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A transportation problem can be involving multiple objectives, multiple products, and 

multiple conveyances. These kinds of transportation problems are named multi-objective 

multi-attributes solid transportation problems (MMSTP). In this study, a solution based on 

goal programming has been proposed for MMSTP, in which the supply and demand are 

uncertain. Moreover, to handle uncertainty, different uncertainty parameters, which are 

between 0.6 and 0.9, have been used. Then, the results with obtained these parameters are 

compared by using cost function values. The results indicate that when the uncertainty 

parameter decreases, the cost increases. Finally, it is shown that an optimal solution can be 

found using this model through an example. 

 
BELİRSİZ BİR ORTAMDA SAĞLAM ULAŞTIRMA PROBLEMLERİNİN HEDEF 

PROGRAMLAMA İLE ÇÖZÜLMESİ 

Kelimeler Öz 

Sağlam ulaşım problemi, çok 

özellikli, çok amaçlı, hedef 

programlama 

Bir nakliye sorunu, birden çok hedefi, birden çok ürünü ve birden çok nakliyeyi içerebilir. Bu 

tür ulaşım sorunları, çok amaçlı çok öz nitelikli sağlam (solid) ulaştırma problemleri 

(MMSTP) olarak adlandırılır. Bu çalışmada arz ve talebin belirsiz olduğu MMSTP için hedef 

programlamaya dayalı bir çözüm önerilmiştir. Ayrıca belirsizliği ele almak için 0.6 ile 0.9 

arasında değişen farklı belirsizlik parametreleri kullanılmıştır. Daha sonra elde edilen bu 

parametrelerle elde edilen sonuçlar maliyet fonksiyonu değerleri kullanılarak 

karşılaştırılmıştır. Sonuçlar, belirsizlik parametresi azaldığında maliyetin arttığını 

göstermektedir. Son olarak, bir örnek aracılığıyla bu model kullanılarak optimal bir çözüm 

bulunabileceği gösterilmiştir. 
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1. Introduction 

The solid transportation problem (STP) can be 
formulated as an extension of the traditional 
transportation problem (TP) where constraints are 
sources and destinations. The STP deals with 3 types 
of constraints: source, destination and another 
constraints about product type and/or 
transportation mode. If more than one objective is to 
be optimized in an STP then the problem is called 
multi objective solid transportation problem 
(MOSTP). If problem is considered more than one 
attribute, then it is called multi-item solid 
transportation problem (MSTP). If we consider more 
than one item and more than one objective at a time 
in an STP, then it is called a multi-objective multi-
attribute solid transportation problem (MMSTP). In 
the classical form, the transport problem minimizes 
the cost of shipping for some product that is available 
at some sources (m) and required at some 
destination (n). However, in most real world 
problems the complications of the economic, 
business and social environment require to be taken 
into account both the other objective functions and 
the cost objective function. Therefore, since the 
classical TP cannot fully meet these needs of the real 
world problems, MMSTP is encountered. In MMSTP 
are given on three attribute properties that are 
supply, demand, and type of product or mode of 
transport (conveyance) and T homogenous product 
that will be transported and L objective functions 
that are conflicting in nature and will be optimized 
simultaneously. For this reason, MMSTP is an 
important planning tool for many business and 
industrial problems and problems that p 
homogeneous products are delivered from an origin 
to a destination by means of different modes of 
transport such as cargo flights, ships, goods trains, 
trucks, etc.  

The STP was proposed by Shell (1955). The solution 
of The STP which is an extension of modified 
distribution method was introduced by Haley 
(1962). Bit, Biswal, and Alam (1993) presented an 
application of fuzzy linear programming to the linear 
MOSTP. Gen, Ida, Li, and Kubzota (1995) presented 
an implementation of genetic algorithm (GA) to solve 
the fuzzy bi-criteria STP (FSTP).  Li, Ida, Gen, and 
Kobuchi (1997) designed a neural network approach 
to formulate bi-criteria STP. Again, Yang, Liu, Li, Gao, 
and Ralescu (2015), Das and Bera (2015) and Chen, 
Peng, and Zhang (2017) as an uncertain theory 
investigated to solving the bi-criteria STP. Li, Ida, and 

Gen (1997) also presented an improved GA to solve 
the MOSTP with fuzzy numbers. Jiménez and 
Verdegay (1998; 1999a; 1999b) obtained a solution 
procedure for uncertain STP and developed a 
parametric approach for solving Fuzzy STP by an 
evolutionary algorithm.  

