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Abstract

The idea that data lies in a non-linear space has brought up the concept of manifold learning
as a part of machine learning and such notion is one of the most important research fields
of today. The main idea here is to design the data as a submanifold model embedded in a
high-dimensional manifold. On the other hand, graph theory is one of the most important
research areas of applied mathematics and computer science. As a result, many researchers
investigate new methods for machine learning on graphs. From the above information, it is
seen that the theory of submanifolds and graph theory have become two important concepts
in machine learning and nowadays, the geometric deep learning research area using these
two concepts has emerged. By combining these two fields, this article aims to present
the relationships between submanifolds of complex manifolds with the help of graphs. In
this paper, we build some directed networks by identifying with submanifolds of almost
Hermitian manifolds. Moreover, we give some results and relations among holomorphic
submanifolds, totally real submanifolds, CR-submanifolds, slant submanifolds, semi-slant
submanifolds, hemi-slant submanifolds, and bi-slant submanifolds in almost Hermitian
manifolds in terms of graph theory.

1. Introduction

Graph theory can be used to model computer networks, social networks, communications networks, information networks,
software design, transportation networks, biological networks, etc. So this theory is applicable in many real-world mathematical
modelling. Therefore, this theory is the most active area of mathematical research.
On the other hand, one of the most active research areas of differential geometry is the submanifold theory of complex manifolds.
A submanifold of an almost Hermitian manifold is characterized by the behavior of tangent space of the submanifold of almost
Hermitian manifold under the complex structure of the ambient manifold. In this way, we have various submanifolds titled as
holomorphic, totally real, CR, slant, semi-slant, hemi-slant, bi-slant for almost Hermitian manifolds. In fact, the theory of
submanifolds of almost Hermitian manifolds is still the main active area of complex differential geometry, see: [1]-[8] for
recent results.
Manifold learning method is one of the most exciting developments in machine learning recently. Manifold learning has been
applied in utilizing semi-supervised learning [9]. Moreover, manifolds also play an important role in public health. Fiorini has
defined the Riemannian manifold, which is isomorphic to traditional information geometry Riemannian manifold, for noise
reduction in theoretical computerized tomography providing many competitive computational advantages over the traditional
Euclidean approach [10]. Besides, Monti et al. have introduced a general framework, geometric deep learning, enabling the
design of convolutional deep architectures on manifolds and graphs [11]. Moreover, Shahzad et al. have simplified the complex
chemical reaction by reducing it from a high dimension to the low by applying three well-established techniques based on
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manifolds [12], and they have investigated the different completion routes of reaction and overall reaction for dehydrogenation
of butane to further extend towards the surfaces using the slow invariant manifold comparison [13].
Also, Carriazo and Fernandez [14] have constructed a relation between slant surface and graph theory. Later, they have related
graph theory with vector spaces of even dimension [15, 16]. Their work was restricted to slant submanifolds. We believe that
further use of graph theory is possible in the theory of submanifolds.
By considering vast literature of graph theory and submanifold theory, one expects more relations between these research
areas. In this direction, the aim of this paper is to examine the relation among various submanifolds of almost Hermitian
manifolds by using graph theory. We note that our approach is different from the approach considered in [14] and [16]. They
only considered adapted frames of slant surface and they used them to characterize CR-submanifolds by means of trees. Later
they have extended this approach for weakly associated graphs. In this paper, we give relations between submanifolds of
Hermitian manifolds in terms of graph theory notions.

2. Preliminaries

In this section, we are going to recall certain notions used in graph theory to be used in this paper from [17]-[25]. For those
who are not familiar with the theory of graphs (especially for readers working with the submanifolds theory), we specifically
recall the basic definitions from graph theory.
A graph G = (V,E) consists of a nonempty set V of vertices and a set E of edges. Each edge has either one or two vertices
connected with it, called its endpoints. An edge connects its endpoints. Two distinct vertices u,v in a graph G are called
adjacent (or neighbors) in G if there is an edge e between u and v, where the edge e is called incident with the vertices u and v
and e connects u and v. The set of all neighbors of a vertex v of G = (V,E) is denoted by N(v). If A⊂V , we denote by N(A)
the set of all vertices in G that are adjacent to at least one vertex in A. The degree of a vertex in a graph is the number of edges
incident with it. The degree of the vertex v is denoted by d(v) and d(v) = |N(v)|. The graph theory can be divided into two
branches as undirected and directed graphs [24].
A directed graph (digraph) D is a finite nonempty set of objects called vertices together with a set of ordered pairs of distinct
vertices of D called directed edges or arcs. For a digraph D = (V,A), the vertex set of D is denoted by V (D) or simply V and
the arc set of D is denoted by A(D) or A. Each arc is an ordered pair of vertices. The arc (u,v) is said to start at u and end at
v. The in-degree of a vertex v, d−(v), is the number of edges which end at v. The out-degree of v, d+(v), is the number of
edges with v as their initial vertex. Also, for a vertex v ∈V (D), N−D (v) and N+

