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ABSTRACT 

In this research, some thermal and physical properties of unsaturated 

polyester (UP) nanocomposite produced using nanoparticles were 

investigated. Fumed Silica (FS), silicon carbide (SiC) and graphene 

nanoplate (GNP) were used as nanoparticles. The synthesized polyester 

nanocomposites were reinforced with 0.2%, 0.4%, 0.6%, 0.8% and 1.0% 

nanoparticles by mass. GNP and SiC nanoparticle reinforcements 

increased the thermal conductivity coefficient of the produced polyester 

nanocomposite by approximately 64% and 39%, respectively, while FS 

reinforcement decreased it by 12.5%. SiC nanoparticle increased the Shore 

D hardness of the polyester nanocomposite by 5.26% in the sample with 

0.1% reinforcement. This ratio was 3.85% for 0.1% supplemented FS and 

1.9% for 0.4% GNP. In addition, SiC and GNP reinforcement increased 

the density of the polyester nanocomposite, while FS reinforcement 

decreased the density of the composite. The thermal stability order of the 

samples was determined as FS, GNP and SiC reinforced nanocomposites. 

It was determined that the sample with the lowest thermal stability was UP. 

According to the results obtained in thermal stability experiments, mass 

losses of reinforced nanocomposites during thermal decomposition were 

compared. The thermal decomposition behavior of polyester 

nanocomposites was modeled by the kinetic equation. Experimental and 

theoretical model results were compared and correlation numbers were 

calculated by statistical analysis using nonlinear regression. 

ÖZ 

Bu araştırmada, nanopartiküller kullanılarak üretilen doymamış polyester 

(UP) nanokompozitinin bazı termal ve fiziksel özellikleri araştırılmıştır. 

Nanopartikül olarak Füme Silika (FS), silisyum karbür (SiC) ve grafen 

nanoplate (GNP) kullanılmıştır. Sentezlenen polyester nanokompozitlere 
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kütlece %0.2, %0.4, %0.6, %0.8 ve %1.0 oranlarında nanopartikül takviye 

edilmiştir. Üretilen polyester nanokompozitin ısıl iletkenlik katsayısını 

GNP ve SiC nanopartikül takviyeleri sırasıyla yaklaşık %64 ve %39 

oranında arttırırken, FS takviyesi  %12.5 oranında azaltmıştır. SiC 

nanopartikül, polyester nanokompozitin Shore D sertliğini % 0.1 takviye 

edildiği numunede %5.26 oranında arttırmıştır. Bu oran % 0.1 takviyeli FS 

için %3.85 ve %0.4 GNP için %1.9 olmuştur. Ayrıca, SiC ve GNP 

takviyesi polyester nanokompozitin yoğunluğunu arttırırken, FS takviyesi 

kompozitin yoğunluğunu azaltmıştır. Numunelerin termal kararlılık 

sıralaması FS, GNP ve SiC takviyeli nanokompozitler olarak tespit 

edilmiştir. En düşük termal kararlılığa sahip numunenin UP olduğu 

belirlenmiştir. Termal kararlılık deneylerinde elde edilen sonuçlara göre, 

güçlendirilmiş nanokompozitlerin termal bozunma sırasındaki kütle 

kayıpları karşılaştırılmıştır. Polyester nanokompozitlerin termal bozunma 

davranışı kinetik denklem ile modellenmiştir. Deneysel ve teorik model 

sonuçları karşılaştırıldı ve doğrusal olmayan regresyon kullanılarak 

istatistiksel analiz ile korelasyon sayıları hesaplanmıştır. 
 

1. INTRODUCTION 

Polymeric composites made with unsaturated polyesters have become very common and 

popular in recent years. Such composites, which can be applied in the laboratory environment and are 

easier to process mold, and cure, can be given different properties suitable for them. Especially with 

nanoparticles, polyester composites can be developed according to the purpose of use. 

Many studies have been carried out in the literature to increase the thermal stability of polyester 

composites. Inorganic additives such as ammonium polyphosphate impart non-flammability to 

unsaturated polyester and increase its thermal stability [1-5]. When expandable graphite, silica, 

melamine, some phosphorus, and halogen compounds are used as fillers, both thermal and mechanical 

properties of polyester have been improved [6-8]. Also, the use of metal particles such as aluminum, 

copper, zinc, stainless steel, silver, gold, and nickel in the polymer matrix gives the polyester composite 

flame retardant properties [9, 10]. 

Physical decomposition in composites obtained from unsaturated polyester continues up to 120 

°C. If there are hydrated compounds in the composite structure, the removal of hydrated water can reach 

160 °C. At higher temperatures, volatile chemical compounds may be removed from the composite 

structure. Chemically, the thermal decomposition phase starts after a temperature of about 260 °C and 

occurs very quickly. Inorganic impurities remaining in the polyester composite without decomposition 

can remain in the composition of the waste ash above 700 °C [11-13]. 