In recent years, many models and algorithms in the 
literature have been investigated in this area. Ojha, 
Das, Mondal and Maiti (2009) formulated with and 
without entropy in fuzzy environment for the first 
time, capacitated MOSTP. Another study, which 
consists of the entropy environment, took place in 
the study of Dalman (2019). In this MSTP aims to 
minimize total cost via maximizing the entropy. 
Baidya, Bera, and Maiti (2015) used entropy based 
STP to minimize total cost and to maximize total 
profit. They modeled STP with and without interval 
entropy function. Pandian and Anuradha (2010) 
proposed a new method using the concept of zero 
point method for finding an optimal solution to a 
STP. Ojha, Das, Mondal and Maiti (2010) formulated 
a stochastic STP and optimized using the MOSTP. Cui 
and Sheng (2012) modeled the cost solid 
transportation problem (CSTP) based on uncertainty 
theory.  In the study of Das, Bera, and Maiti (2018), 
the total profit is maximized and the carbon emission 
is minimized by proposing defuzzification process. 
Baidya, Bera, and Maiti (2013) developed five 
models and consider three types of uncertainty 
(stochastic, fuzzy, and hybrid) in different models to 
a STP with imprecise unit and safety factor. Das, 
Bera, and Maiti (2019) proposed two different 
model: first one has fuzzy variables, time and cost, 
whereas, in the second model all variables are taken 
into account as fuzzy variables. Then, they solved 
these models by using two different solving 
techniques that are reduction method and 
constrained programming model. Another fuzzy 
related study made by Ojha, Das, Mondal, and Maiti 
(2013). In this study, to find optimal shipment 
schedule, they minimize the total cost. Dalman, 
Güzel, and Sivri (2016) modeled MMTSP model by 
using interval programming model by using 
transportation, costs, supplies, and demands as fuzzy 
variables. Then, they proposed an interval fuzzy 
programming model. Kuiri and Das (2020) studied 
MMSTP by using fuzzy inequality constraints to 
maximize profit and minimize the total cost. 
Sengupta, Das, and Bera (2018) studied STP with 
carbon emission constraints that are taken into 
account as fuzzy variables. Chakraborty, Jana, and 
Roy (2014) modeled a MMSTP with fuzzy inequality 
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constraints. Different uncertainty models of MOSTP 
and MMSTP are investigated by Baidya and Bera 
(2014), Chakraborty, Jana, and Roy (2014), Jalil, 
Javaid, and Muneeb (2018), Kundu, Kar, and Maiti 
(2014b; 2014a), Narayanamoorthy and Anukokila 
(2015), Pramanik, Jana, and Maiti (2013), 
Radhakrishnan and Anukokila (2014), Sarma, Das, 

and Bera (2020), Tao and Xu (2012),  and Yang, Liu, 
Li, Gao, and Ralescu (2015).  Hata! Başvuru kaynağı 
bulunamadı. shows that classification of the 
literatures, which are given below, according to the 
number of item and number of objective.  

 

 

Table 1 

Summary of the Literature Review 

Author(s) Year 
Number of Attribute Number of Objective 

Methodology 
Single Multi Single Multi 

Gen et al.  1995 ✔  ✔  GA 

Li et al.  1997 ✔  ✔  Neural network 

Ojha et al.  2009    ✔ - 

Ojha et al.  2010    ✔ - 

Ojha et al.  2013 ✔    GA 

Baidya, Bera, and Maiti  2015  ✔   - 

Yang et al.  2015 ✔  ✔  - 

Dalman, Güzel, and Sivri  2016  ✔  ✔ Interval Programming Model 

Chen, Peng, and Zhang  2017 ✔  ✔  Goal Programming 

Das, Bera, and Maiti  2018    ✔ - 

Sengupta, Das, and Bera  2018    ✔ GA + 

Particle Swarm Optimization 

Dalman  2019  ✔  ✔ Expected value programming + 

Expected constraint programming 

Sarma, Das, and Bera  2020   ✔  Mathematical model 

Kuiri and Das  2020  ✔  ✔  

Current Study 2020  ✔  ✔ Goal Programming 
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In this study, a MMSTP is modeled using uncertainty 
theory. To model this STP problem, we use goal 
programming approach. Since there are a few study 
in the literature about the implementation of goal 
programming approach for MMSTP with uncertainty 
theory, our motivation is to provide goal 
programming approach for this problem and handle 
the uncertainty. Then, to make an implementation of 
the proposed model, the sample problem is 
investigated. Uncertainty theory was founded by Liu 
(2007) and refined by Liu (2011), which is a branch 
of mathematics based on normality, duality, sub 
additivity, and product axioms. Since the STP is one 
of the main study area, to the best of the authors’ 
knowledge, there are few study about MMSTP 
analyzed with the goal programming approach. 