D (v) are respectively called out-neighbors and
in-neighbors where N−D (v) = {u|(u,v) ∈ A(D),u ∈V (D)} and N+

D (v) = {u|(v,u) ∈ A(D),u ∈V (D)} [19, 22, 24, 26].
In a digraph D = (V,A), given a pair of vertices u and v, whether or not there is a path from u to v in the digraph is useful to
know. The transitive closure of D is to construct a new digraph, D∗ = (V,A∗), such that there is an arc (u,v) in D∗ if and only
if there is a path from u to v in D [23].
A walk W = x1a1x2a2x3...xk−1ak−1xk is a sequence of vertices xi and arcs a j in D such that the tail and head of ai is xi and xi+1
for ∀i < k, respectively. The set of vertices and arcs of the walk W are denoted V (W ) and A(W ), respectively. W is denoted
without arcs as x1x2...xk and shortly (x1,xk)-walk. If x1 = xk then W is a closed walk, and otherwise w is an open walk. If W is
an open walk, the vertices x1 and xk are end-vertices and named as the initial and the terminal vertex of W , respectively. The
length of a walk is the number of its arcs and the walk W above has length k−1 [19].
A trail is a walk in which all arcs are distinct. W is called a path, if the vertices of a trail V (W )⊂V (D) are distinct. If the
vertices x1,x2, ...,xk−1 are distinct, k ≥ 3 and x1 = xk, then W is a cycle. The longest path in D is a path of maximum length in
D [19].

Proposition 2.1. [19] Let D be a digraph and let x,y be a pair of distinct vertices in D. If D has an (x,y)-walk W, then D
contains an (x,y)-path P such that A(P)⊆ A(W ). If D has a closed (x,x)−walk W, then D contains a cycle C through x such
that A(C)⊆ A(W ).

An oriented graph is a digraph with no cycle of length two [19]. For a digraph D, the underlying graph of D is the undirected
graph engendered utilizing all vertices in V (D), and superseding all of the arcs in A(D) with undirected edges [21].
If a digraph D has an (x,y)-walk, then the vertex y is reachable from the vertex x. Every vertex is reachable from itself
specifically. By Proposition 2.1, y is reachable from x if and only if D contains an (x,y)-path. If every pair of vertices in digraph
D is mutually reachable then D is strongly connected (or shortly strong). A strong component of digraph D is a maximal
induced strong subdigraph in D. If D1, ...,Dt are the strong components of D, then precisely V (D1)∪ ...∪V (Dt) =V (D). If
a digraph D is not strongly connected and if the underlying graph of D is connected, then D is said to be weakly connected
[19, 26].
Pseudograph is a graph having parallel edges and loops, and multigraph is a pseudograph with no loops. If every pair of
distinct vertices are adjacent in a multigraph then the multigraph is complete.
A multigraph H is called as p−partite if there is a partition into p sets V (H) =V1∪V2∪ ...∪Vp where Vi∩Vj = Ø for every
i 6= j. In particular, when p = 2 the graph is called a bipartite graph. A bipartite graph B is denoted by B = (V1,V2;E). If the
edge (x,y) is in p−partite multigraph H where all x ∈Vi, y ∈Vj for i 6= j then H is complete p−partite [19].
A digraph D = (V,A) is symmetric if arc (x,y) ∈ A implies arc (y,x) ∈ A. A matching M is an arc set having no common
end-vertices and loops in D. Also, the arcs of M are independent if M is a matching. If a matching M implicates the highest
number of arcs in D, then M is maximum. Besides, a maximum matching is perfect if it has |A(D)|

