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A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND

DOUBLE-TWISTED PRODUCTS

MARIA FALCITELLI

(Communicated by Bayram SAHIN)

Abstract. We determine the Chinea-Gonzales class of almost contact metric
manifolds locally realized as double-twisted product manifolds I ×(λ1,λ2) F ,

I being an open interval, F an almost Hermitian manifold and λ1, λ2 smooth

positive functions. Several subclasses are studied. We also give an explicit
expression for the cosymplectic defect of any manifold in the considered class

and derive several consequences in dimensions 2n + 1 ≥ 5. Explicit formulas

for two algebraic curvature tensor fields are obtained. In particular cases, this
allows to state interesting curvature relations.

1. Introduction

Twisted products play an interesting role in clarifying the interrelation between
almost Hermitian (a.H.) and almost contact metric (a.c.m.) manifolds. In fact,
as stated in [6], any a.c.m. manifold in the Chinea-Gonzales class C1−5 = ⊕

1≤i≤5
Ci

is, locally, a twisted product ]−ε, ε[ ×λ F , ε > 0, F being an a.H. manifold and
λ : I × F → R a smooth positive function.

On the other hand, in [12] Ponge and Reckziegel generalized the concept of
twisted product introducing the notion of double-twisted product of two pseudo-
Riemannian manifolds (M1, g1), (M2, g2) by means of two positive functions λ1, λ2 :
M1 ×M2 → R.
This is the pseudo-Riemannian manifold M1 ×(λ1,λ2) M2 = (M1 ×M2, λ

2
1π
∗
1g1 +

λ22π
∗
2g2), πi : M1 × M2 → Mi , i ∈ {1, 2}, denoting the canonical projections.

The same authors proved that any pseudo-Riemannian manifold that admits two
complementary foliations L,K whose leaves are totally umbilic and intersect per-
pendicularly is, locally, isometric to a double-twisted product and L,K correspond
to the canonical foliations of the product.
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In this article, given an open interval I ⊂ R, an a.H. manifold (F, Ĵ, ĝ) and two
smooth positive functions λ1, λ2 : I × F → R, on I × F one considers the double-
twisted product metric g of the Euclidean metric on I and ĝ by λ1, λ2 and the a.c.m.

structure (ϕ, ξ, η, g) naturally induced by (Ĵ , ĝ) as in (2.1). The double-twisted
product of I and F by (λ1, λ2) is the a.c.m. manifold I×(λ1,λ2)F = (I×F,ϕ, ξ, η, g).
In particular, if λ1 = 1, I×(1,λ2)F belongs to the class C1−5 since this manifold is the
twisted product of I and F by λ2. More generally, we prove that I×(λ1,λ2)F falls in
the Chinea-Gonzales class ⊕

1≤i≤5
Ci⊕C12, briefly denoted by C1−5⊕C12. Combining

an algebraic characterization of this class with the Ponge-Reckziegel theorem, one
proves that any C1−5 ⊕ C12-manifold is, locally, almost contact isometric with a
double-twisted product ]−ε, ε[ ×(λ1,λ2) F , ε > 0, where F is an a.H. manifold and
λ1, λ2 are smooth positive functions.

Moreover, given a C1−5⊕C12-manifold (M,ϕ, ξ, η, g), we denote by D the umbilic
foliation associated with ker η. Obviously, any leaf N of D inherits from M the a.H.
structure (J ′ = ϕ|TN , g

′ = g|TN×TN ). One proves that, for any i ∈ {1, 2, 3, 4}, M
is in the class Ci⊕C5⊕C12 if and only if each leaf of D is in the Gray-Hervella class
Wi.
Furthermore, one considers the minimal connection D and the Levi-Civita con-
nection ∇ on a C1−5 ⊕ C12-manifold M ([9]). Since D preserves the a.c.m.
structure, all the curvature operators RD(X,Y ), X, Y ∈ X (M), commute with
ϕ. This allows to express the cosymplectic defect Λ, acting as Λ(X,Y, Z,W ) =
R(X,Y, Z,W ) − R(X,Y, ϕZ, ϕW ), R being the Riemannian curvature, as a com-
bination of Dτh, τh ⊗ τk, h, k ∈ {1, 2, 3, 4, 5, 12}, where, for any h, τh denotes the
Ch-component of ∇Φ.
Several consequences of this result are obtained. For instance, one proves that, in
dimensions 2n + 1 ≥ 5, any Ci ⊕ C5-manifold, i ∈ {1, 2, 3}, is locally realized as
a warped product I ×λ F , λ : I → R being a smooth positive function and F a
Wi-manifold. This improves a result stated in [6].

Then, we study the behaviour of two algebraic curvature tensor fields naturally
associated with a C1−5 ⊕ C12-manifold, that can be expressed in terms of the
cosymplectic defect. This allows to derive suitable curvature properties for the
manifolds in a particular subclass of C1−5 ⊕ C12. For instance, one gets that the
curvature of a C1 ⊕ C5-manifold fulfills the k-nullity condition, k being a smooth
function depending on the C5-component, and another identity that generalizes the
(G2)-condition recently introduced in [11].

In this paper all manifolds are assumed to be connected.

2. Double-twisted product manifolds

Given an a.H. manifold (F, Ĵ, ĝ), an open interval I ⊂ R and two smooth func-
tions λ1, λ2 : I × F → R, λ1, λ2 > 0, on I × F one considers the a.c.m. structure
(ϕ, ξ, η, g) such that

ϕ(a
∂

∂t
, U) = (0, ĴU), η(a

∂

∂t
, U) = aλ1, ξ =

1

λ1
(
∂

∂t
, 0),

g = λ21π
∗(dt⊗ dt) + λ22σ

∗(ĝ),

(2.1)

for any a ∈ F(I × F ), U ∈ X (F ), π : I × F → I, σ : I × F → F denoting the
canonical projections. Note that g is the double-twisted product metric of the
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Euclidean metric g0 and ĝ. The a.c.m. manifold I ×(λ1,λ2) F = (I × F,ϕ, ξ, η, g) is

called the double-twisted product manifold of (I, g0) and (F, Ĵ, ĝ) by (λ1, λ2). If λ1
is independent of the real coordinate t and λ2 only depends on t, then I ×(λ1,λ2) F

is named the double-warped product of (I, g0) and (F, Ĵ, ĝ) by (λ1, λ2). If λ1 = 1,

then I×λ2 F = I×(1,λ2)F is the twisted product manifold of (I, g0) and (F, Ĵ, ĝ) by
λ2. Finally, if λ2 only depends on the coordinate t, I ×λ2 F is the warped product

manifold of (I, g0) and (F, Ĵ, ĝ) by λ2 ([6]).
Now, we recall some basic formulas on double-twisted product manifolds, a.c.m.

and a.H. manifolds.
Through the paper, we’ll identify any vector field U on F with (0, U) ∈ X (I × F ).

The Levi-Civita connections ∇ of I ×(λ1,λ2) F and ∇̂ of F are related by

(2.2) ∇UV = ∇̂UV − g(U, V )grad log λ2 + g(U, grad log λ2)V + g(V, grad log λ2)U,

for any U, V ∈ X (F ), where grad is evaluated with respect to g ([12]).
The following relations are known, also:

∇ξξ = ξ(log λ1)ξ − grad log λ1, ∇ξU = U(log λ1)ξ + ξ(log λ2)U,

∇Uξ = ξ(log λ2)U,
(2.3)

for any U ∈ X (F ).
Given an a.c.m. manifold (M,ϕ, ξ, η, g) with dimM = 2n + 1, fundamental

form Φ, Φ(X,Y ) = g(X,ϕY ), and Levi-Civita connection ∇, for any h ∈ {1, ..., 12}
we denote by τh the projection of ∇Φ on the vector bundle Ch(M) whose fibre
at any x ∈ M is the linear space Ch(TxM) considered in [4]. Putting C(M) =
⊕

1≤h≤12
Ch(M), with any section α of C(M) are associated the 1-forms c(α), c(α)

expressed, in a local orthonormal frame, by:

c(α)(X) =
∑

1≤i≤2n+1

α(ei, ei, X), c(α)(X) =
∑

1≤i≤2n+1

α(ei, ϕei, X).

In particular, one has c(τ5)(ξ) = δη. The 1-form∇ξη only depends on the projection
τ12, since one has (∇ξη)X = τ12(ξ, ξ, ϕX). The Lee form ω, defined by ω =

− 1
2(n−1) (δΦ ◦ ϕ +∇ξη) + δη

2nη, if n ≥ 2, ω = ∇ξη + δη
2 η, if n = 1, depends on the

projections τ4, τ5, τ12 according to the relations

ω(X) =
1

2(n− 1)
c(τ4)(ϕX) +

c(τ5)(ξ)

2n
η(X), n ≥ 2,

ω(X) = τ12(ξ, ξ, ϕX) +
c(τ5)(ξ)

2
η(X), n = 1.