The rest of the paper the study is organized as follow. 
Section 2 contains mathematical models of the 
problem. In Section 3, the implementation of the 
MMSTP and its results are given. We conclude in 
Section 4. 

 

2. Mathematical Model 

This section devoted into four subsections: (i) STP 
model, (ii) goal programming model, (iii) MOSTP 
with uncertain supplies and demands, (iv) proposed 
MOSTP with uncertain supplies and demands using 
goal programming. In these subsections, we will give 
the mathematical formulations of the models. 

 

2.1 Solid Transportation Model 

A type of linear programming known as 
transportation problems uses very frequently in 

practical applications. The transportation problem 
determines optimum shipping pattern (Gakhar 
2012).  

The STP may be considered as a special case of linear 
programming problem (Pandian and Anuradha 
2010). Assume that there are 𝑚 sources, 𝑛 
destinations and 𝑘 conveyances. The mathematical 
model STP can be given as follows, 

min 𝑧 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘 ∗ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1    (1) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=1  ≤ 𝑎𝑖  𝑖 = 1,2, … , 𝑚 (2) 

∑ ∑ 𝑥𝑖𝑗𝑘 ≥ 𝑏𝑗
𝐾
𝑘=1

𝑚
𝑖=1   𝑗 = 1,2, … , 𝑛 (3) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑛
𝑗=1

𝑚
𝑖=1  ≥ 𝑒𝑘  𝑘 = 1,2, … , 𝐾 (4) 

where 

𝑥𝑖𝑗𝑘 ≥ 0  

             (𝑖 = 1,2, … , 𝑚)  

(𝑗 = 1,2, … , 𝑛) 

(𝑘 = 1,2, … , 𝐾) 
  (5) 

Constraint (2) ensures that transported product 
from source i to destination j by using conveyance k 
cannot exceed the production amount of source i. 
Constraint (3) provides the required amount of the 
product from source i to destination j by using 
conveyance k. Constraint (4), on the other hand, 
illustrates the transported product with conveyance 
k. The non-negativity condition of the decision 
variable is met with constraint (5). The definition of 
the parameters and variables are given in Table 2. In 
this mathematical formulation, there is only 
objective aim that is the minimization of the cost. The 
objective function is given in the constraint (1) 

 

 
 
Table 2 
Sets and Variables 

Set / 

Variable 

Definition 

𝑎𝑖 Amount of products which are transported from source 𝑖 

𝑏𝑗  Amount of products which are transported to destination 𝑗 

𝑒𝑘 Amount of products which can be carried by conveyance 𝑘 

𝑐𝑖𝑗𝑘  A cost of associated with transportation of a unit of the product source 𝑖 to destination 𝑗 by 

conveyance 𝑘 

𝑥𝑖𝑗𝑘 The decision variable which refer to product than transported from source 𝑖 to destination 𝑗 by 

conveyance 𝑘 (Kocken and Sivri 2016) 
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The multi objective TP involves multiple objective 
functions. A MOSTP model may be written as: 

𝑧min/𝑚𝑎𝑥
𝑙 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘

𝑙 ∗ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 𝑙
= 1,2, … , 𝐿 

(6) 

Subject to 
∑ ∑ 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝑛
𝑗=1  ≤ 𝑎𝑖  𝑖 = 1,2, … , 𝑚 (7) 

∑ ∑ 𝑥𝑖𝑗𝑘 ≥ 𝑏𝑗
𝐾
𝑘=1

𝑚
𝑖=1   𝑗 = 1,2, … , 𝑛 (8) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑛
𝑗=1

𝑚
𝑖=1  ≥ 𝑒𝑘  

𝑘 = 1,2, … , 𝐾 (9) 

where 

𝑥𝑖𝑗𝑘 ≥ 0    

                          (𝑖 = 1,2, … , 𝑚)  

                       (𝑗 = 1,2, … , 𝑛) 

                   (𝑘 = 1,2, … , 𝐾) 

(10) 

The difference between the STP and MOSTP is 
observed in the number of objectives. The former has 
only objective function, whereas the latter has more 
than one objectives that are provided by using 
𝑙 index. This index shows that the mathematical 
model has at least two objective functions.  