2 arcs. A set Q of vertices in
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a directed pseudograph H is independent if there are no arcs between vertices in Q. The independence number of H is the
size of the independent set having maximum cardinality in H. A coloring of a digraph H is a partition of V (H) into disjoint
independent sets. The minimum number of independent sets in the coloring of H is the chromatic number of H. A simple
directed graph is a digraph that has no multiple arcs or loops. If a digraph contains no cycle, then it is acyclic and called acyclic
digraph [19].
The eccentricity e(v) of a vertex v is the distance from v to the farthest vertex from itself. The radius (rad) of D is the minimum
eccentricity, and the diameter (diam) is the maximum eccentricity. Besides, a vertex v is central if e(v) = rad(D), and v is
peripheral if e(v) = diam(D) [27].
Let D = (V,A) be a digraph, V (D) = n and S ⊂ V (D). S is a dominating set of D if each vertex v ∈V (D)−S is dominated by
at least a vertex in S. A dominating set of D having the smallest cardinality is called the minimum dominating set of D. Also,
the cardinality of the minimum dominating set is called the domination number of D [28, 29].
Let r be a root vertex in D. A directed spanning tree T starting from r is a subdigraph of D such that the undirected form of T
is a tree and there is a directed unique (r,v)-path in T for each v ∈V (T )− r [19].
The vertex-integrity of a digraph D is defined by I(D) = min{|F |+m(D−F) : F ⊆ V (D)}, where m(D−F) indicates the
maximum order of a strong component of D−F . If I(D) = |F |+m(D−F) then F is called as an I-set of D. In addition, the
arc-integrity of a digraph D, shortly I

′
(D), is described as the minimum value of {|F |+m(D−F) : F ⊆ A(D)}. The set F is

called as an I
′
-set of D if I

′
(D) = |F |+m(D−F) [30].

Proposition 2.2. [30] If S is a subdigraph of D then I(S)≤ I(D) and I
′
(S)≤ I

′
(D).

3. Networks built among submanifolds of almost Hermitian manifolds

Let (M,g) be a Riemannian manifold. (M,g) is called an almost Hermitian manifold if there is a (1,1) tensor field on M
such that J2 =−I, where I is the identity map on the tangent bundle of M, and g(JX ,JY ) = g(X ,Y ) for vector fields X ,Y on
M. Moreover, if J is parallel with respect to any vector field X , then (M,J,g) is called a Kaehler manifold [31]. There are
various submanifolds of an almost Hermitian manifold based on the behavior of the tangent space of the submanifold at a
point under the almost complex structure J. Let N be a submanifold of an almost Hermitian manifold and TpN the tangent
space at a point p belongs to N. Then, if TpN is invariant with respect to Jp for any point p, then N is called holomorphic (or
complex) submanifold [31]. We denote the normal space at p by TpN⊥. A submanifold of an almost Hermitian manifold
is called an anti-invariant submanifold if JTpN ⊆ TpN⊥ [31]. As a generalization of holomorphic submanifold and anti-
invariant submanifolds, a submanifold M of a Kaehler manifold N is called CR-submanifold [32] if there are two orthogonal
complementary distributions D1 and D2 such that D1 is invariant with respect to J and D2 is anti-invariant with respect to J for
every point p ∈M. It is clear that if D1 = {0}, then a CR-submanifold becomes an anti-invariant submanifold. If D2 = {0},
then M becomes a holomorphic submanifold. Another generalization of holomorphic submanifolds and anti-anti-invariant
submanifolds is slant submanifolds. Let N be a submanifold of an almost Hermitian manifold M. The submanifold N is called
slant [33] if for each non-zero vector X tangent to N the angle θ(X) between JX and TpN is a constant, i.e, it does not depend
on the choice of p ∈M and X ∈ TpN. θ is called the slant angle. It is clear that if θ(X) = 0 then N becomes a holomorphic
submanifold. If θ(X) = π/2, N becomes an anti-invariant submanifold. We will use the v1, v2, v3, and v4 to represent the
submanifolds holomorphic, CR, anti-invariant and slant, respectively.
Digraph D1 = (V,A) has four vertices, V (D1) = {v1,v2,v3,v4}, and four arcs, A(D1) = {(v2,v1),(v2,v3),(v4,v1),(v4,v3)}
in Fig. 3.1. D1 has the maximum length of one as the longest path. D1 has 2 vertices (v2 and v4) which are not reachable.
Topological sort of D1 is v4− v2− v3− v1. rad(D1) = 1, the radius of D1 is v2→ v1. diam(D1) = 1, the diameter of D1 is the
same as the radius. Also, in D1, there is no center vertex, but two peripheral vertices such as v2 and v4.

v1 v2

v3v4

Figure 3.1: Digraph D1 built by submanifolds holomorphic, CR, anti-invariant and slant

Theorem 3.1. Let D1 be a digraph constructed by the four submanifolds holomorphic, CR, anti-invariant and slant considering
as the vertices v1, v2, v3, and v4, respectively. Then D1 holds the following properties:

1. D1 is a bipartite digraph as well as a complete bipartite digraph.
2. D1 has a perfect matching.
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3. The independence number of D1 is 2.
4. The chromatic number of D1 is 2.
5. D1 has no directed spanning tree.
6. The domination number of D1 is 2.