Let (N, J ′, g′) be an a.H. manifold with Levi-Civita connection ∇′ and funda-
mental form Ω′, Ω′(X,Y ) = g′(X, J ′Y ). For any h ∈ {1, 2, 3, 4} let τ ′h be the
component of ∇′Ω′ on the vector bundle Wh(N) whose fibre at any point p ∈ N
is the linear space Wh(TpN) introduced in [10]. If dimN = 2m ≥ 4, the Lee form
of N is the 1-form ω′ = − 1

2(m−1)δ
′Ω′ ◦ J ′ and is expressed, in a local orthonormal

frame, by ω′(X) = 1
2(m−1)

∑
1≤i≤2m

τ ′4(Ei, Ei, J
′X).
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The next results are useful in determining the Chinea-Gonzales class of

I ×(λ1,λ2) F , (F, Ĵ, ĝ) being an a.H. manifold, and in relating the covariant deriva-

tives, with respect to the Levi-Civita connections, ∇̂Ω̂, ∇Φ, where Ω̂,Φ denote the
fundamental forms of F , I ×(λ1,λ2) F .

Lemma 2.1. Let (F, Ĵ, ĝ) be a 2n-dimensional a.H. manifold, I ⊂ R an open
interval and λ1, λ2 : I × F → R smooth positive functions. For the manifold
I ×(λ1,λ2) F the following relations hold:

i): ∇Xξ = −ξ(log λ2)ϕ2X + η(X)∇ξξ, X ∈ X (I × F ),
ii): (∇ξϕ)X = ϕX(log λ1)ξ − η(X)ϕ(∇ξξ), X ∈ X (I × F ),
iii): δη = −2nξ(log λ2),
iv): ω = σ∗(ω̂) − d(log λ2), if n ≥ 2, ω = −d(log λ1) + ξ(log λ1

λ2
)η, if n = 1,

ω̂, ω denoting the Lee forms of F, I ×(λ1,λ2) F.

Proof. Formula (2.3) implies i), ii), iii). If n = 1, (2.3) implies iv), also. Moreover,
by (2.2), for any vector fields U ,V on F , one has:

(∇Uϕ)V = (∇̂U Ĵ)V + ϕV (log λ2)U − V (log λ2)ϕU

− g(U,ϕV )grad log λ2 + g(U, V )ϕ(grad log λ2).
(2.4)

Let {Ui}1≤i≤2n be a local ĝ-orthonormal frame on F , put ei = 1
λ2
Ui, i ∈

{1, ..., 2n}, and consider the g-adapted orthonormal frame {e1, ..., e2n, ξ} on I×(λ1,λ2)

F . Then, one gets

δΦ(U) =
1

λ22

∑
1≤i≤2n

g((∇Ui
ϕ)Ui, U) + g(∇ξξ, ϕU)

= δ̂Ω̂(U)− 2(n− 1)ϕU(log λ2)− ϕU(log λ1).

So, if n ≥ 2, one has ω(U) = ω̂(U) − U(log λ2). Since ω(ξ) = −ξ(log λ2), iv)
follows. �

Proposition 2.1. In the same hypothesis of Lemma 2.1, for any i ∈ {1, 2, 3}, the

Ci-component of ∇Φ vanishes if and only if the Wi-component of ∇̂Ω̂ vanishes.
If n ≥ 2, the C4-component of ∇Φ vanishes if and only if σ∗(ω̂) = d(log λ2) −
ξ(log λ2)η.

Proof. If dimF = 2, for any i ∈ {1, 2, 3, 4} the Ci-componentb of ∇Φ, as well as

the Wi-component of ∇̂Ω̂ vanish. So, we assume dimF = 2n ≥ 4 and consider
U, V,W ∈ X (F ). Applying the theory developed in [4, 10] and Lemma 2.1, one has

τ4(U, V,W ) = λ22τ̂4(U, V,W ) + ϕW (log λ2)g(U, V )− ϕV (log λ2)g(U,W )

+W (log λ2)g(U,ϕV )− V (log λ2)g(U,ϕW ),
(2.5)

(2.6) τi(U, V,W ) = 0, i = 5, ...12.

By (2.4) one obtains

(∇UΦ)(V,W ) = λ22(∇̂U Ω̂)(V,W )− ϕV (log λ2)g(U,W )− V (log λ2)g(U,ϕW )

+W (log λ2)g(U,ϕV ) + ϕW (log λ2)g(U, V ).
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It follows that
∑

1≤i≤3
τi(U, V,W ) = λ22

∑
1≤i≤3

τ̂i(U, V,W ), and then τi(U, V,W ) =

λ22τ̂i(U, V,W ), i ∈ {1, 2, 3} . On the other hand, for any i ∈ {1, 2, 3, 4} and X,Y
tangent to I × F , one has τi(ξ,X, Y ) = τi(X,Y, ξ) = 0. So, if i ∈ {1, 2, 3}, we have
τi = 0 if and only if τ̂i = 0. By (2.5) one gets τ4 = 0 if and only if ω̂(U) = U(log λ2),
U ∈ X (F ), if and only if σ∗(ω̂) = d(log λ2)− ξ(log λ2)η. �

The next results provide an algebraic characterization of the class C1−5⊕C12 and
have a useful application involving double-twisted product manifolds.

Proposition 2.2. Given an a.c.m. manifold (M,ϕ, ξ, η, g) with dimM = 2n+ 1,
the following conditions are equivalent

i): M is a C1−5 ⊕ C12-manifold,

ii): ∇η = − δη
2n (g − η ⊗ η) + η ⊗∇ξη,∇ξϕ = −η ⊗ ϕ(∇ξξ)− (∇ξη) ◦ ϕ⊗ ξ.

Proof. In the hypothesis i) one puts ∇Φ =
∑

1≤i≤5
τi + τ12 and applies the theory

developed in [4] to evaluate the contribution of each component τi in the calculus
of ∇η, ∇ξϕ. For any X,Y tangent to M , one has:

τi(ξ,X, , Y ) = 0, i ∈ {1, ..., 5} , τi(X, ξ, Y ) = 0, i ∈ {1, 2, 3, 4} ,
τ12(ξ,X, Y ) = η(X)τ12(ξ, ξ, Y )− η(Y )τ12(ξ, ξ,X),

τ5(X, ξ, Y ) =
c(τ5)(ξ)

2n
g(X,ϕY ), τ12(X, ξ, Y ) = η(X)τ12(ξ, ξ, Y ).

Then, one obtains

g((∇ξϕ)X,Y ) = −τ12(ξ,X, Y ) = −η(X)g(ϕ(∇ξξ), Y )− (∇ξη)ϕXη(Y ),

(∇Xη)Y = (τ5 + τ12)(X, ξ, ϕY ) = − δη
2n

(g(X,Y )− η(X)η(Y )) + η(X)(∇ξη)Y.

Then, ii) holds.
Vice versa, we assume ii) and write ∇Φ =

∑
1≤i≤12

τi. Then, with respect to a local

orthonormal frame {e1, ..., e2n, ξ} we have

c(τ6)(ξ) =
∑

1≤h≤2n

(∇ehΦ)(eh, ξ) = −
∑

1≤h≤2n

(∇ehη)ϕeh = 0.

Therefore, τ6 vanishes. Considering X,Y tangent to M , since τi(ξ, ϕX, Y ) = 0,
i ∈ {1, ..., 10}, one has

(τ11 + τ12)(ξ, ϕX, Y ) = (∇ξΦ)(ϕX, Y ) = −g((∇ξϕ)ϕX, Y )

= −η(Y )τ12(ξ, ξ, ϕX) = τ12(ξ, ϕX, Y ).

It follows that τ11 = 0. Finally, the condition on ∇η entails
∑

7≤i≤10
τi(X, ξ, ϕY ) = 0.

Then, it is easy to verify that all the components τi, i ∈ {7, 8, 9, 10} vanish. It
follows that ∇Φ =

∑
1≤i≤5

τi + τ12 and i) holds. �

Corollary 2.1. For a 2n + 1-dimensional a.c.m. manifold (M,ϕ, ξ, η, g) in the
class C1−5 ⊕ C12 the following equations hold:

dη = η ∧∇ξη, d(∇ξη) = (
δη

2n
∇ξη −∇ξ(∇ξη)) ∧ η.
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Proof. Applying Proposition 2.2, we see that the skew-symmetric part of ∇η is
η ∧ ∇ξη, so we get dη = η ∧ ∇ξη. Differentiating, one obtains η ∧ d(∇ξη) = 0.
Considering X,Y ∈ X (M), one has

2d(∇ξη)(X,Y ) = −η(X)(∇Y (∇ξη)(ξ)−∇ξ(∇ξη)(Y ))

+η(Y )(∇X(∇ξη)(ξ)−∇ξ(∇ξη)(X)).