 

2.2 Goal Programming Model 

Multi-criteria decision making (MCDM) refers to 
making decisions in the presence of multiple, usually 
conflicting and incommensurable criteria. The goal 
programming techniques have become a widely used 
approach in Operations Research. The classical goal 
programming model have been used to solve MCDM 
problems (Jayaraman, Colapinto, La Torre, and Malik 
2017). One of the example of the goal programming 
implementation is made by Ozmutlu and Chandra 
(2001). In this study, they tried to find computation 
of the mean for a better quality characteristic. The 
goals in this study are minimizing the cost and 
maximizing the process mean. The other study about 
goal programming is presents by Chen, Li, Chen, and 
Huang (2009). The subject of the study is that 
machine purchasing for flexible manufacturing cell. 
Since the machine configurations require multi-
objective planning, they goal programming 
approach. Moreover, they met the goals with four 
conflict, they used fuzzy structure in their model. 
Here, the goal programming model was introduced 
by Charnes and Cooper (1961; 1962) and in the 
classical formulation it takes the following form: 

𝑧𝑚𝑖𝑛 = ∑(𝑑𝑙
+ + 𝑑𝑙

−)

𝐿

𝑙=1

                       𝑙 = 1,2, … , 𝐿 (11) 

Subject to 
∑ 𝑐𝑖𝑗𝑥𝑗 + 𝑑𝑙

− − 𝑑𝑙
+ = 𝐺𝑙

𝑛
𝑗=1    

 𝑙 = 1,2, … , 𝐿 (12) 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑗       𝑖 = 1,2, … , 𝑚 (13) 

where 

𝑥𝑗 ≥ 0   

𝑑𝑙
−, 𝑑𝑙

+ ≥ 0  

     𝑗 = 1,2, … , 𝑛 

     𝑙 = 1,2, … , 𝐿 
(14) 

 

2.3 Multi-objective STP with Uncertain Supplies 
and Demands 

Uncertainty theory is a branch of axiomatic 
mathematics for modelling the uncertain quantities 
using the uncertain variables in uncertain 
environment. Uncertainty theory was founded by Liu 
(2007). In order to model an uncertain solid 
transportation problem (USTP) we shall firstly give 
definition of uncertainty variables by founded by Liu 
(2007). 

The vector (𝑥1, 𝑥2, … , 𝑥𝑛) is an uncertain vector if and 

only if (𝑥1, 𝑥2, … , 𝑥𝑛) are uncertain variables. 

Suppose that 𝑓: ℜ𝑛 → ℜ is measurable function 

𝑥1, 𝑥2, … , 𝑥𝑛 uncertain variables on the uncertainty 

space (Γ, 𝐿, Μ). Then 𝜉 = 𝑓(𝜉1, 𝜉2, … , 𝜉𝑛) is an 

uncertain variable defined as (𝛾) =

𝑓(𝜉1(𝛾), 𝜉2(𝛾), … , 𝜉𝑛(𝛾))  ∀𝛾 ∈ Γ. 

Let 𝜉 be an n-dimensional uncertain vector, and 

𝑓: ℜ𝑛 → ℜ a measurable function. Then, 𝑓(𝜉) is an 

uncertain variable.  An uncertain variable 𝜉 is a 

measurable function from uncertainty space (Γ, 𝐿, Μ) 

to the set of real numbers, i.e., for any Borel set B of 

real numbers, the set  

{𝜉 ∈ 𝐵} =  {𝛾 ∈ Γ|𝛾(𝜉) ∈ 𝐵}  (15) 

is an event (Liu 2007). 

The uncertainty distribution 𝐹(𝑥): �̂� ® [0,1] of an 

uncertain variable 𝜉 is defined by  

𝐹(𝑥) = 𝑀{𝑔Î 𝐺𝑥(𝑔) £ 𝑥}    (16) 

for any real number x. 
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An uncertain variable 𝜉 is said to be normal if it has 

an uncertainty distribution  

𝐹(𝑥) = 𝑀{𝑥£𝑥} = {1 + exp {
𝑝(𝑒−𝑥)

√3𝑠
}}  𝑥Î𝑅          

(17) 

denoted by 𝑁(𝑒, 𝜎), where the parameters  𝑒 and 𝑠2 

the expected value and variance respectively. 