Proof. 1. There exists a partition V1 and V2 of V (D1) into two partite sets for the submanifolds in D1: V1 = {v1,v3} and
V2 = {v2,v4}. Owing to V (D1) =V1∪V2 and V1∩V2 = Ø, then D1 is a bipartite digraph.
Besides, for every submanifold, x ∈V1,y ∈V2, a connection from x to y (i.e. an arc (x,y)) is in D1. Therefore, D1 is a
complete bipartite digraph.

2. There is a matching M = {(v2,v1),(v4,v3)} ⊂ A(D1) in D1. Each element (arc or connection between two submanifolds)
in M is independent, i.e. no common vertices, and M is maximum. Also, M is perfect so that |M|= |A(D1)|

2 . It is obvious
that D1 has a perfect matching.

3. The subset Ṽ = {v2,v4} ⊂V (D1) is one of the independent sets having maximum cardinality and the size of maximum
independent submanifolds set is 2. This also means that there is no relation between submanifolds v2 and v4. Then, the
independence number of D1 is 2.

4. V1 = {v2,v4} and V2 = {v1,v3} are two subsets of V (D1). Vi(i = 1,2) are all independent sets providing the minimum
number of cardinality at the same time. Hence, the minimum number of independent sets of D1 is 2. Then, the chromatic
number of D1 is 2.

5. There is no root vertex where a subdigraph T of D1 contains a directed path from the root to any other vertex in V (D1).
Then, D1 has no directed spanning tree.

6. There is a subset Ṽ = {v2,v4} ⊂V (D1) that including minimum cardinality of vertices in D1. Considering this subset,
for each vertex v ∈ Ṽ and u ∈ V (D1)− Ṽ , (v,u) is an arc in D1. The domination number is 2, because of no smaller
cardinality of dominating sets in D1.

Corollary 3.2. In the submanifold network represented by D1 in Fig. 3.1, the submanifolds, CR (v2) and slant (v4), cannot be
derived by the other submanifolds, because the in-degree of these vertices (submanifolds) are zero in D1, d−(v2) = d−(v4) = 0.
In addition, whereas CR and slant subamnifolds cannot be mutually derived as between holomorphic (v1) and anti-invariant
(v3), holomorphic and anti-invariant submanifolds can be derived separately from CR and slant from N−D1

(v1) = N−D1
(v3) =

{v2,v4}.

We now recall the notion of hemi-slant submanifolds of an almost Hermitian manifold. Let M be an almost Hermitian manifold
and N a real submanifold of M. Then we say that N is a hemi-slant submanifold [34]-[37] if there exist two orthogonal
distributions D⊥ and Dθ on N such that

1. T N admits the orthogonal direct decomposition T N = D⊥⊕Dθ .
2. The distribution D⊥ is an anti-invariant distribution, i.e., JD⊥ ⊂ T M⊥.
3. The distribution Dθ is slant with slant angle θ .

It is easy to see that if D⊥ = {0}, N becomes a slant submanifold with a slant angle θ . If Dθ = {0}, then N becomes an
anti-invariant submanifold. Moreover if θ = 0, then N becomes a CR-submanifold. Furthermore, if D⊥ = {0} and θ = 0,
then N becomes a holomorphic submanifold. We denote hemi-slant submanifolds by v6.
Digraph D2 = (V,A) is an extension of D1, and has five vertices, V (D2) = {v1,v2,v3,v4,v6}, and seven arcs, A(D2) =
{(v2,v1),(v2,v3),(v4,v1),(v4,v3), (v6,v1),(v6,v2),(v6,v3)} in Fig. 3.2. D2 has the maximum length of two as the longest
path. It has 2 vertices (v4 and v6) which are not reachable. Topological sort of D2 is v6− v4− v2− v3− v1. rad(D2) = 1, the
radius of D2 is v2→ v1. diam(D2) = 1, the diameter of D2 is the same as the radius. Also, there is no center vertex but three
peripheral vertices such as v2, v4 and v6.

v1 v2

v3v4 v6

Figure 3.2: Digraph D2 built by submanifolds in D1 and the hemi-slant submanifold

Theorem 3.3. Let D2 be a digraph built by adding the hemi-slant submanifolds as vertex v6 to the D1. Then, D2 satisfies the
following properties:
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1. D2 is a three-partite digraph.
2. The maximum matching is 2.
3. The independence number is 2.
4. The chromatic number is 3.
5. D2 has no directed spanning tree.
6. The domination number is 2.

Proof. 1. There exists a partition V1 = {v1,v3}, V2 = {v2} and V3 = {v4,v6} of V (D2). These three subsets are three partite

sets because of following attributes: V (D2) =
3⋃

i=1
Vi and Vi∩Vj = Ø (i, j = 1,2,3 and i 6= j). Then, D2 is a three-partite

digraph.
2. There is an arc subset M = {(v6,v1),(v4,v3)} in D2, and |M|= 2. In M, there is no common vertices and loops, that is

M is a matching. Also, there is no arc subset having greater cardinality than M. Therefore, M is maximum matching in
D2.