Nanoparticles have started to be used thanks to the technological developments that have 

developed in addition to micro-structure additives and fillers. It has been determined that nanoparticles 

such as carbon nanotubes and graphene strengthen the mechanical and physical properties of the 

polyester composite. In the researches, carbon nanotube and graphene reinforcement gave good results 
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in mechanical tests of the polyester nanocomposite, even at low mass ratios. Also, nanoparticles such as 

nano-silica and glass fiber improve the mechanical properties of the polyester composite [14-16]. 

In other studies, on unsaturated polyester, thermal decomposition kinetics of the reinforced 

composites have been investigated. Using the model equations in the literature, results can be evaluated 

with thermogravimetric analysis for the polyester composites [17-19]. 

When the studies in the literature are examined, although there are studies in which GNP, SiC 

and FS nanoparticles are used separately, there is no study in which all three are used together. In this 

study, GNP, SiC, and FS were used as reinforced nanoparticles in unsaturated polyester. The effects of 

these nanoparticles on the thermal conductivity coefficient, Shore D hardness, density, and thermal 

stability of the produced composite have been evaluated. The reinforcement of these nano-sized particles 

can improve some desired properties of the polyester composite. 

 

2. MATERIAL AND METHOD 

2.1 Materials 

Orthophthalic based unsaturated polyester resin (UP), methyl ethyl ketone peroxide (MEKP), 

and cobalt octoate (Co. Oc.) used in this study were supplied from Turkuaz Company. Graphene (GNP) 

is 99.9% pure, 3nm thick, 1.5 µm in diameter, 2267 kg/m3 density, and has a surface area of 800 m2/g. 

Fumed Silica (Aerosil 300) has a purity of 99.8%, a surface area of 300 m2/g, a tamped density of 55 

kg/m3, and a particle diameter of 7 nm. Silicon Carbide (SiC) has 99.5% purity, 50-70 nm size, 3320 

kg/m3 density, and 40-85 m2/g surface area. All nanoparticles have been supplied from Nanography. 

 

2.2 Methods 

Table 1 shows the utilization rates of nanoparticles in the polyester nanocomposite, and Figure 

1 shows the production scheme of the nanocomposite obtained with synthesized unsaturated polyester. 

Free radical decomposition can occur rapidly by cobalt ions by redox reactions at low temperatures, and 

free radicals can be formed. 

ROOH+Co2+L2 □(→┴k_1  ) RO● + OH− + Co3+L3                                                                                  (1) 

ROOH+Co3+L3 □(→┴k_2  ) [ROOHCo3+L3] →┴k_3  ROO● + H+ + Co2+L2                         (2) 

Free radicals (RO● and ROO●) and octoate compound (L) are seen in chemical reactions (1) 

and (2) [20]. 
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Table 1. Experimental study plan of nanoparticles 

Sample No Nanoparticle Ratio (wt.%) UP (wt.%) MEKP (wt.%) Co. Oc. (wt.%) 

1 0.0 98.4 1.2 0.4 

2 0.2 98.2 1.2 0.4 

3 0.4 98.0 1.2 0.4 

4 0.6 97.8 1.2 0.4 

5 0.8 97.6 1.2 0.4 

6 1.0 97.4 1.2 0.4 

 

 

Figure 1. Experimental working scheme of the produced polyester nanocomposite  

 

2.3 Thermal Decomposition Kinetic 

In the equations below, the conversion rate (α) is expressed as initial mass (Mi), final residual 

mass (Mf), and time-varying mass (Mt). The thermal degradation of polyester nanocomposite has been 

investigated by chemical reaction kinetics. Here, reaction rate constants (k1, and k2), degree of chemical 

reaction (m, and n), rate of temperature increase (β), and conversion function (f(α)) are used in the 

equations. The change of conversion with time in a chemical reaction is shown in Eq. 2, and the change 

of conversion with temperature is shown in Eq. 5. The thermal degradation kinetics of the produced 

polyester nanocomposites have been modeled according to Equation 6 by performing the necessary 

integration processes after the equations are arranged. The model equation of the conversion rate (α) 

obtained by making the necessary simplifications, depending on the temperature (T), K, k1, and k2 are 

given in Eq. 7. 
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The thermal decomposition behavior of the polyester nanocomposite has been re-improved with 

the help of kinetic equations in the literature [21-30]. 

 

3. RESULTS AND DISCUSSIONS 

When the results obtained in the experimental studies have been evaluated, it is determined that 

the thermal conductivity coefficient of the polyester nanocomposite rose as the GNP ratio increased. 