An uncertainty distribution 𝐹(𝑥) is said to be regular 

if it has an inverse function 𝐹−1(𝑥). The inverse 

function 𝐹−1(𝑥) is called an inverse uncertainty 

distribution of the uncertain variable 𝜉. In this case, 

normal uncertainty distribution 𝑁(𝑒, 𝜎), is regular 

and its inverse uncertainty distribution is 

𝐹−1(𝑟) = 𝑒 +
√3𝑠

𝑝
𝑙𝑛

𝑟

𝑟−1
  (18) 

In this study, according to the uncertainty theory, the 

following parameter is used when calculating the 

uncertainty in cases where the right side values are 

uncertain in a goal programming.  

𝑌 = − {
√3𝑠

𝑝
ln

𝑟

𝑟−1
}     (19) 

Assume that there are m sources, n destinations and 

k conveyances. The mathematical model of STP can 

be given as follows, 

𝑧𝑚𝑖𝑛/𝑚𝑎𝑥
𝑙 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘

𝐾

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

∗ 𝑥𝑖𝑗𝑘 

𝑙 = 1,2, … , 𝐿 (20) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑛

𝑗=1

                          

≤ 𝑎𝑖 + Ψi
1

 

𝑖 = 1,2, … , 𝑚 (21) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑛

𝑗=1

                        

≥ 𝑎𝑖 − Ψi
1

 

𝑖 = 1,2, … , 𝑚 (22) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑚

𝑖=1

                      

≤ 𝑏𝑗 + Ψj
2

 

𝑗 = 1,2, … , 𝑛 (23) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑚
𝑖=1        ≥

𝑏𝑗 − Ψj
2    

𝑗 = 1,2, … , 𝑛 (24) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑛

𝑗=1

𝑚

𝑖=1

         

≥ 𝑒𝑘                             

  𝑘 = 1,2, … , 𝐾 (25) 

where 

𝑥𝑖𝑗𝑘 ≥ 0   

(𝑖 = 1,2, … , 𝑚) 

( 𝑗 = 1,2, … , 𝑛) 

(𝑘 = 1,2, … , 𝐾) 

(26) 

L is number of objective function, 

𝚿𝐢
𝟏 Uncertainty distribution of source i, 

𝚿𝐣
𝟐 Uncertainty distribution of destination j. 

2.4 Proposed Multi-objective STP with Uncertain 

Supplies and Demands Using Goal 

Programming 

The goal programming is minimize the deviations 

from the objectives. In this condition, the 

mathematical model is 

𝑧𝑚𝑖𝑛 = ∑(𝑑𝑙
+ + 𝑑𝑙

−)

𝐿

𝑙=1

          𝑙 = 1,2, … , 𝐿  (27) 

Subject to 

∑ ∑ ∑ 𝑐𝑖𝑗𝑘 ∗ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

− 𝑑𝑙
+

+ 𝑑𝑙
−

= 𝐺𝑙 

𝑙 = 1 (28) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑛
𝑗=1

𝑚
𝑖=1  − 𝑑𝑙

+ + 𝑑𝑙
− =

𝐺𝑙     
𝑙 = 2,3, … , 𝐿 (29) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=1  ≤ 𝑎𝑖 − Ψik

1   𝑖 = 1,2, … , 𝑚 (30) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=1  ≥ 𝑎𝑖 + Ψik

1    𝑖 = 1,2, … , 𝑚 (31) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑚
𝑖=1  ≤ 𝑏𝑗 − Ψjk

2    𝑗 = 1,2, … , 𝑛 (32) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝑚
𝑖=1  ≥ 𝑏𝑗 + Ψjk

2         𝑗 = 1,2, … , 𝑛 (33) 

where 

𝑥𝑖𝑗𝑘 ≥ 0 (𝑖 = 1,2, … , 𝑚) 

( 𝑗 = 1,2, … , 𝑛) 

(𝑘 = 1,2, … , 𝐾) 

(34) 

G is used to express the target value of each goal set 

by decision makers. 

 

3. Implementation and Results 

This part of the study, there are two subsections. 
First, the sample problem is defined and then the 
obtained results of this sample problem are given. 
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Before we give the results, first we present the 
feature of computer which is used. In this study, the 
instances are run on an Intel Core i5-4210 CPU 
computer with 8 GB RAM. Note that research and 
publication ethics are complied with in this study. 

3.1 Problem 

In this part of the study, to give an implementation of 
the proposed model, we address a sample problem. 
In the sample problem, there are three sources, four 
destinations, two different paths, and two products. 
The parameters and their definitions are given in the 
. 

 

 

Table 3. 