3. The maximum independent set and independence number of D2 is the same as D1. See Theorem 3.1-iii.
4. The minimum number of disjoint independent sets of D2 is three: V1 = {v1,v3}, V2 = {v2} and V3 = {v4,v6}. Then,

chromatic number of D2 is 3.
5. No root vertex that contains a directed path from the root to any other vertex in V (D2). Then, D2 has no directed

spanning tree.
6. There is a subset Ṽ = {v4,v6} ⊂V (D2). Considering this subset, that including the minimum cardinality of vertices in

D2 as a dominating set, for each vertex v ∈ Ṽ and u ∈V (D2)−Ṽ , (v,u) is an arc in D2. Clearly, the domination number
is 2.

Corollary 3.4. In the submanifold network represented by D2 in Fig. 3.2, the submanifolds, slant (v4) and hemi-slant (v6),
cannot be derived by the other submanifolds, because d−(v4) = d−(v6) = 0 in D2. Also, holomorphic (v1) and anti-invariant
(v3) submanifolds can be derived separately by CR (v2), slant and hemi-slant since N−D2

(v1) = N−D2
(v3) = {v2,v4,v6}.

To remind the notion of semi-slant submanifolds of an almost Hermitian manifold, let M be an almost Hermitian manifold and
N a real submanifold of M. Then we say that N is a semi-slant submanifold [38] if there exist two orthogonal distributions D
and Dθ on N such that

1. T N admits the orthogonal direct decomposition T N = D⊕Dθ .
2. The distribution D is an invariant distribution, i.e., J(D) = D .
3. The distribution Dθ is slant with slant angle θ .

It is easy to see that if D = {0}, N becomes a slant submanifold with a slant angle θ . If Dθ = {0}, then N becomes a
holomorphic submanifold. Moreover if θ = π

2 , then N becomes a CR-submanifold. Furthermore, if D = {0} and θ = π

2 , then
N becomes an anti-invariant submanifold. We denote semi-slant submanifolds by v5.
Digraph D3 = (V,A) is another extension of D1, and has five vertices, V (D3) = {v1,v2,v3,v4,v5}, and seven arcs, A(D3) =
{(v2,v1),(v2,v3),(v4,v1),(v4,v3),(v5,v2), (v5,v3),(v5,v4)} in Fig. 3.3. D3 has the maximum length of two as the longest path.
It has a vertex (v5) which is not reachable. Using transitive closure, D3 has only one new direct connection such as v5→ v1.
Topological sort of D3 is v5− v4− v2− v3− v1. rad(D3) = 1, the radius of D3 is v2→ v1. diam(D3) = 2, the diameter of D3
is v5→ v2→ v1. Also, in D3, there are two center vertices as v2 and v4, and one peripheral vertex as v5.

v1 v2

v3v4

v5

Figure 3.3: Digraph D3 built by submanifolds in D1 and the semi-slant submanifold

Theorem 3.5. Let D3 be a digraph created by adding the semi-slant submanifolds as vertex v5 to the D1. Then, D3 holds the
followings:

1. D3 is a three-partite digraph.
2. The maximum matching is 2.
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3. The independence number is 2.
4. The chromatic number is 3.
5. D3 has a directed spanning tree.
6. The domination number is 2.

Proof. 1. There exists a partition V1 = {v1,v3}, V2 = {v2,v4} and V3 = {v5} of V (D3) as three partite sets in D3, and

the subsets provide following properties: V (D3) =
3⋃

i=1
Vi and Vi∩Vj = Ø (i, j = 1,2,3 and i 6= j). In that case, D3 is a

three-partite digraph.
2. There is an arc subset M = {(v2,v1),(v4,v3)} in D3, and |M|= 2. Because of no common vertices and no loops in M,

M is a matching. Furthermore, M has the maximum cardinality so that M is the maximum matching in D3.
3. The maximum independent set and independence number of D3 is the same as D1. See Theorem 3.1-iii.
4. The minimum number of disjoint independent sets of D3 is 3: V1 = {v1,v3}, V2 = {v2,v4} and V3 = {v5}. It follows

that the chromatic number of D3 is 3.
5. D3 has a unique directed spanning tree of length 4 and rooted at v5 such as in Fig. 3.4. It also means that there is a

transformation from submanifolds v5 to all other submanifolds in D3.

v1 v2

v3v4

v5

Figure 3.4: Directed spanning tree in D3

6. There is a subset Ṽ = {v4,v5} ⊂V (D3). According to this subset, that having the minimum cardinality, and for each
vertex v ∈ Ṽ and u ∈V (D3)−Ṽ , (v,u) is an arc in D3, the domination number is 2.