Moreover, also applying Proposition 2.2, one has

∇X(∇ξη)(ξ) = −g(∇ξξ,∇Xξ) =
δη

2n
(∇ξη)X − η(X)g(∇ξξ,∇ξξ).

Then, substituting in the previous formula, one gets the second equation in the
statement. �

We remark that, if M is a 5-dimensional a.c.m. manifold, the vector bundles
C1(M) and C3(M) are trivial. So, in dimension 5, by Proposition 2.2 one character-
izes the class C2⊕C4⊕C5⊕C12. In dimension 3, the total class is C5⊕C6⊕C9⊕C12
and the class C1−5 ⊕ C12 reduces to C5 ⊕ C12. In this dimension, using the same
technique as in Proposition 2.2, one easily obtains the next result.

Proposition 2.3. Let (M,ϕ, ξ, η, g) be an a.c.m. manifold with dimM = 3. The
following conditions are equivalent:

i): M is a C5 ⊕ C12-manifold,

ii): (∇Xϕ)Y = δη
2 (η(Y )ϕX + g(X,ϕY )ξ)− η(X)(η(Y )ϕ(∇ξξ) + (∇ξη)ϕY ξ),

iii): ∇η = − δη2 (g − η ⊗ η) + η ⊗∇ξη.

Propositions 2.2, 2.3 allow to specify the class of double-twisted product mani-
folds.

In fact, let (F, Ĵ, ĝ) be an a.H. manifold, I ⊂ R an open interval and λ1, λ2 :
I × F → R smooth positive functions. By Lemma 2.1, (2.3) and Propositions
2.2, 2.3, it follows that I ×(λ1,λ2) F belongs to the class C1−5 ⊕ C12 if n ≥ 3, to
C2 ⊕ C4 ⊕ C5 ⊕ C12 if n ≥ 2, to C5 ⊕ C12 if n = 1. Also applying Proposition 2.1,

under suitable restrictions on the class of (F, Ĵ, ĝ), and on the functions λ1,λ2,
one obtains that I ×(λ1,λ2) F belongs to a particular subclass of C1−5 ⊕ C12. For

instance, if (F, Ĵ, ĝ) is Kähler and n ≥ 2, then I×(λ1,λ2) F belongs to C4⊕C5⊕C12,
to C5⊕C12 under the additional hypothesis that λ2 is constant on F . Analogously,

if λ2 = 1 and (F, Ĵ, ĝ) is a Wi-manifold, i ∈ {1, 2, 3, 4}, then I ×(λ1,1) F is in the
class Ci ⊕ C12. Finally, we assume that λ1 is constant on F . By (2.3) one has
∇ξξ = 0 and I ×(λ1,λ2) F belongs to C1−5. In fact, up to a reparametrization of

the real coordinate, one writes g = π∗(ds ⊗ ds) + λ22σ
∗(ĝ) and obtains a twisted

product a.c.m. structure on I × F .

3. Local description of C1−5 ⊕ C12-manifolds

We are going to describe, locally, the C1−5 ⊕ C12-manifolds and characterize
the ones belonging to the classes C5 ⊕ C12, Ci ⊕ C5 ⊕ C12, i ∈ {1, 2, 3, 4}. In the
sequel, given an a.c.m. manifold (M,ϕ, ξ, η, g), we’ll denote by D, D⊥ the mutually
orthogonal distributions associated to the subbundles of TM ker η and L(ξ). Note
that D⊥ is a totally umbilic foliation with ∇ξξ as mean curvature vector field. In
partricular, D⊥ is totally geodesic if and only if ∇ξη = 0.
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Proposition 3.1. Let (M,ϕ, ξ, η, g) be a C1−5 ⊕C12-manifold. Then, the distribu-
tion D is a totally umbilic foliation and D is spherical if and only if

d(c(τ5)(ξ)) = ξ(c(τ5)(ξ))η.

Moreover, D⊥ is spherical if and only if

∇ξ(∇ξη) = − ‖ ∇ξξ ‖2 η.

Proof. Since dη = η ∧∇ξη, D is integrable and for any X ∈ Γ(D), one has ∇Xξ =

− c(τ5)(ξ)2n X. it follows that any leaf (N, g′) ofD, g′ being the metric induced by g, is a

totally umbilic submanifold of M with mean curvature vector field H = c(τ5)(ξ)
2n ξ|N .

Moreover, (N, g′) is an extrinsic sphere if and only if 0 = ∇⊥XH = 1
2nX(c(τ5)(ξ))ξ,

for any X ∈ X (N). Hence, D is spherical if and only if

d(c(τ5)(ξ)) = ξ(c(τ5)(ξ))η.

Finally, D⊥ is spherical if and only if for any X ∈ Γ(D) one has ∇ξ(∇ξη)(X) =
g(∇ξ(∇ξξ), X) = 0. Equivalently, D⊥ is spherical if and only if

∇ξ(∇ξη) = g(∇ξ(∇ξξ), ξ)η = − ‖ ∇ξξ ‖2 η.
�

An isometry f : (M,ϕ, ξ, η, g) → (M ′, ϕ′, ξ′, η′, g′) between a.c.m. manifolds is
called an almost contact (a.c.) isometry if f∗ ◦ ϕ = ϕ′ ◦ f∗, f∗ξ = ξ′.

Theorem 3.1. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold. Then M is, locally, a.c.
isometric to a double-twisted product manifold ]−ε, ε[×(λ1,λ2) F , ε > 0, F being an
a.H. manifold and λ1, λ2 : ]−ε, ε[ × F → R smooth positive functions. Moreover,
M is, locally,

i): a double-warped product if and only if

d(c(τ5)(ξ)) = ξ(c(τ5)(ξ))η.

∇ξ(∇ξη) = − ‖ ∇ξξ ‖2 η,
ii): a twisted product if and only if ∇ξη = 0.

Proof. By Proposition 3.1, D and D⊥ are complementary foliations whose leaves
are totally umbilic and intersect perpendicularly. So, applying the theory developed
in [12], given a point p ∈ M , there exist a connected, open neighborhood U of p,
a Riemannian manifold (F, ĝ), two smooth positive functions λ1, λ2 : I × F → R
and an isometry f : ]−ε, ε[×(λ1,λ2) F → U such that the canonical foliations of the

product manifold correspond, via f , to D,D⊥.
It follows that f∗(g|U ) = λ21dt ⊗ dt + λ22ĝ, f∗(

∂
∂t ) is an integral manifold of D⊥

and, for any t ∈ ]−ε, ε[, ft(F ), where ft = f(t, ·), is an integral manifold of D.
Since g(f∗(

∂
∂t ), f∗(

∂
∂t )) = λ21, we can assume that f∗(

1
λ1

∂
∂t ) = ξ|U . Then, f∗(η|U ) =

λ1π
∗(dt), π : ]−ε, ε[× F → ]−ε, ε[ being the canonical projection, the triplet (ϕ̂ =

f−1∗ ◦ ϕ|U ◦ f∗, 1
λ1

( ∂∂t , 0), λ1π
∗(dt)) is an a.c. structure and f∗(g|U ) is a compatible

metric.
Moreover (Ĵ = ϕ̂|TF , ĝ) is an a.H. structure on F and f : ]−ε, ε[ ×(λ1,λ2) F →

(U,ϕ|U , ξ|U , η|U , g|U ) is an a.c. isometry.
So, by Proposition 3 in [12], M is, locally, a double-warped product if and only if
both the distributions D, D⊥ are spherical. Then i) follows by Proposition 3.1.
Finally, we assume that the function λ1 is constant, for each of the just considered
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isometries f : ]−ε, ε[ ×(λ1,λ2) F → U . Putting δ = λ1ε, one considers the map

f : ]−δ, δ[ × F → U such that f(s, x) = f( s
λ1
, x). Then, one has f

∗
(g|U ) =

ds ⊗ ds + λ22ĝ, f∗(
∂
∂s ) = ξ|U and for each s ∈ ]−δ, δ[ fs(F ) is an integral manifold

of D. It follows that f realizes an a.c. isometry between the twisted product
]−δ, δ[×λ2 F and (U,ϕ|U , ξ|U , η|U , g|U ). This case occurs if and only if D⊥ is totally
geodesic, namely if and only if ∇ξη = 0. Hence, we obtain ii). �

Since a C1−5-manifold is an a.c.m. manifold in the class C1−5 ⊕ C12 such that
∇ξη = 0, Theorem 3.1 implies that any C1−5-manifold is, locally, a.c. isometric to
a twisted product manifold ]−ε, ε[×λ F , F being an a.H. manifold and
λ : I × F → R a smooth positive function. This agrees with Theorem 3.1 in [6].