 

 

Table 3 
Parameters 

Parameters Definition 
𝑖 = 1, … ,3 Number of sources 
𝑗 = 1, … ,4 Number of destinations 

𝑘 = 1,2 Number of conveyance 
𝑙 = 𝑎, 𝑏 Number of product 

 

For the unit of the product a, cost values (𝑐𝑖𝑗𝑘𝑎), when 

are incurred from source i to destination j by using k 
conveyance, mean (𝜇) and standard deviation (𝜎) of 
supply of sources, and demands for destinations are 
given in Table 4.  For the product b that uses k 
conveyance from source i to destination j, the values 
are given in  

Table 5, which has the cost value of the product b 
(𝑐𝑖𝑗𝑘𝑎), mean and standard deviation of supply of 

sources, and demands for destinations.
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Table 4 
Cost Values of Product a 

 
Destinations 

Supply of 

Sources (𝒂𝒊) 

1 2 3 4 𝝁 𝝈 

Sources 

1 

c111a=16 

c112a=30 

c121a=16 

c122a=30 

c131a=16 

c132a=30 

c141a=14 

c142a=29 

35 1.5 

2 

c211a=16 

c212a=10 

c221a=7 

c222a=21 

c231a=13 

c232a=17 

c241a=16 

c242a=30 

30 1.5 

3 

c311a=16 

c312a=10 

c321a=14 

c322a=28 

c331a=14 

c332a=18 

c341a=8 

c342a=22 

35 2.0 

Demand 

for 

Destination 

(𝒃𝒋) 

𝝁 25 25 20 30 

100 𝝈 
1.5 1.5 1.5  2.0 

 

Table 5 
Cost Values of Product b 

 
Destinations 

Supply of 

Sources (𝒂𝒊) 

1 2 3 4 𝝁 𝝈 

Sources 

1 

c111b=14 

c112b=12 

c121b=14 

c122b=18 

c131b=20 

c132b=6 

c141b=8 

c142b=12 

40 1.5 

2 

c211b=14 

c212b=4 

c221b=14 

c222b=8 

c231b=18 

c232b=20 

c241b=12 

c242b=18 

30 1.5 

3 

c311b=20 

c312b=10 

c321b=8 

c322b=10 

c331b=8 

c332b=4 

c341b=16 

c342b=20 

30 2.0 

Demand 

for 

Destination 

(𝒃𝒋) 

𝝁 20 30 20 30 

100 

𝝈 1.5 2.0 1.5 2.0 
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The problem, which is taken into account and solved 
in this study, has three objective functions. Decision 
makers define target values for these objective 
functions. Cost minimization expressing the first 
objective function (cost) is determined for three 
different values. These values were determined as 
1700, 1750 and 1800 respectively.  

Furthermore, the total product transported from the 
first conveyance is 120, the total number of products 
transported from the second conveyance is 80. These 
objective functions are used by adding positive and 
negative deviation variables within the scope of the 
goal programming approach. Then, they are utilized 
in the model as constraints. The equations (19)-(21) 
show the constraint forms of the objectives. 

(∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑙 ∗ 𝑥𝑖𝑗𝑘𝑙

𝑏

𝑙=𝑎

2

𝑘=1

4

𝑗=1

3

𝑖=1

) − 𝑑1
+ + 𝑑1

− = 𝑐𝑜𝑠𝑡  (35) 

(∑ ∑ (𝑥𝑖𝑗1𝑎 + 𝑥𝑖𝑗1𝑏)4
𝑗=1  3

𝑖=1 ) − 𝑑2
+ + 𝑑2

− = 120  (36) 

(∑ ∑ (𝑥𝑖𝑗2𝑎 + 𝑥𝑖𝑗2𝑏)4
𝑗=1  3

𝑖=1 ) − 𝑑3
+ + 𝑑3

− = 80  (37) 

To make a new objective function for the problem, 
deviation variables are used. That is, in this situation, 
objective function is constructed as follows. 

𝑧𝑚𝑖𝑛 = 𝑑1
+ + 𝑑1

− + 𝑑2
+ + 𝑑2

− + 𝑑3
+ + 𝑑3

−   (28) 

By considering the uncertainty values, which are 
calculated for each source and target of each product, 
two constraints are constructed. In the sample 
problem, since there are two different products, 
three different sources, and four destinations, 28 
constraints ((Number of product*(number of 
sources + number of destinations))*2) are created.  

While these constraints were established, the 
uncertainty parameter, that is the r parameter, was 
accepted as 0.9, 0.8, 0.7 and 0.6, respectively. 
Moreover, the non-negativity constraint of the 
transportation quantities of a and b products is 
added into the model. The prepared model for the 
sample problem is given in the Appendix 1.  