Corollary 3.6. In the submanifold network represented by D3 in Fig. 3.3, while no submanifolds can be transformed to
semi-slant (v5) submanifold since N−D3

(v5) = /0, all other submanifolds (holomorphic (v1), CR (v2), anti-invariant (v3) and
slant (v4)) can be obtained from semi-slant submanifold because of existence of a directed spanning tree with a root vertex v5
(Fig. 3.4).

Digraph D4 = (V,A) has six vertices, V (D4) = {v1,v2,v3,v4,v5,v6}, and 10 arcs, A(D4) = {(v2,v1),(v2,v3),(v4,v1),(v4,v3),
(v5,v2),(v5,v3), (v5,v4),(v6,v1),(v6,v2),(v6,v3)} in Fig. 3.5. D4 has the maximum length of two as the longest path. It has 2
vertices (v5 and v6) which are not reachable. Using transitive closure, D4 has only one new direct connection such as v5→ v1.
The topological sort of D4 is v6−v5−v4−v2−v3−v1. rad(D4) = 1, the radius of D4 is v2→ v1. diam(D4) = 2, the diameter
of D4 is v5→ v2→ v1. Also, in D4, there are three center vertices as v2, v4 and v6, and one peripheral vertex as v5.

v1 v2

v3v4

v5

v6

Figure 3.5: Digraph D4 built by submanifolds in D3 and the hemi-slant submanifold

Theorem 3.7. Let D4 be a digraph obtained by adding the hemi-slant submanifolds as vertex v6 to the D3. Then, D4 provides
the following properties:

1. D4 is a three-partite digraph.
2. D4 has a perfect matching.
3. The independence number is 2.
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4. The chromatic number is 3.
5. D4 has no directed spanning tree.
6. The domination number is 2.

Proof. 1. There exists a partition V1 = {v1,v3}, V2 = {v2,v4} and V3 = {v5,v6} of V (D4) as three subsets, and these

subsets provide that V (D4) =
3⋃

i=1
Vi and Vi∩Vj = Ø (i, j = 1,2,3 and i 6= j). Under these conditions, D4 is a three-partite

digraph.
2. There is an arc subset M = {(v2,v1),(v5,v4),(v6,v3)} in D4, and |M|= 3. On conditions that no common vertices and

no loops in M and |M|= |A(D4)|
2 , M is perfect matching that’s why D4 has a matching also perfect.

3. The maximum independent set and the independence number of D4 is the same as D1. See Theorem 3.1-iii.
4. The minimum number of disjoint independent sets of D4 is 3: V1 = {v1,v3}, V2 = {v2,v4} and V3 = {v5,v6}. Then, the

chromatic number of D4 is 3.
5. No root vertex that contains a directed path from the root to any other vertex in V (D4). Then, D4 has no directed

spanning tree.
6. There is a subset Ṽ = {v5,v6} ⊂V (D4). According to this subset, that having the minimum cardinality, and for each

vertex v ∈ Ṽ and u ∈V (D4)−Ṽ , (v,u) is an arc in D4 so that the domination number is 2.

Corollary 3.8. In the submanifold network represented by D4 in Fig. 3.5, semi-slant (v5) and hemi-slant (v6) submanifolds
cannot be obtained by any other submanifolds because d−(v5) = d−(v6) = 0. Besides, no submanifolds can be derived from
holomorphic (v1) and anti-invariant (v3) submanifolds since N−D4

(v1) = N−D4
(v3) = /0.

Let M be an almost Hermitian manifold and N a real submanifold of M. Then we say that N is a bi-slant submanifold [34] if
there exist two orthogonal distributions Dθ1 and Dθ2 on N such that

1. T N admits the orthogonal direct decomposition T N = Dθ1 ⊕Dθ2 .
2. The distributions Dθ1 and Dθ2 are slant distributions with slant angles θ1 and θ2.