As pointed out in Section 2, any 3-dimensional manifold M in C1−5 ⊕ C12 is a
C5⊕C12-manifold. Theorem 3.1 entails that M is locally realized as a double-twisted
product manifold ]−ε, ε[ ×(λ1,λ2) F , F being a 2-dimensional a.H., hence Kähler,
manifold. Analogously, any leaf of D inherits from M a Kähler structure.

More generally, given i ∈ {1, 2, 3, 4}, we say that a C1−5⊕C12-manifold is foliated
by Wi-leaves if any leaf (N, J ′ = ϕ|TN , g

′ = g|TN×TN ) of D is in the Gray-Hervella
class Wi. We are going to characterize, in dimensions 2n + 1 ≥ 5, the C1−5 ⊕ C12-
manifolds that are foliated by Wi-leaves. To this aim, for any i ∈ {1, 2, 3, 4}, we
list the defining condition of the manifolds in Ci⊕C5⊕C12. These characterizations
are obtained combining the theory developed in [4] with the technique used in the
proof of Proposition 2.2.
C1 ⊕ C5 ⊕ C12 :

(∇Xϕ)X =
δη

2n
η(X)ϕX − η(X)((∇ξη)(ϕX)ξ + η(X)ϕ(∇ξξ)),

∇η = − δη
2n

(g − η ⊗ η) + η ⊗∇ξη.

C2 ⊕ C5 ⊕ C12 :

dΦ = −δη
n
η ∧ Φ,∇η = − δη

2n
(g − η ⊗ η) + η ⊗∇ξη.

C3 ⊕ C5 ⊕ C12 :

(∇Xϕ)Y = (∇ϕXϕ)ϕY +
δη

2n
η(Y )ϕX − η(X)((∇ξη)(ϕY )ξ + η(Y )ϕ(∇ξξ)),

δΦ ◦ ϕ = −∇ξη.
C4 ⊕ C5 ⊕ C12 :

(∇Xϕ)Y = ω(Y )ϕX + ω(ϕY )ϕ2X + g(X,ϕY )B − g(ϕX,ϕY )ϕB

−η(X)((∇ξη)(ϕY )ξ + η(Y )ϕ(∇ξξ)), B = ω].

Theorem 3.2. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold with dimM = 2n+1 ≥ 5.
For any i ∈ {1, 2, 3, 4} the following conditions are equivalent:

i): M is foliated by Wi-leaves,
ii): M is a Ci ⊕ C5 ⊕ C12-manifold.

Proof. Let (N, J ′, g′) be a leaf of D. Since (N, g′) is a totally umbilical submani-

fold of M with mean curvature vector field δη
2nξ|N , the covariant derivative ∇′J ′,
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∇′ denoting the Levi-Civita connection of N , satisfies

(3.1) (∇Xϕ)Y = (∇′XJ ′)Y +
δη

2n
g′(X, J ′Y )ξ, X, Y ∈ TN.

So, given two vector fields X,Y on M such that ϕ2X,ϕ2Y are tangent to N , one
writes X = −ϕ2X + η(X)ξ, Y = −ϕ2Y + η(Y )ξ, applies polarization, (3.1) and
Proposition 2.2, then obtaining

(∇Xϕ)Y = (∇′ϕ2XJ
′)ϕ2Y +

δη

2n
(g(X,ϕY )ξ + η(Y )ϕX)

− η(X)((∇ξη)(ϕY )ξ + η(Y )ϕ(∇ξξ)).
(3.2)

Then, in each case, the equivalence i)⇐⇒ii) is proved by direct calculus, applying
(3.1), (3.2) and the defining condition of Wi-manifold ([10]). �

Corollary 3.1. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold. Then M is foliated by
Kähler leaves if and only if M is in the class C5 ⊕ C12.

Now, we examine another consequence of Proposition 2.2 and (3.1).
With any a.c.m. manifold (M,ϕ, ξ, η, g) are associated the (1, 2)-tensor field τ

and the connection D acting as

τ(X,Y ) = −1

2
ϕ((∇Xϕ)Y ) + (∇Xη)Y ξ − 1

2
η(Y )∇Xξ

=
1

2
((∇Xϕ)ϕY + (∇Xη)Y ξ)− η(Y )∇Xξ,

(3.3)

(3.4) DXY = ∇XY + τ(X,Y ),

for any X,Y ∈ X (M).
Following [9], D is called the minimal U(n)-connection of M . Note that D is metric
and preserves both ϕ and η, so it is a U(n)-connection. Obviously, the tensor field
τ and then the torsion Σ of D, Σ(X,Y ) = τ(X,Y ) − τ(Y,X), can be explicitely
expressed by means of the Ch(M)-components of ∇Φ. Moreover, by direct calculus,
Proposition 2.2 and (3.1), one proves the following result.

Proposition 3.2. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold and (N, J ′, g′) a leaf
of D. For any vector fields X,Y on N , one has: DXY = ∇′XY − 1

2J
′((∇′XJ ′)Y ).

Proposition 3.2 means that, starting by a C1−5 ⊕ C12-manifold, the minimal
connection induces a unitary connection on each leaf of D.
In fact, given an a.H. manifold (N, J ′, g′) with Levi-Civita connection ∇′, one
considers the unitary connection D′ acting as D′XY = ∇′XY − 1

2J
′((∇′XJ ′)Y ). The

connection D′ plays a useful role in explaining several results on a.H. manifolds that
are strictly related with the Gray-Hervella work and with the study of the curvature
formulated by Tricerri and Vanhecke ([8],[13]). In particular, suitable components of
the Riemann curvature tensor introduced in [13] have been explicitely expressed by
means of the tensor fields D′τ ′i , τ

′
i � τ ′j , i, j ∈ {1, 2, 3, 4}, � denoting the symmetric

product ([7]).
This motivates the subject of Sections 4, 5, where the cosymplectic defect and

suitable related tensor fields associated with a C1−5 ⊕ C12-manifold are expressed
as a combination of Dτi, τi ⊗ τj , i, j ∈ {1, 2, 3, 4, 5, 12} .
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4. The cosymplectic defect

Given an a.c.m. manifold (M,ϕ, ξ, η, g) with minimal connection D, one consid-
ers the (0, 3)-tensor field τ defined by

τ(X,Y, Z) = g(DXY −∇XY, Z) = −1

2
(∇XΦ)(ϕY,Z)

+
1

2
η(Z)(∇Xη)Y − η(Y )(∇Xη)Z.

(4.1)

Since both D and ∇ preserve the metric, τ satisfies τ(X,Y, Z) = −τ(X,Z, Y ).
We denote by RD, R the curvatures of D,∇ and use the same notation for the g-

associated (0, 4)-tensor fields, defined according to the convention: RD(X,Y, Z,W ) =
−g(RD(X,Y, Z),W ), R(X,Y, Z,W ) = −g(R(X,Y, Z),W ). Obviously, by (4.1), for
any vector fields X,Y, Z,W one has

(RD −R)(X,Y, Z,W ) = −(DXτ)(Y,Z,W ) + (DY τ)(X,Z,W )

− τ(Σ(X,Y ), Z,W )− τ(X,W, τ(Y,Z))

+ τ(Y,W, τ(X,Z)).

(4.2)

Since τ depends on the Ch(M)-components of ∇Φ, it follows that RD−R can be ex-
pressed as a combination of the tensor fields Dτh and τh⊗τk, h, k ∈ {1, ..., 12}. Since
D preserves the a.c.m. structure, it is easy to verify that, for any vector field X,
DXτh is a section of Ch(M) andRD satisfies: RD(X,Y, Z,W ) = RD(X,Y, ϕZ, ϕW ).
Formula (4.2) also allows to express the cosymplectic defect, namely the tensor field
Λ defined by Λ(X,Y, Z,W ) = R(X,Y, Z,W )−R(X,Y, ϕZ, ϕW ), as follows:

Λ(X,Y, Z,W ) = (DXτ)(Y, Z,W )− (DXτ)(Y, ϕZ, ϕW )

− (DY τ)(X,Z,W ) + (DY τ)(X,ϕZ,ϕW )

+ τ(Σ(X,Y ), Z,W )− τ(Σ(X,Y ), ϕZ, ϕW )

+ τ(X,W, τ(Y,Z))− τ(X,ϕW, τ(Y, ϕZ))

− τ(Y,W, τ(X,Z)) + τ(Y, ϕW, τ(X,ϕZ)).

(4.3)

Furthermore, we recall that, given a (0, 2)-tensor field Q, the Kulkarni-Nomizu
product g fQ of g and Q acts as

g fQ(X,Y, Z,W ) = g(X,Z)Q(Y,W ) + g(Y,W )Q(X,Z)− g(X,W )Q(Y, Z)

−g(Y, Z)Q(X,W ).

