

Table 9. The comparison of the Cmax for the second 

benchmark instances.  

 

Problem K-A1a K-A2b K-B1c 

i*k 8*8 10*10 15*10 

j 27 30 56 

C
m

a
x
 

Kacem et al. [7,47] 14 7 11 

Xia and Wu [48] 15 7 12 

Gao et al. [11] 14 7 11 

Bagheri et al. [16] 14 7 11 

Proposed HSS 14 7 11 
a Benchmark Problems 8*8 [7]  

b Benchmark Problems 10*10 [7] 

c Benchmark Problems 15*10 [47] 

 

The proposed HSS is compared with the Kacem and 

SFJS-MFJS benchmark instances from the literature. 

The results are given in Tables 10 and 11. 

 

Table 10. The performance of the proposed new HSS 

compared with Kacem benchmark problems. 

 

Algorithm 
 Proposed new HSS (Cmax) 

Equal Better Total 

Kacem et al. [7,47] 3  3 

Xia and Wu [48] 1 2 3 

Gao et al. [11] 3  3 

Bagheri et al. [16] 3  3 

 

In Table 10, the proposed new HSS method is given a 

better makespan (Cmax) for two problems according to 

the Xia and Wu [48] method. Also, the proposed new 

HSS method is given equal makespan (Cmax) for 

eleven problems according to Kacem et al [7,47], Xia 

and Wu [48], Gao et al. [11], and Bagheri et al. [16] 

methods from the literature. 

 

It can be seen in Table 11, the proposed new HSS 

method is given the better makespan (Cmax) for 77 

instances according to the Fattahi et al. [12]; Özgüven et 

al. [33]; Bagheri et al. [16], and Birgin et al. [19]’s 

methods.  Also, the proposed new HSS method is given 

equal makespan (Cmax) for 103 instances according to 

the Fattahi et al. [12]; Özgüven et al. [33]; Bagheri et al. 

[16], and Birgin et al. [19]’s methods from the literature.  

 

 

 

 

 

 

 

Table 11. The performance of the proposed new HSS 

compared with SFJS-MFJS benchmark problems. 

 

Algorithm 
Proposed new HSS (Cmax) 

Equal Better Total 

[12] 

HSA/SAa   10 10 20 

HSA/TSb 10 10 20 

HTS/TSc 10 10 20 

HTS/SAd 9 11 20 

ISAe 9 11 20 

ITSf 9 11 20 

[33] MILPg 14 6 20 

[16] AIAh 14 6 20 

[19] AMILPi 18 2 20 

a Hierarchical approach and SA heuristic for assignment problem and SA heuristic for 

sequencing problem. 

b Hierarchical approach and SA heuristic for assignment problem and TS heuristic for 

sequencing problem. 

c Hierarchical approach and TS heuristic for assignment problem and TS heuristic for 

sequencing problem. 

d Hierarchical approach and TS heuristic for assignment problem and SA heuristic for 

sequencing problem. 

e Integrated approach with simulated annealing heuristic 

f Integrated approach with tabu search heuristic 

g Mixed-integer linear programming 

h Artificial immune algorithm 

i A mixed-integer linear programming 
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Table 8. The comparison results of the first twenty benchmark instances from the literature. 

 

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU

SFJS1 2*2*2 66 66 12 - 66 1 - 66 1 - 66 2 - 66 25 - 66 1 - 66 0.02 - 66 0.03 - 66 0 - 66 1 -

SFJS2 2*2*2 107 107 13 - 107 1 - 107 1 - 107 3 - 107 35 - 107 1 - 107 0 - 107 0.03 - 107 0.01 - 107 1 -

SFJS3 3*2*2 221 221 14 - 221 1 - 221 1 - 221 5 - 221 40 - 221 1 - 221 0.02 - 221 0.04 - 221 0.05 - 221 1 -

SFJS4 3*2*2 355 355 14 - 355 1 - 355 1 - 355 7 - 355 45 - 355 1 - 355 0 - 355 0.04 - 355 0.02 - 355 1 -

SFJS5 3*2*2 119 119 14 - 119 2 - 119 1 - 119 9 - 119 50 - 119 1 - 119 0.06 - 119 0.04 - 119 0.04 - 119 1 -

SFJS6 3*3*2 320 320 18 - 320 3 - 320 1 - 320 7 - 320 50 - 320 2 - 320 0.03 - 320 0.04 - 320 0.01 - 320 1 -

SFJS7 3*3*5 397 398 19 - 398 4 - 398 1 - 398 9 - 398 55 - 398 2 - 398 0.02 - 398 0.04 - 398 0 - 398 1 -

SFJS8 3*3*4 253 253 17 - 253 5 - 253 2 - 256 10 1.2 253 35 - 253 2 - 253 0.02 - 253 0.05 - 253 0.04 - 253 1 -

SFJS9 4*3*5 210 210 19 - 210 6 - 210 2 - 210 11 - 215 55 2.3 215 3 2.3 210 0.03 - 210 0.05 - 210 0.01 - 210 1 -

SFJS10 5*3*5 516 516 21 - 516 7 - 516 4 - 516 10 - 516 55 - 516 3 - 516 0.02 - 516 0.05 - 516 0.02 - 516 1 -

MFJS1 5*3*6 396 479 22 21.0 491 55 24.0 469 15 18.4 469 30 18.4 488 60 23.2 548 9 38.4 468 0.44 18.2 468 9.23 18.2 468 0.26 18.2 468 7 18.2