When Figure 2 has been examined in detail, it is seen that the thermal conductivity coefficient of the 

obtained polyester nanocomposite is increased by GNP and SiC nanoparticles, while FS decreased it. In 

other words, FS nanoparticles improved the insulation property of the produced polyester 

nanocomposite. 

In Figure 3, although the Shore D hardness of GNP reinforced polyester nanocomposite tends 

to increase, it does not change much at high rates. It is seen that the Shore D hardness increases as the 

SiC nanoparticle ratio (wt%) rise in the polyester nanocomposite. It has been determined that polyester 

nanocomposite FS reinforcement also increased Shore D hardness. 

In Figure 4, the effect of the nanoparticle ratio in the polyester on the density of the 

nanocomposite has been evaluated. Although the density of polyester nanocomposite reinforced with 

SiC and GNP nanoparticles increased, the addition of FS filler decreased the density of the composite. 
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Figure 2. Effect of GNP, SiC, and FS reinforcement on thermal conductivity of the polyester nanocomposite 
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Figure 3. Effect of GNP, SiC, and FS reinforcement on Shore D hardness of the polyester nanocomposite 
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Figure 4.  Effect of GNP, SiC, and FS reinforcement on the density of the polyester nanocomposite 

In Figure 5, the thermal degradation behavior of the nanoparticles has been compared with the 

temperature increase. The fastest thermal decomposition is observed in pure unsaturated polyester, and 

the slowest thermal degradation is seen with 1 wt% FS reinforced polyester nanocomposite. The thermal 

stability of 1% GNP reinforced polyester nanocomposite is found to be better than 1% SiC reinforced 

nanocomposite. 
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Figure 5.  Effect of GNP, SiC, and FS reinforcement on thermal decomposition of the polyester nanocomposite 
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Thermal decomposition experiments of the polyester nanocomposite have been carried out in 

the PID-controlled system with a temperature increase of 10 K/min. The thermal degradation behavior 

of polyester nanocomposite has been evaluated with conventional thermogravimetric analysis. The mass 

losses of polyester nanocomposites shown in Figure 5 are applied to the kinetic model in Equation 7. 

The correlation coefficients calculated with the help of statistical analyzes are given in Table 2. In Table 

3, the calculated root mean square error (RMSE), a sum of squares total (SST), chi-square (χ2), and 

correlation coefficients (R2) values are expressed. The compatibility between the experimental data and 

the theoretical model has been determined by the minimum error functions and the maximum R2 values. 

Table 2. Coefficients of the kinetic model found in Equation 7  

Experiments k1 k2 (1/oC) m n K 

Pure UP -1.51911 0.00519 -0.61686 0.02694 1.17309 

1 wt% SiC -6.39970 0.02136 -0.57548 0.60183 5.32471 

1 wt% GNP -4.85423 0.01625 -0.53986 0.62924 5.45855 

1 wt% FS -7.15376 0.02409 -0.49685 0.60897 6.82943 

 

Table 3. Evaluation of the kinetic model with statistical analysis 

Experiments RMSE SST R2 χ2 

Pure UP 0.03802 0.64332 0.97581 0.08265 

1 wt% SiC 0.06033 0.72420 0.96298 0.08160 

1 wt% GNP 0.01521 0.58075 0.98114 0.07374 

1 wt% FS 0.02901 0.59884 0.97760 0.08027 

 

4. CONCLUSION 

When the experimental results of the produced polyester nanocomposites have been evaluated: 

 (i) FS reinforced composite had the highest thermal stability, while pure polyester 

nanocomposite (UP) had the lowest. 

(ii) The lowest density and thermal conductivity coefficient have been obtained in FS added 

polyester nanocomposite [31-33]. The thermal conductivity coefficient of polyester nanocomposite was 

lowered by 12.5% due to FS reinforcement. 

(iii) With SiC filler, polyester nanocomposite has got maximum Shore D hardness [34-36]. SiC 

nanoparticles increased the Shore D hardness of the polyester nanocomposite by 5.26% in the sample 

with 0.1% reinforcement. This ratio was 3.85% for 0.1% supplemented FS and 1.9% for 0.4% GNP. 

(v) Obtained with the highest density polyester nanocomposite SiC reinforcement. 

(iv) Graphene nanoparticle (GNP) increased the thermal conductivity coefficient of polyester 

nanocomposite the most. The thermal conductivity coefficient of the generated polyester nanocomposite 
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was improved by roughly 64% and 39%, respectively, with the addition of GNP and SiC nanoparticle 

reinforcements. 

Hence, FS nanoparticles should be preferred to produce a composite with low density, good 

insulating properties, and high thermal stability. SiC nanoparticles may be used to obtain polyester 

nanocomposites with high density and hardness. GNP nanoparticles can be preferred to synthesize 

polyester nanocomposites with high thermal conductivity. 
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