In particular, to simplify the notation, one puts π1 = 1
2g f g.

Theorem 4.1. Let (M,ϕ, ξ, η, g) be a C1−5 ⊕ C12-manifold with dimM = 2n + 1.
With respect to a local orthonormal frame {e1, ..., e2n, ξ}, for any X,Y, Z,W ∈
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X (M), one has:

Λ(X,Y, Z,W ) = −
∑

1≤i≤4

((DXτi)(Y, ϕZ,W )− (DY τi)(X,ϕZ,W ))

+
1

2n
g f (dc(τ5)(ξ)⊗ η)(X,Y, Z,W )

+η(Y )((DXτ12)(ξ, ξ, ϕZ)η(W )− (DY τ12)(ξ, ξ, ϕW )η(Z))

−η(X)((DY τ12)(ξ, ξ, ϕZ)η(W )− (DY τ12)(ξ, ξ, ϕW )η(Z))

+
1

2

∑
1≤q≤2n

∑
1≤i,h≤4

(τi(X,Y, ϕeq)− τi(Y,X, ϕeq))τh(eq, Z, ϕW )

−c(τ5)(ξ)

2n

∑
1≤i≤4

(η(Y )τi(X,Z, ϕW )− η(X)τi(Y,Z, ϕW ))

−(η(X)(∇ξη)Y − η(Y )(∇ξη)X)(η(Z)(∇ξη)W − η(W )(∇ξη)Z)

−1

2
η(Z)

∑
1≤i≤4

(η(X)τi(Y,W,ϕ(∇ξξ))− η(Y )τi(X,W,ϕ(∇ξξ)))

+
1

2
η(W )

∑
1≤i≤4

(η(X)τi(Y,Z, ϕ(∇ξξ))− η(Y )τi(X,Z, ϕ(∇ξξ)))

−(
c(τ5(ξ)

2n
)2(π1(X,Y, Z,W )− π1(X,Y, ϕZ, ϕW ))

+
c(τ5)(ξ)

2n
g f (η ⊗∇ξη)(X,Y, Z,W )

−c(τ5(ξ)

2n
g f (η ⊗∇ξη)(X,Y, ϕZ, ϕW ).

Proof. We outline the proof, omitting detailed and long calculation. Firstly, one
writes ∇Φ =

∑
1≤i≤5

τi + τ12 and recalls the relations

τ5(X,Y, Z) =
c(τ5)(ξ)

2n
(g(X,ϕZ)η(Y )− g(X,ϕY )η(Z)),

τ12(X,Y, Z) = η(X)(η(Y )τ12(ξ, ξ, Z)− η(Z)τ12(ξ, ξ, Y )).

Applying (4.1), for any X,Y, Z ∈ X (M), one has

τ(X,Y, Z) = −1

2

∑
1≤i≤4

τi(X,ϕY,Z)

+
c(τ5)(ξ)

2n
(g(X,Z)η(Y )− g(X,Y )η(Z))

+ η(X)(η(Z)(∇ξη)Y − η(Y )(∇ξη)Z),

(4.4)

and then

τ(X,Y ) = −1

2

∑
1≤q≤2n

∑
1≤i≤4

τi(X,ϕY, eq)eq

+
c(τ5)(ξ)

2n
(η(Y )X − g(X,Y )ξ)

+ η(X)((∇ξη)Y ξ − η(Y )∇ξξ).
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Hence, by a straightforwad calculus, one obtains

(DXτ)(Y,Z,W )− (DXτ)(Y, ϕZ, ϕW )

= −
∑

1≤i≤4

(DXτi)(Y, ϕZ,W )

− 1

2n
X(c(τ5)(ξ))(g(Y, Z)η(W )− g(Y,W )η(Z))

+ η(Y )((DXτ12)(ξ, ξ, ϕZ)η(W )− (DXτ12)(ξ, ξ, ϕW )η(Z)),

τ(Σ(X,Y ),Z,W )− τ(Σ(X,Y ), ϕZ, ϕW )

=
1

2

∑
1≤q≤2n

∑
1≤i,h≤4

(τi(X,Y, ϕeq)− τi(Y,X, ϕeq))τh(eq, Z, ϕW )

− c(τ5)(ξ)

2n

∑
1≤i≤4

(η(Y )τi(X,ϕZ,W )− η(X)τi(Y, ϕZ,W ))

+
c(τ5)(ξ)

4n

∑
1≤i≤4

((τi(X,ϕY,Z)− τi(Y, ϕX,Z))η(W )

− (τi(X,ϕY,W )− τi(Y, ϕX,W ))η(Z))

− (
c(τ5)(ξ)

2n
)2g f (η ⊗ η)(X,Y, Z,W )

− (η(X)(∇ξη)Y − η(Y )(∇ξη)X)(η(Z)(∇ξη)W − η(W )(∇ξη)Z),

τ(X,W,τ(Y, Z))− τ(X,ϕW, τ(Y, ϕZ))

= τ(Y,W, τ(X,Z))− τ(Y, ϕW, τ(X,ϕZ))

− c(τ5)(ξ)

4n

∑
(

1≤i≤4

(τi(X,ϕY,Z)− τi(Y, ϕX,Z))η(W )

− (τi(X,ϕY,W )− τi(Y, ϕX,W ))η(Z))

− 1

2
η(Z)

∑
1≤i≤4

(η(X)τi(Y,W,ϕ(∇ξξ))− η(Y )τi(X,W,ϕ(∇ξξ)))

+
1

2
η(W )

∑
1≤i≤4

(η(X)τi(Y,Z, ϕ(∇ξξ))− η(Y )τi(X,Z, ϕ(∇ξξ)))

+ (
c(τ5)(ξ)

2n
)2(g f (η ⊗ η)(X,Y, Z,W )− π1(X,Y, Z,W ) + π1(X,Y, ϕZ, ϕW ))

− c(τ5)(ξ)

2n
(g f (η ⊗∇ξη)(X,Y, Z,W )− g f (η ⊗∇ξη)(X,Y, ϕZ, ϕW )).

So, also applying (4.3), one gets the statement. �

Several consequences can be derived by Theorem 4.1. Before stating new results,
we point out that, given a C1−5 ⊕ C12-manifold, the covariant derivatives Dτ12,
∇(∇ξη) are related by
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(DXτ12)(ξ, ξ, ϕY ) = ∇X(∇ξη)(Y ) +
1

2

∑
1≤i≤4

τi(X,Y, ϕ(∇ξξ))

+ η(Y )(η(X) ‖ ∇ξξ ‖2 −
c(τ5)(ξ)

2n
(∇ξη)X).

(4.5)

In particular, with respect to a local orthonormal frame {e1, ..., e2n, ξ}, one has:

(4.6)
∑

1≤q≤2n

(Deqτ12)(ξ, ξ, ϕeq) = −δ(∇ξη)+ ‖ ∇ξξ ‖2 +
1

2
c(τ4)(ϕ(∇ξξ)).

The next result easily follows by Theorem 4.1 and (4.6).

Corollary 4.1. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold with dimM = 2n+ 1.
For any X,Y, Z ∈ X (M) one has

R(X,Y, ξ, Z) =
1

2n
(X(c(τ5)(ξ))g(ϕY, ϕZ)− Y (c(τ5)(ξ))g(ϕX,ϕZ))

+η(X)(DY τ12)(ξ, ξ, ϕZ)− η(Y )(DXτ12)(ξ, ξ, ϕZ)

−(η(X)(∇ξη)Y − η(Y )(∇ξη)X)(∇ξη)Z

−1

2

∑
1≤i≤4

(η(X)τi(Y,Z, ϕ(∇ξξ))− η(Y )τi(X,Z, ϕ(∇ξξ)))

−(
c(τ5)(ξ)

2n
)2(η(X)g(Y,Z)− η(Y )g(X,Z)).

Moreover, the Ricci tensor satisfies:

ρ(ξ, ξ) = ξ(c(τ5)(ξ))− δ(∇ξη)− c(τ5)(ξ)2

2n
,

ρ(X, ξ) =
2n− 1

2n
(X − η(X)ξ)(c(τ5)(ξ)) + η(X)ρ(ξ, ξ),

for any X ∈ X (M).

Proposition 4.1. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold with dimM = 2n+1.
For any Y,Z,W ∈ X (M) one has

2n
∑

1≤i≤4

(Dξτi)(Y,Z, ϕW ) = c(τ5)(ξ)
∑

1≤i≤4

τi(Y,Z, ϕW )

−Z(c(τ5)(ξ))g(ϕY, ϕW ) +W (c(τ5)(ξ))g(ϕY, ϕZ)

+ϕZ(c(τ5)(ξ))g(Y, ϕW )− ϕW (c(τ5)(ξ))g(Y, ϕZ)

+ξ(c(τ5)(ξ))(g(Y,W )η(Z)− g(Y,Z)η(W ))

+c(τ5)(ξ)((∇ξη)Zg(ϕY, ϕW )− (∇ξη)Wg(ϕY, ϕZ)

−(∇ξη)ϕZg(Y, ϕW ) + (∇ξη)ϕWg(Y, ϕZ)).