It is easy to see that if Dθ1 = {0} (or Dθ2 = {0}), N becomes a slant submanifold with a slant angle θ1. If θ = θ1 = θ2 = {0},
then N becomes a holomorphic submanifold. If θ = θ1 = θ2 =

π

2 , then N becomes an anti-invariant submanifold. Moreover,
if θ1 =

π

2 and θ2 = 0, then N becomes a CR-submanifold. Furthermore, θ1 =
π

2 and θ1 = 0, then N becomes a hemi-slant
submanifold and semi-slant submanifold, respectively. We denote bi-slant submanifolds by v7.
Digraph D5 = (V,A) has seven vertices, V (D5) = {v1,v2,v3,v4,v5,v6,v7}, and 12 arcs, A(D4) = {(v2,v1),(v2,v3),(v4,v1),
(v4,v3),(v5,v2),(v5,v3),(v5,v4),(v6,v1),(v6,v2),(v6,v3),(v7,v5),(v7,v6)} in Fig. 3.6. D5 has the maximum length of three as
the longest path. It has a vertex (v7) which is not reachable. Using transitive closure, D5 has five new direct connections such
as v5→ v1, v7→ v1, v7→ v2, v7→ v3 and v7→ v4. Topological sort of D5 is v7− v6− v5− v4− v2− v3− v1. rad(D5) = 1,
the radius of D5 is v2→ v1. diam(D5) = 2, the diameter of D5 is v5→ v2→ v1. Also, in D5, there are three center vertices as
v2, v4 and v6, and two peripheral vertices as v5 and v7.

v1 v2

v3v4

v5

v6

v7

Figure 3.6: Digraph D5 built by submanifolds in D4 and the bi-slant submanifold

Theorem 3.9. Let D5 be a digraph constructed by adding the bi-slant submanifolds as vertex v7 to the D4. Then, D5 holds the
followings:

1. D5 is a three-partite digraph.
2. The maximum matching is 3.
3. The independence number is 3.
4. The chromatic number is 3.
5. D5 has a directed spanning tree.
6. The domination number is 3.



28 Fundamental Journal of Mathematics and Applications

Proof. 1. There is a partition V1 = {v1,v3}, V2 = {v2,v4,v7} and V3 = {v5,v6} of V (D5) as three subsets, and these subsets

support that V (D4) =
3⋃

i=1
Vi and Vi ∩Vj = Ø (i, j = 1,2,3 and i 6= j). Then, D5, containing the subsets, is actually a

three-partite digraph.
2. M = {(v2,v1),(v5,v4),(v6,v3)} is an arc subset in D5, and |M| = 3. According to this, M, that includes no common

vertices and no loops, is a matching. Since no other subset greater cardinality than M, D5 has a maximum matching
called M.

3. The subset Ṽ = {v2,v4,v7} is an independent set having maximum cardinality. It also means that there is no direct
relationship between any two elements, i.e. submanifolds, in Ṽ . Then, the independence number of D5 is 3, because
|Ṽ |= 3.

4. The minimum number of disjoint independent sets of D5 is 3: V1 = {v1,v3}, V2 = {v2,v4,v7} and V3 = {v5,v6}.
According to that, three different colors are needed to coloring D5 and that’s why the chromatic number of D5 is 3.

5. D5 has a directed spanning tree of length 6 and root at v7 such as in Fig. 3.7. It also means that there is a transformation
from submanifolds v7 to all other submanifolds in D5 at most two-step.

v1 v2

v3v4

v5

v6

v7

Figure 3.7: A directed spanning tree in D5

6. There is a subset Ṽ = {v5,v6,v7} ⊂V (D5). According to this subset, that having the minimum cardinality, and for each
vertex v ∈ Ṽ and u ∈V (D5)−Ṽ , (v,u) is an arc in D5. The domination number is 3.

Corollary 3.10. In the submanifold network represented by D5 in Fig. 3.6, all other submanifolds can be derivated from
bi-slant (v7) submanifold since v7 is the root vertex of the directed spanning tree of D5 and N+

D5
(v7) = {v5,v6} in Fig. 3.7.

Also, no submanifolds can be transformed to bi-slant because N−D5
(v7) = /0.

Digraph D6 = (V,A) has also seven vertices as well as D5, V (D6) = {v1,v2,v3,v4,v5,v6,v7}, and 12 arcs, A(D6) = {(v2,v1),
(v2,v3),(v4,v1),(v4,v3),(v5,v1), (v5,v2),(v5,v3),(v5,v4),(v6,v1),(v6,v2), (v6,v3),(v6,v4),(v7,v5),(v7,v6)} in Fig. 3.8. D6
has the maximum length of three as the longest path. It has a vertex (v7) which is not reachable. Using transitive closure, D6
has four new direct connections such as v7→ v1, v7→ v2, v7→ v3 and v7→ v4. Topological sort of D6 is v7− v6− v5− v4−
v2− v3− v1. rad(D6) = 1, the radius of D6 is v2→ v1. diam(D6) = 2, the diameter of D6 is v7→ v5→ v1. Also, in D6, there
are four center vertices as v2, v4, v5 and v6, and one peripheral vertex as v7.

v1

v2

v3

v4

v5

v6

v7

Figure 3.8: Digraph D6 built by D5 with arcs (v5,v1) and (v6,v4)

Theorem 3.11. Let D6 be a digraph created by adding two more relations from semi-slant to holomorphic and from hemi-slant
to slant as arcs to the D5. Then, D6 satisfies the following properties:

1. D6 is a three-partite digraph.
2. The maximum matching is 3.
3. The independence number is 3.
4. The chromatic number is 3.
5. D6 contains a directed spanning tree.
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6. The domination number is 2.