 

3.2 Results  

When the problems in Appendix 1 are solved, the 
number of products distributed using for each 
transport from source i to target j is given in Table 6. 

 

Table 6 
Distribution of Product a and Product b 

Cost 1700 1750 1800 
r 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 
x111a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.67 18.60 18.60 
x131a 16.82 16.15 15.00 15.00 16.24 16.24 16.24 15.34 18.18 16.15 17.10 17.10 
x141a 16.36 17.70 19.30 19.66 18.38 18.38 18.38 19.32 16.73 0.00 0.00 0.00 
x211a 0.00 0.00 0.00 0.00 0.47 0.47 0.47 0.00 5.00 0.00 0.00 0.00 
x221a 26.82 26.15 25.00 25.00 25.70 25.70 25.70 25.34 26.82 26.15 25.70 25.70 
x231a 1.36 2.70 4.30 4.66 0.00 0.00 0.00 4.32 0.00 0.00 3.60 3.60 
x232a 0.00 0.00 0.00 0.00 3.14 3.14 3.14 0.00 0.00 2.70 0.00 0.00 
x341a 11.46 10.77 9.77 9.89 10.70 10.70 10.70 10.23 15.60 29.29 30.23 30.23 
x312a 23.18 23.85 24.30 24.66 25.24 25.24 25.24 25.11 21.82 4.19 5.70 5.70 
x131b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 
x141b 32.42 29.25 29.07 29.55 29.69 29.69 29.69 30.37 18.80 28.47 24.77 24.77 
x132b 6.98 9.22 10.00 10.00 9.38 9.38 9.38 9.18 12.51 12.78 10.00 10.00 
x142b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.78 0.00 4.30 4.30 
x212b 21.82 21.15 19.30 19.66 20.70 20.70 20.70 20.08 18.87 21.15 20.23 20.23 
x222b 10.60 10.38 9.77 9.89 10.23 10.23 10.23 10.37 8.71 8.04 10.47 10.47 
x321b 14.76 17.28 19.30 19.66 18.84 18.84 18.84 15.08 18.87 0.00 0.00 0.00 
x322b 2.22 0.81 0.00 0.00 0.00 0.00 0.00 4.10 0.00 23.06 18.60 18.60 
x332b 14.84 11.93 10.00 10.00 11.32 11.32 11.32 11.16 9.31 8.09 10.70 10.70 

The variables that took the value of zero in twelve 
different solutions were deleted from the table, and 
the values of the variables that got a value other than 
zero are given in Table 6. As a result, supply values 
of sources and demand values of destinations are 

given in Table 6 for product a and product b.  The 
values of the deviation variables of each solution and 
the values of the objective function are given in table 
7.  
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As can be seen, solutions were calculated for 3 
different cost values and 4 different r values. The 
different 12 solutions made are important for 

decision makers in terms of observing the solutions 
that can be applied in different situations. 

 

 

Table 7 
Deviation Variables of Solutions 

Cost 1700 1750 1800 

r 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

d1+ 0.00 0.00 4.58 27.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

d1- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

d2+ 0.00 0.00 1.74 3.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

d2- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

d3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

d3- 0.36 2.66 6.63 5.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Optimal Value (Z) 0.36 2.66 12.95 37.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The total cost values of the solutions obtained for 
each r value and objective cost values are given in 
Table 8. 

 

Table 8 
Cost of Solutions /Result of Cost 

  
r 

Cost 

1700 1750 1800 

0.9 1700 1750 1800 

0.8 1700 1750 1800 

0.7 1704.58 1750 1800 

0.6 1727.98 1750 1800 

 

4. Conclusion 

In this study, a MMSTP, uncertain supplies, uncertain 
demands and two conveyance under uncertain 
environment has been investigated. The proposed 
solution of MMSTP model has been constructed 
according to some definitions and theorems based 
on uncertainty theory. In order to solve the proposed 
programming model under uncertainty theory, this 
model can be transformed to its deterministic form, 
and then using goal programming problem its 
efficient solution can be find. Finally, as an 
application of the model has been given an example.  
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Appendix 1 