Proof. Let Y, Z,W be vector fields on M . Since R is an algebraic curvature tensor
field, one has

Λ(ξ, Y, Z,W )−R(Z,W, ξ, Y ) +R(ϕZ,ϕW, ξ, Y ) = 0.



A CLASS OF ALMOST CONTACT METRIC MANIFOLDS 49

Hence, applying Theorem 4.1 and Corollary 4.1, we obtain:

0 =
∑

1≤i≤4

(Dξτi)(Y, Z, ϕW ) +
1

2n
(Z(c(τ5)(ξ))g(ϕY, ϕW )

−W (c(τ5)(ξ))g(ϕY, ϕZ)− ϕZ(c(τ5)(ξ))g(Y, ϕW )

− ϕW (c(τ5)(ξ))g(Y, ϕZ))

+
1

2n
ξ(c(τ5)(ξ))(g(Y, Z)η(W )− g(Y,W )η(Z))

− ((DY−η(Y )ξτ12)(ξ, ξ, ϕW )− (DW τ12)(ξ, ξ, ϕY ))η(Z)

+ ((DY−η(Y )ξτ12)(ξ, ξ, ϕZ)− (DZτ12)(ξ, ξ, ϕY ))η(W )

− c(τ5)(ξ)

2n

∑
1≤i≤4

τi(Y, Z, ϕW )

+
1

2

∑
1≤i≤4

(η(Z)(τi(Y,W,ϕ(∇ξξ))− τi(W,Y, ϕ(∇ξξ)))

− η(W )(τi(Y,Z, ϕ(∇ξξ))− τi(Z, Y, ϕ(∇ξξ)))

− c(τ5)(ξ)

2n
((∇ξη)Zg(ϕY, ϕW )− (∇ξη)Wg(ϕY, ϕZ)

− (∇ξη)ϕZg(Y, ϕW ) + (∇ξη)ϕWg(Y, ϕZ)).

Then, one proves that the block of terms in the previous formula involving
Dτ12(ξ, ξ, ·) ⊗ η,

∑
1≤i≤4

τi(·, ·, ϕ(∇ξξ)) ⊗ η vanishes, so obtaining the statement. In

fact, (4.5) and Corollary 2.1 entail:

(DY−η(Y )ξτ12)(ξ, ξ, ϕZ)− (DZτ12)(ξ, ξ, ϕY )

− 1

2

∑
1≤i≤4

(τi(Y,Z, ϕ(∇ξξ))− τi(Z, Y, ϕ(∇ξξ)))

= 2d(∇ξη)(Y,Z)− η(Y )(∇ξ(∇ξη)(Z) + η(Z) ‖ ∇ξξ ‖2)

− c(τ5)(ξ)

2n
(η(Z)(∇ξη)Y − η(Y )(∇ξη)Z)

= −(∇ξ(∇ξη)(Y ) + η(Y ) ‖ ∇ξξ ‖2)η(Z).

�

In dimension 3, the formula stated in Proposition 4.1 reduces to an identity.
In fact, in this case, considering a manifold (M,ϕ, ξ, η, g) in C1−5 ⊕ C12, all the
projections τi’s,i ∈ {1, 2, 3, 4}, vanish. Moreover, we consider the tensor field S
acting as

S(Y,Z,W ) = Z(c(τ5)(ξ))g(ϕY, ϕW )−W (c(τ5)(ξ))g(ϕY, ϕZ)

−ϕZ(c(τ5)(ξ))g(Y, ϕW ) + ϕW (c(τ5)(ξ))g(Y, ϕZ)

+ξ(c(τ5)(ξ))(g(Y, Z)η(W )− g(Y,W )η(Z))

−c(τ5)(ξ)(g(ϕY, ϕW )(∇ξη)Z − g(ϕY, ϕZ)(∇ξη)W

−g(Y, ϕW )(∇ξη)ϕZ + g(Y, ϕZ)(∇ξη)ϕW ).
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By direct calculus, given a point p ∈M and an orthonormal basis {X,ϕX, ξ} of
TpM , for any Y ∈ TpM we have

Sp(Y,X, ϕX) = Sp(Y, ϕX,X) = Sp(Y,X, ξ) = Sp(Y, ϕX, ξ) = 0.

It follows that S = 0.
We examine some consequences of Proposition 4.1 in dimensions 2n+ 1 ≥ 5.

Proposition 4.2. Let (M,ϕ, ξ, η, g) be a C1−5 ⊕ C12-manifold with dimM = 2n+
1 ≥ 5. Then, one has:

Dξτi =
c(τ5)(ξ)

2n
τi, i ∈ {1, 2, 3} ,

(Dξc(τ4))ϕW =
c(τ5)(ξ)

2n
c(τ4)(ϕW )

+
n− 1

n
((W − η(W )ξ)(c(τ5)(ξ))− c(τ5)(ξ)(∇ξη)W ),

for any W ∈ X (M).

Proof. Let Y,Z,W be vector fields on M . By Proposition 4.1, using the properties

τi(Y, Z, ϕW ) = −τi(ϕY, ϕZ, ϕW ), i ∈ {1, 2} ,
τi(Y, Z, ϕW ) = τi(ϕY, ϕZ, ϕW ), i ∈ {3, 4} ,

(Dξτi)(Y, Z, ϕW ) = −(Dξτi)(ϕY, ϕZ, ϕW ), i ∈ {1, 2} ,
(Dξτi)(Y, Z, ϕW ) = (Dξτi)(ϕY, ϕZ, ϕW ), i ∈ {3, 4} ,

one has: ∑
1≤i≤2

((Dξτi)(Y,Z, ϕW )− c(τ5)(ξ)

2n
τi(Y, Z, ϕW )) = 0.

Since moreover (Dξτi)(Y, Z, ξ) = τi(Y,Z, ξ) = 0 and Dξτi− c(τ5)(ξ)
2n τi is a section of

Ci(M), i ∈ {1, 2} , one obtains Dξτi = c(τ5)(ξ)
2n τi, i ∈ {1, 2}. Let {e1, ..., e2n, ξ} be a

local orthonormal frame. By Proposition 4.1 we have

(Dξc(τ4))ϕW =
∑

1≤q≤2n

(Dξτ4)(eq, eq, ϕW ) =
c(τ5)(ξ)

2n
c(τ4)(ϕW )

+
n− 1

n
((W − η(W )ξ)(c(τ5)(ξ))− c(τ5)(ξ)(∇ξη)W ).

On the other hand, applying the definition of τ4, ( [4]), one gets:

2(n− 1)(Dξc(τ4))(Y, Z, ϕW ) = g(Y, ϕZ)(Dξc(τ4))W − g(Y, ϕW )(Dξc(τ4))Z

+g(ϕY, ϕZ)(Dξc(τ4))ϕW

−g(ϕY, ϕW )(Dξc(τ4))ϕZ.

So, we again apply Proposition 4.1, use the just stated relations and obtain Dξτ3 =
c(τ5)(ξ)

2n τ3. �

Theorem 4.2. Let (M,ϕ, ξ, η, g) be an a.c.m. manifold with dimM ≥ 5. If M
falls in the class Ci⊕C5, i ∈ {1, 2, 3}, then M is, locally, a.c. isometric to a warped
product manifold I ×λ F , where I ⊂ R is an open interval, λ : I → R a smooth
positive function and F an almost Hermitian manifold in the Gray-Hervella class
Wi.
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Proof. Fixed i ∈ {1, 2, 3}, since M is a Ci ⊕ C5-manifold, by Proposition 4.2 we get

dc(τ5)(ξ) = ξ(c(τ5)(ξ))η.

By Theorem 3.1 in [6] M is, locally, a.c. isometric to a warped product manifold

]−ε, ε[×λ F , ε > 0, (F, Ĵ, ĝ) being an a. H. manifold and λ : ]−ε, ε[→ R a smooth
positive function. Obviously, the manifold ]−ε, ε[×λF is in the class Ci⊕C5. Hence

Proposition 2.1 entails that (F, Ĵ, ĝ) is a Wi-manifold. �

Proposition 4.3. Let (M,ϕ, ξ, η, g) be an a.c.m. manifold in the class C1 ⊕ C2 ⊕
C3 ⊕ C5 ⊕ C12 with dimM = 2n+ 1 ≥ 5. Then, the Lee form is closed.