Proof. The properties i, ii, iii and iv are clear from Theorem 3.9.

v. D6 has a directed spanning tree having the same structure as in Fig. 3.7 (see Theorem 3.9-v).
vi. There is a subset Ṽ = {v5,v7} ⊂V (D6). According to that, the subset has the minimum cardinality while dominating all

other vertices, and for each vertex v ∈ Ṽ and u ∈V (D6)−Ṽ , (v,u) is an arc in D6. The domination number is 2.

Corollary 3.12. In the most comprehensive submanifold network represented by D6 in Fig. 3.7, just two submanifolds,
holomorphic (v1) and anti-invariant (v3), are not generative since d+(v1) = d+(v3) = 0. Besides, bi-slant (v7) is the most
productive submanifold owing to transforming to all other submanifolds.

Using the seven submanifolds, named as holomorphic, CR, anti-invariant, slant hemi-slant, semi-slant and bi-slant, it is
constructed six digraphs, called D1,D2,D3,D4,D5 and D6, whose vertices are submanifolds and arcs are connections among
submanifolds from one to another.

Theorem 3.13. Let D ∈ {D1,D2,D3,D4,D5,D6} be a digraph. D provides the following properties:

1. Simple directed graph.
2. Directed acyclic graph.
3. Weakly connected.

Proof. 1. In digraph D, there is no more than one relationship between any two submanifolds and no transformations from
a submanifold to itself. According to that, D is a simple directed graph.

2. Given a transition list among submanifolds such as v1v2...vk, meaning that v1 is the source submanifold and vk is the
sink submanifold. Because D doesn’t have any transition list including the same submanifold is both source and also
sink, D is acyclic. That’s why D is a directed acyclic digraph.

3. D has one pair of submanifolds as a relation at least that they can not mutually be transformed from one to another
submanifold. Hence, D is not strongly connected. However, when D, that considered as without direction of transfor-
mations, is connected, named connectedness of underlying graph because there are no isolated submanifolds. For this
reason, D is weakly connected.

Corollary 3.14. Among all digraphs D1, D2, D3, D4, D5, and D6, the digraph D6 has

• the maximum vertex-integrity, and
• the maximum edge-integrity

as well as the maximum size by Proposition 2.2.

Example 3.15. Let H be a directed graph having vertex set V (H) = {u1,u2,u3,u4,u5,u6,u7} and arc set A(H) = {(u1,u2),
(u1,u4),(u1,u5), (u2,u4),(u2,u7),(u3,u2),(u3,u4),(u3,u7),(u5,u4),(u5,u7),(u6,u3),(u6,u7)} as modeled in Fig. 3.9. Sup-
pose that H ′ indicates an induced subgraph of H when we consider as V (H ′) =U where U = {u1,u2,u3,u4,u5,u7} is a vertex
subset of V (H). Accordingly, we attain that H ′ is isomorphic to the network created by submanifolds called as holomorphic,
CR, anti-invariant, slant, hemi-slant and semi-slant. Thus, H ′ provides the same properties as D4. This means that H contains
bounds for some parameters such as independence, domination and chromatic numbers.

u1 u2

u3u4

u5

u6

u7

Figure 3.9: A sample network
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4. Conclusion

Manifold learning plays an important role in analyzing data lying on a non-linear space as a part of machine learning. Moreover,
the geometric deep learning yields using the concepts of manifolds and graphs together in building convolutional deep structures.
In this paper, using holomorphic submanifolds, anti-invariant submanifolds, CR-submanifolds, slant submanifolds, semi-slant
submanifolds, hemi-slant submanifolds and bi-slant submanifolds in almost Hermitian manifolds, it is given relations among
them, six different digraphs are created as a network of these submanifolds, and main properties of them are first examined in
terms of digraphs. Accordingly, some directed networks by identifying with submanifolds of almost Hermitian manifolds are
established. We note that there is a much wider class that includes slant submanifolds. This class was first defined in [6] by
Etayo as quasi-slant submanifolds. Later, these submanifolds were called pointwise slant submanifolds in [7] by Chen and
Garay. Although we have excluded such submanifolds in this article, our next research will be to examine the connections
between these submanifolds and graph theory.
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