Open form of the Goal Programming Model 

𝑧𝑚𝑖𝑛 = 𝑑1
+ + 𝑑1

− + 𝑑2
+ + 𝑑2

− + 𝑑3
+ + 𝑑3

− 

Subject to 

111 112 121 122 131 132 141 142

211 212 221 222 231 232 241 242

311 312 321 322 331 332 341 342

111

16 30 16 30 16 30 14 29

16 10 7 21 13 17 16 30

16 10 14 28 14 18 8 22

14 12

a a a a a a a a

a a a a a a a a

a a a a a a a a

b

x x x x x x x x

x x x x x x x x

x x x x x x x x

x

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ 112 121 122 131 132 141 142

211 212 221 222 231 232 241 242

311 312 321 322 331 332 341 342 1 1

14 18 20 6 8 12

14 4 14 18 18 20 12 18

20 10 8 10 8 4 16 20 cost

b b b b b b b

b b b b b b b b

b b b b b b b b

x x x x x x x

x x x x x x x x

x x x x x x x x d d+ −

+ + + + + + +

+ + + + + + + +

+ + + + + + + − + =

 

111 121 131 141 211 221 231 241 311 321 331 341

111 121 131 141 211 221 231 241 311 321 331 341 2 2 120

a a a a a a a a a a a a

b b b b b b b b b b b b

x x x x x x x x x x x x

x x x x x x x x x x x x d d+ −

+ + + + + + + + + + + +

+ + + + + + + + + + + − + =
 

112 122 132 142 212 222 232 242 312 322 332 342

112 122 132 142 212 222 232 242 312 322 332 342 3 3 80

a a a a a a a a a a a a

b b b b b b b b b b b b

x x x x x x x x x x x x

x x x x x x x x x x x x d d+ −

+ + + + + + + + + + + +

+ + + + + + + + + + + − + =
 

1

111 112 121 122 131 132 141 142 1

1

111 112 121 122 131 132 141 142 1

35-

35

a a a a a a a a a

a a a a a a a a a

x x x x x x x x

x x x x x x x x





+ + + + + + + 

+ + + + + + +  +
 

1

211 212 221 222 231 232 241 242 2

1

211 212 221 222 231 232 241 242 2

30 -

30

a a a a a a a a a

a a a a a a a a a

x x x x x x x x

x x x x x x x x





+ + + + + + + 

+ + + + + + +  +
 

1

311 312 321 322 331 332 341 342 3

1

311 312 321 322 331 332 341 342 3

35

35

a a a a a a a a a

a a a a a a a a a

x x x x x x x x

x x x x x x x x





+ + + + + + +  −

+ + + + + + +  +
 

1

111 112 121 122 131 132 141 142 1

1

111 112 121 122 131 132 141 142 1

40

40

b b b b b b b b b

b b b b b b b b b

x x x x x x x x

x x x x x x x x





+ + + + + + +  −

+ + + + + + +  +
 

1

211 212 221 222 231 232 241 242 2

1

211 212 221 222 231 232 241 242 2

30

30

b b b b b b b b b

b b b b b b b b b

x x x x x x x x

x x x x x x x x





+ + + + + + +  −

+ + + + + + +  +
 

1

311 312 321 322 331 332 341 342 3

1

311 312 321 322 331 332 341 342 3

30

30

b b b b b b b b b

b b b b b b b b b

x x x x x x x x

x x x x x x x x





+ + + + + + +  −

+ + + + + + +  +
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2

111 112 211 212 311 312 1

2

111 112 211 212 311 312 1

25

25

a a a a a a a

a a a a a a a

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

121 122 221 222 321 322 2

2

121 122 221 222 321 322 2

25

25

a a a a a a a

a a a a a a a

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

131 132 231 232 331 332 3

2

131 132 231 232 331 332 3

20

20

a a a a a a a

a a a a a a a

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

141 142 241 242 341 342 4

2

141 142 241 242 341 342 4

30

30

a a a a a a a

a a a a a a a

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

111 112 211 212 311 312 1

2

111 112 211 212 311 312 1

20

20

b b b b b b b

b b b b b b b

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

121 122 221 222 321 322 3

2

121 122 221 222 321 322 3

30
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b b b b b b b

b b b b b b b

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

131 132 231 232 331 332 3

2

131 132 231 232 331 332 3

20

20

b b b b b b b

b b b b b b b

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

2

141 142 241 242 341 342 4

2

141 142 241 242 341 342 4

30

30

b b b b b b b

b b b b b b b

x x x x x x

x x x x x x





+ + + + +  −

+ + + + +  +
 

where 

( ) 0 ( 1,2)( 1,..,4)( 1,..,3)ijkax k j i = = =  

( ) 0 ( 1,2)( 1,..,4)( 1,..,3)ijkbx k j i = = =  

 