Proof. Since in this case τ4 = 0, the Lee form is ω = c(τ5)(ξ)
2n η and, by Proposition

4.2, we have

dc(τ5)(ξ) = ξ(c(τ5)(ξ))η + c(τ5)(ξ)∇ξη.

It follows:

dω =
c(τ5)(ξ)

2n
(∇ξη ∧ η + dη)

and, applying Corollary 2.1, one gets dω = 0. �

Proposition 4.4. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold with dimM = 2n+1 ≥
5. Then, M is a locally conformal C12-manifold.

Proof. The hypothesis implies that ∇ϕ acts as

(∇Xϕ)Y =
c(τ5)(ξ)

2n
(η(Y )ϕX + g(X,ϕY )ξ)

− η(X)((∇ξη)ϕY ξ + η(Y )ϕ(∇ξξ)),
(4.7)

and the Lee form ω = c(τ5)(ξ)
2n η is closed. So, we consider an open covering {Ui}i∈I

of M and, for any i, a function σi ∈ F(Ui) such that ω|Ui
= dσi. Putting ϕi = ϕ|Ui

,
ξi = exp(−σi)ξ|Ui

, ηi = expσiη|Ui
, gi = exp 2σig|Ui

, we prove that the a.c.m.
manifold (Ui, ϕi, ξi, ηi, gi) is in the class C12. In fact, the Levi-Civita connections

of the local metrics gi’s fit up to the Weyl connection ∇̃ of (M, g) acting as

(4.8) ∇̃XY = ∇XY + ω(X)Y + ω(Y )X − g(X,Y )B, B = ω].

In particular, fixed i ∈ I, one has ∇̃ξiξi = exp(−2σi)∇ξξ|Ui
. Considering X,Y ∈

X (M), by (4.7), (4.8), in Ui we obtain

(∇̃Xϕi)Y = −η(X)((∇ξη)ϕY ξ + η(Y )ϕ(∇ξξ))
= −ηi(X)((∇̃ξiηi)ϕiY ξi + ηi(Y )ϕi(∇̃ξiξi)).

�

Remark 4.1. It is easy to prove that any 3-dimensional a.c.m. manifold is locally
conformal cosymplectic if and only if it is a C5⊕C12-manifold with closed Lee form.
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5. Other curvature relations

The results stated in Section 4, in particular Theorem 4.1, allow to describe
the behaviour of some algebraic curvature tensor fields naturally associated with a
C1−5 ⊕ C12− manifold.

Firstly, we recall that, if S is an algebraic curvature tensor field on a Riemannian
manifold (M, g), putting S(X,Y ) = S(X,Y,X, Y ), for any X,Y, Z,W ∈ X (M), one
has:

6S(X,Y, Z,W ) = S(X,Y + Z)− S(X,Y +W ) + S(Y,X +W )

− S(Y,X + Z) + S(Z,X +W )− S(Z, Y +W )

+ S(W,Y + Z)− S(W,X + Z) + S(X + Z, Y +W )

− S(X +W,Y + Z) + S(X,W )− S(X,Z)

+ S(Y,Z)− S(Y,W ).

It follows that S is uniquely determined by the values S(X,Y ), for any pair (X,Y )
of vector fields.

Given an a.c.m. manifold (M,ϕ, ξ, η, g), let T2, T3 be the algebraic curvature
tensor fields on M acting as:

T2(X,Y, Z,W ) = R(X,Y, Z,W ) +R(ϕX,ϕY, ϕZ, ϕW )−R(ϕX,ϕY, Z,W )

−R(X,Y, ϕZ, ϕW )−R(ϕX, Y, ϕZ,W )−R(X,ϕY,Z, ϕW )

−R(ϕX, Y, Z, ϕW )−R(X,ϕY, ϕZ,W ),

T3(X,Y, Z,W ) = R(X,Y, Z,W )−R(ϕX,ϕY, ϕZ, ϕW ).

We recall that the vanishing of T3 means that M satisfies the K3ϕ-identity ([3]),
as well as M fulfills the (G3)-identity if and only if T3 = g f (η ⊗ η) ([11]).

Proposition 5.1. Let (M,ϕ, ξ, η, g) be a C1−5 ⊕ C12-manifold with dimM = 2n+
1 ≥ 5. With respect to a local orthonormal frame {e1, ..., e2n, ξ}, the tensor field T2
depends on Dτ2, Dτ12, (2τ1− τ2)� τ3, τ2� τ4, τ2� τ5, τ2� τ12, τ12� τ12, according
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to the formula:

T2(X,Y ) = 2((DXτ2)(Y, Y, ϕX) + (DY τ2)(X,X,ϕY ) + (DϕXτ2)(Y, Y,X)

+(DϕY τ2)(X,X, Y )) + η(X)2((DY τ12)(ξ, ξ, ϕY ) +DϕY τ12)(ξ, ξ, Y ))

+η(Y )2((DXτ12)(ξ, ξ, ϕX) + (DϕXτ12)(ξ, ξ,X))

−η(X)η(Y )((DXτ12)(ξ, ξ, ϕY ) + (DϕXτ12)(ξ, ξ, Y )

+(DY τ12)(ξ, ξ, ϕX) + (DϕY τ12)(ξ, ξ,X))

−2
∑

1≤q≤2n

(2τ1 − τ2)(eq, X, Y )τ3(eq, X, Y )

+
1

n− 1
(τ2(X,X, Y )c(τ4)(Y )− τ2(X,X,ϕY )c(τ4)(ϕY )

+τ2(Y, Y,X)c(τ4)(X)− τ2(Y, Y, ϕX)c(τ4)(ϕX))

−c(τ5)(ξ)

n
(η(X)τ2(Y, Y, ϕX) + η(Y )τ2(X,X,ϕY ))

−η(X)2τ2(Y, Y, ϕ(∇ξξ))− η(Y )2τ2(X,X,ϕ(∇ξξ))
+η(X)η(Y )(τ2(X,Y, ϕ(∇ξξ)) + τ2(Y,X, ϕ(∇ξξ)))
−(η(X)(∇ξη)Y − η(Y )(∇ξη)X)2

+(η(X)(∇ξη)ϕY − η(Y )(∇ξη)ϕX)2.

Proof. For any X,Y ∈ X (M), one has:

T2(X,Y ) = Λ(X,Y,X, Y )− Λ(ϕX,ϕY,X, Y )− Λ(ϕX, Y, ϕX, Y )

−Λ(X,ϕY, ϕX, Y )− η(X)(R(ϕX, Y, ξ, ϕY ) +R(X,ϕY, ξ, ϕY )).

Applying Theorem 4.1, Corollary 4.1 and using the theory developed in [4], after a
long and detailed calculus one gets the statement.We only point out that the block
of terms in the final expression of T2(X,Y ) involving Dτi, i ∈ {1, 3, 4} vanishes
since for any U, V, Z,W ∈ X (M) one has:

(DZτ1)(U,U, V ) = 0, (DZτi)(ϕU,ϕV,W ) = (DZτi)(U, V,W ), i ∈ {3, 4} .

�

As remarked in [6], given an a.H. manifold (F, Ĵ, ĝ) in the class Wi i ∈ {1, 2, 3},
an open interval I ⊂ R and a smooth positive function λ : I ×F → R, the twisted
product manifold I ×λ F falls in the class Ci ⊕ C4 ⊕ C5. Proposition 5.1 entails
that, if F is either a nearly-Kähler or a W3-manifold, then the curvature of I ×λ F
satisfies the identity

0 = R(X,Y, Z,W ) +R(ϕX,ϕY, ϕZ, ϕW )−R(ϕX,ϕY, Z,W )

−R(X,Y, ϕZ, ϕW )−R(ϕX, Y, ϕZ,W )−R(X,ϕY, ϕZ,W )

−R(ϕX, Y, Z, ϕW )−R(X,ϕY,Z, ϕW ).