MFJS2 5*3*7 396 495 62 25.0 482 55 21.7 482 12 21.7 468 30 18.2 478 60 20.7 457 8 15.4 446 6.49 12.6 448 9.35 13.1 446 0.87 12.6 446 24 12.6

MFJS3 6*3*7 396 553 82 39.6 538 75 35.9 533 20 34.6 538 50 35.9 599 107 51.3 606 8 53.0 466 4.14 17.7 468 10.06 18.2 466 1.66 17.7 466 32 17.7

MFJS4 7*3*7 496 656 102 32.3 650 85 31.0 634 27 27.8 618 80 24.6 703 195 41.7 870 9 75.4 564 1779.03 13.7 554 10.54 11.7 554 27.43 11.7 554 253 11.7

MFJS5 7*3*7 414 650 105 57.0 662 110 59.9 625 40 51.0 625 64 51.0 674 240 62.8 729 10 76.1 514 50.98 24.2 527 10.61 27.3 514 4.55 24.2 514 219 24.2

MFJS6 8*3*7 469 762 125 62.5 785 130 67.4 717 96 52.9 730 102 55.7 856 330 82.5 816 50 74.0 635 3600 35.4 635 22.18 35.4 634 52.48 35.2 634 180 35.2

MFJS7 8*4*7 619 1020 197 64.8 1081 290 74.6 964 129 55.7 947 190 53.0 1066 480 72.2 1048 240 69.3 935 3600 51.1 879 24.82 42.0 879 1890 42.0 879 6000 42.0

MFJS8 9*4*7 619 1030 230 66.4 1122 325 81.3 970 405 56.7 922 182 48.9 1328 610 114.5 1220 370 97.1 905 3600 46.2 884 26.94 42.8 884 3600 42.8 884 7200 42.8

MFJS9 11*4*8 764 1180 330 54.5 1243 660 62.7 1105 660 44.6 1105 330 44.6 1148 840 50.3 1124 680 47.1 1192 3600 56.0 1088 30.76 42.4 1137 3600 48.8 1060 7200 38.7

MFJS10 12*4*8 944 1538 425 62.9 1615 600 71.1 1404 960 48.7 1384 430 46.6 1546 850 63.8 1737 763 84.0 1276 3600 35.2 1267 30.94 34.2 1251 3600 32.5 1208 7200 28.0

48.59 52.96 41.22 39.69 58.30 62.98 31.02 28.53 28.57 27.10

a
 Hierarchical approach and simulated annealing (SA) heuristic for assignment problem and SA heuristic for sequencing problem.

f
 Integrated approach with TS heuristic.

b 
Hierarchical approach and SA heuristic for assignment problem and tabu search (TS) heuristic for sequencing problem.

g
 Mixed-integer linear programming

c 
Hierarchical approach and TS heuristic for assignment problem and TS heuristic for sequencing problem.

h 
Artificial immune algorithm

d 
Hierarchical approach and TS heuristic for assignment problem and SA heuristic for sequencing problem.

ı
 A mixed-integer linear programming

e
 Integrated approach with SA heuristic.

Problem i,j,k LB

Fattahi et al. (2007)
Özgüven et al. 

(2010)

Bagheri et al. 

(2010)

Birgin et al. 

(2013)  
Proposed HSS

HSA/SA
a  

AIA
h

AMILP
ı HSSITS

f
MILP

g

ARPD

HSA/TS
b

HTS/TS
c

HTS/SA
d

ISA
e
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Figure 10. Gantt Schema of the MFJS9 instance. 

 

 
 

Figure 11. The Gant schema of K-B1. 

 

5. Conclusion and future research 

 

The flexible job shop is extra routing sub-problems of 

the job shop scheduling problems. The FJSS is known 

as an NP-hard problem from the literature. In this study, 

a new HSS method is proposed to solve the FJSS 

problems. The proposed HSS method is iterated the 

local and global search method for the initial 

population. The HSS method is consisting of the initial 

population, reference set, subset, reference set updating, 

population sub updating, reproduction, crossover, 

mutation operators, and their ratio. To determine the 

best parameter set of the proposed HSS for solving the 

FJSS problems a full factorial experimental design is 

made. The performance of the proposed HSS method is 

examined on the benchmark problems. There exist 

several problems with various sizes in the literature. 

First, the examinations on the problem groups 

consisting of 20 examples and developed by Fattahi et 

al. [12]. The proposed HSS method is found more 

efficient results for these problems. The second test 

problem is developed by Kacem et al. consisting of 3 

instances [7,47]. When analyzed the results of the tests. 

The developed new HSS method is seen to produce 

efficient results on these benchmark instances. 

According to the computational results, the proposed 

new HSS method is influential in terms of reduced 

makespan for the FJSS problems. The proposed new 
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M1
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HSS is an efficient problem-solving technique for FJSS 

problems.  

 

For future research, the proposed HSS heuristics may be 

used for multi-objective FJSS problems.  
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