(5.1)

As far as regards the tensor field T3 associated with a C1−5 ⊕ C12-manifold, one
starts by the relation

T3(X,Y ) = Λ(X,Y,X, Y ) + Λ(ϕX,ϕY,X, Y ),

argues as in the proof of Proposition 5.1 and obtains the next result.
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Proposition 5.2. Let (M,ϕ, ξ, η, g) be a C1−5⊕C12-manifold, with dimM = 2n+
1 ≥ 5. With respect to a local orthonormal frame {e1, ..., e2n, ξ} one has:

T3(X,Y ) =
∑

2≤i≤4

((DXτi)(Y, Y, ϕX) + (DY τi)(X,X,ϕY )

+(DϕXτi)(ϕY, ϕY,X) + (DϕY τi)(ϕX,ϕX, Y ))

+
1

2n
g f (dc(τ5)(ξ)⊗ η)(X,Y,X, Y )

+
1

2n
g f (dc(τ5)(ξ)⊗ η)(ϕX,ϕY,X, Y )

+η(Y )((DXτ12)(ξ, ξ, ϕX)η(Y )− (DXτ12)(ξ, ξ, ϕY )η(X))

+η(X)((DY τ12)(ξ, ξ, ϕY )η(X)− (DY τ12)(ξ, ξ, ϕX)η(Y ))

+
∑

1≤q≤2n

∑
1≤i≤4

((τ3 + τ4)(X,Y, ϕeq)− (τ3 + τ4)(Y,X, ϕeq))τi(eq, X, ϕY )

−c(τ5)(ξ)

2n

∑
2≤i≤4

(η(X)τi(Y, Y, ϕX) + η(Y )τi(X,X,ϕY ))

−(η(X)(∇ξη)Y − η(Y )(∇ξη)X)2

−1

2

∑
2≤i≤4

(η(X)2τi(Y, Y, ϕ(∇ξξ)) + η(Y )2τi(X,X,ϕ(∇ξξ))

−η(X)η(Y )(τi(X,Y, ϕ(∇ξξ)) + τi(Y,X, ϕ(∇ξξ))))

−(
c(τ5)(ξ)

2n
)2(η(X)2g(Y, Y )− 2η(X)η(Y )g(X,Y ) + η(Y )2g(X,X))

−c(τ5)(ξ)

2n
((η(X)g(X,Y )− η(Y )g(X,X))(∇ξη)Y

+(η(Y )g(X,Y )− η(X)g(Y, Y ))(∇ξη)X

+g(X,ϕY )(η(X)(∇ξη)ϕY − η(Y )(∇ξη)ϕX)).

Corollary 5.1. Let (M,ϕ, ξ, η, g) be a C1⊕C5-manifold with dimM = 2n+ 1 ≥ 5.
Then, the curvature of M satisfies the k-nullity condition and the identity:

R(X,Y, Z,W )−R(ϕX, Y, Z, ϕW )−R(X,ϕY,Z, ϕW )−R(X,Y, ϕZ, ϕW )

= k(g(X,Z)η(Y )− g(Y,Z)η(X))η(W ),

where

k =
1

2n
(ξ(c(τ5)(ξ))− c(τ5)(ξ)2

2n
).

Proof. Let k be the smooth function defined in the statement. We apply Proposi-
tions 5.1, 4.2 and obtain

T3(X,Y ) = kg f (η ⊗ η)(X,Y ), X, Y ∈ X (M).

Hence R satisfies the identity

R(X,Y,Z,W )−R(ϕX,ϕY, ϕZ, ϕW )

= k(g(X,Z)η(Y )η(W ) + g(Y,W )η(X)η(Z)

− g(Y,Z)η(X)η(W )− g(X,W )η(Y )η(Z)).

(5.2)

In particular, (5.2) implies

R(X,Y, ξ) = k(g(Y, Z)X − g(X,Z)Y ),
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namely R satisfies the k-nullity condition. Finally, since in this case Proposition
5.1 entails T2 = 0, by repeated applications of (5.2) we get the identity in the
statement. �

Remark 5.1. We recall that a nearly Kenmotsu manifold is a C1⊕C5- manifold such
that c(τ5)(ξ) = −2n. Hence, the curvature of a nearly Kenmotsu manifold satisfies
the k-nullity condition and the identity in Corollary 5.1 with k = −1.
In [11] the authors give explicit examples of a.c.m. manifolds satisfying the so-called
(G2)-identity, namely a.c.m. manifolds whose curvature verifies:

R(X,Y, Z,W )−R(ϕX, Y, Z, ϕW )−R(X,ϕY,Z, ϕW )−R(X,Y, ϕZ, ϕW )

= (g(X,Z)η(Y )− g(Y,Z)η(X))η(W ).

Other explicit formulas involving the curvature of a C1−5 ⊕ C12-manifold fol-
low by Theorem 4.1 and Proposition 5.2. We pay our attention to a (0, 2)-tensor
field defined in terms of the trace of T3. Considering a local orthonormal frame
{e1, ..., e2n, ξ} on a C1−5 ⊕ C12-manifold, for any vector field X we get:

ρ(X,X)− ρ(ϕX,ϕX) =
∑

1≤q≤2n

T3(X, eq) + T3(X, ξ).

It follows that the tensor field ρϕ acting as ρϕ(X,Y ) = ρ(X,Y ) − ρ(ϕX,ϕY ) de-
pends on Dτh, h ∈ {2, 4, 5, 12} , τ2� τh, h ∈ {3, 4, 5}, τ3� τ1, τ3� τ3, τ12� τ12, τ4�
τh, h ∈ {4, 5, 12} .

Concerning the ∗-Ricci tensor ρ∗, which is locally defined by

ρ∗(X,Y ) =
∑

1≤q≤2n

R(X, eq, ϕY, ϕeq),

via Corollary 4.1 one obtains

ρ∗(ξ,X) =
1

2n
(X − η(X)ξ)(c(τ5)(ξ)).

By Proposition 4.1 it follows that ρ∗(ξ,X) = 0, for any vector field X on a C1 ⊕
C2 ⊕ C3 ⊕ C5-manifold. Furthermore, by a long calculus, one proves that the skew-
symmetric part ρ∗alt of ρ∗ depends on Dτh, h ∈ {2, 3, 4, 5} , τh � τ5, h ∈ {1, 2} and
τh � τ4, h ∈ {1, 2, 3} .

Finally, we pay our attention to the interrelation between the results stated
in this section and the ones dealing with the curvature of a. H. manifolds. Let
(N, J ′ = ϕ|TN , g

′ = g|Tn×TN ) be a leaf of the distribution D associated with
a C1−5 ⊕ C12-manifold (M,ϕ, ξ, η, g). We use the symbol ′ (prime) to denote the
geometrical objects associated with N . For instance, Ω′ stands for the fundamental
form of N and for any i ∈ {1, 2, 3, 4} τ ′i denotes the Wi-component of ∇′Ω′. By
(3.1) one gets τ ′i(X,Y, Z) = τi(X,Y, Z), for any X,Y, Z tangent to N . Moreover,
since the minimal connection D on N induces the unitary connection D′ acting
as D′XY = ∇′XY − 1

2J
′((∇′XJ ′)Y ), for any vector fields X,Y, Z,W on N we have

(D′Xτ
′
i)(Y, Z,W ) = (DXτi)(Y,Z,W ), i ∈ {1, 2, 3, 4} . Furthermore, applying the

Gauss equation, Theorem 4.1 and the previous relations, one expresses the Kähler
defect of N as follows. Considering a local orthonormal frame {e1, ..., e2n} on N ,
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for any X,Y, Z,W ∈ X (N) one has:

R′(X,Y, Z,W ) = R′(X,Y, J ′Z, J ′W ) + Λ(X,Y, Z,W )

+(
c(τ5)(ξ)

2n
)2(π1(X,Y, Z,W )− π1(X,Y, ϕZ, ϕW ))

= −
∑

1≤i≤4

((D′Xτ
′
i)(Y, J

′Z,W )− (D′Y τ
′
i)(X, J

′Z,W ))

+
1

2

∑
1≤q≤2n

∑
1≤i,h≤4

(τ ′i(X,Y, J
′eq)− τ ′i(Y,X, J ′eq))τ ′h(eq, Z, J

′W ).

This is consistent with the expression of the Kähler defect associated with any a.
H. manifold given in [7]. Finally, we consider the algebraic curvature tensor fields
on N , denoted by C5, C6 + C7 + C8, acting as

C5(X,Y, Z,W ) =
1

8
(R′(X,Y, Z,W ) +R′(J ′X, J ′Y, J ′Z, J ′W )

−R′(J ′X,J ′Y,Z,W )−R′(X,Y, J ′Z, J ′W )

−R′(J ′X,Y, J ′Z,W )−R′((X, J ′Y, Z, J ′W )

−R′(J ′X,Y, Z, J ′W )−R′(X, J ′Y, J ′Z,W )),

(C6 + C7 + C8)(X,Y, Z,W ) =
1

2
(R′(X,Y, Z,W )−R′(J ′X,J ′Y, J ′Z, J ′W )).

In this case, for any X,Y ∈ X (N), we have:

C5(X,Y ) =
1

8
T2(X,Y ), (C6 + C7 + C8)(X,Y ) =

1

2
T3(X,Y ).

Therefore, applying Propositions 5.1, 5.2, one gets that C5 depends on D′τ ′2, τ
′
1 �

τ ′3, τ
′
2 � τ ′3, τ

′
2 � τ ′4, as well as C6 + C7 + C8 depends on D′τ ′i ,i ∈ {2, 3, 4} ,and

(τ ′3 + τ ′4)� τ ′i , i ∈ {1, 2, 3, 4}. This agrees with the analogous results proved in [7].
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