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1. Introduction 

Because of its low cost, continuous and global solution, GPS-

based positioning is widely used in almost every transportation 

systems. Although in recent years different techniques have been 

used to improve positioning accuracy [1-6], they are not sufficient 

enough to support operations that require high accuracy [7-14]. 

Due to enhancement of received signals from satellites, a better 

positioning can be obtained by multiple use of various Global Nav-

igation Satellite Systems (GNSS) (e.g., GPS and GLONASS) [15-

17]. Through the use of multiple GNSSs, an elimination of residual 

range errors on both L1 and L2 ray paths can be made which pro-

vides more precise correction for the signal delay and phase ad-

vance induced by ionosphere [18]. However, new transportation 

applications such as automatic guide and control systems for driv-

erless vehicles will require a higher level of positioning accuracy 

[19-20]. Because of this, precise positioning will play an important 

role in the functionality of future transportation systems. 

The importance of precise positioning will be emphasized in ur-

ban area where a high level of positioning accuracy will be needed 

for proper integration. Unfortunately, the dense urban environment 

causes an inconsistency in reception of the GPSs’ signals [7], [21-

22]. Because of environmental interferences the performance of 

the GPS is significantly decreased, which reduces the chance of a 

successful integration [23-24]. Obstacles in urban areas degrade 

the amount of signals from satellites and, thus, limit the optimal 

reachable performances significantly [25]. Additional considera-

tions regarding signal interference are reflections. Reflections 

cause a certain amount of delay to signal. These delays can cause 

additional positioning errors which are result of non-Gaussian dis-

tribution of the pseudorange error [25-26]. Recent studies demon-

strate a wide range of methods to improve positioning accuracy as 

shown in Table 1. With the use of techniques and tools such as 

Inertial Navigation System (INS), In-Vehicle Sensors (IVS), Cam-

era, Distance Measuring Instruments (DMI), LiDAR, Statistical 

Methods (SM), and Image Processing (IP), researchers attempt to 

increase precision of vehicle positioning. In [1], the authors pro-

pose the adaptive GPS/INS integration method to reduce INS-

related errors and achieve more consistent positioning. Developing 

two new filtering techniques, they estimate the covariances of GPS 

and INS measurements separately with these filters. A new two-

stage method to improve positioning accuracy is given in [2]. 

Positioning accuracy is becoming more and more important as autonomous vehicle 
technology develops. The focus of this paper is on an onboard smart mobile device’s fea-
ture to improve positioning accuracy, based on experimentally acquired GPS and odome-
ter sensor data. A simplificative odometer reading based approach is applied instead of 
using more advanced smart device sensors (e.g., accelerometer, gyroscope). Numerous 
driving tests were performed and analyzed to collect sufficient dynamic travel data. Trav-
eled distances between two consecutive positions from GPS data are computed and corre-
lated with a vehicle’s speed profile between the same two positions. To calculate distance 
more precisely speed values from GPS are corrected with odometer sensor reading. The 
results revealed an average increase in accuracy of 20%. The developed model can be 
incorporated with a smart device’s other low-energy sensors. Using the smart device sen-
sors, the developed model can be extended to acquire a more accurate positioning
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Table 1. Comparison of methodologies.

Research GNSS INS IVS Cam DMI LiDAR SM IP OBD 

Cai et al. 2018 [4] +   +      

Gakne et al. 2018 [3] +   +      

Karaim 2019 [20] + +        

Lee et al. 2016 [1] + +        

Marais et al. 2012 [7] +      +   

Marais et al. 2013 [15] +       +  

Meng et al. 2017 [6] + +   + +    

Xu et al. 2018 [2] + + +       

Presented Research +               + 

 

In this study, an algorithm that adopts to random INS noise is 

developed as well as a predictor has also been developed that pre-

dicts INS errors during GPS outages. [3] and [4] use cameras with 

GPS to increase positioning accuracy. The method fuses an up-

ward-facing camera system of a vehicle with GPS signals for nav-

igation purposes in urban environments. Lidar technology with tri-

ple fusion of GPS, INS, and DMI has been used in [6]. To com-

pensate for GPS jumps, the performance of the triple system has 

been increased by a multi-constraint fault detection method. In [7], 

the authors preferred statistical methods to reduce the positioning 

error. The vehicle route was reconstructed in 3D space with image 

processing and more consistent positioning information was ob-

tained by matching the signal propagation information. A similar 

approach was also used in [15], but here the image processing tech-

nique was used much more intensively. Similar to [1], the fusion 

of GPS and INS is presented in [20]. The author has developed a 

tracking system architecture for a strongly coupled GPS/INS inte-

grated system. This integrated system has increased the tracking 

robustness and sensitivity of the receivers, making the system less 

dependent on the INS. The proposed technique demonstrates that 

GPS inaccuracy can be reduced partially by a vehicle’s odometer 

sensor reading through a smartphone applications to achieve a 

more precise position estimations. By introducing a practical and 

efficient solution which uses additional resources from current 

smartphone technology, this work extends the existing literature of 

studying positioning accuracy for ground transportation systems. 

The method presented here, unlike those in the literature, corrects 

GPS-related positioning errors using the vehicle’s odometer data. 

Utilizing a mobile application that works with Android smart mo-

bile devices, the vehicle’s odometer data is collected, which is 

much more consistent than the speed information provided by GPS. 

Inconsistent speed profiles obtained from GPS are corrected with 

this data, and more accurate positioning information is inferred 

from the corrected speed profiles. 

2. Methodology 

An Android smartphone, which is embedded with on-board 

low-energy sensors (e.g., gyroscope, accelerometer, and compass), 

have been installed with a custom Android application that pro-

vides beneficial information so it can collect GPS and vehicular 

sensor data for modeling and analysis. In addition to collecting 

GPS data (latitude, longitude, speed, etc.), the vehicle’s odometer 

data was also collected through a backend that directly communi-

cates with in-vehicle sensors, for this particular study. Furthermore, 

fuel consumption data, rpm information, and other pertinent infor-

mation can also be collected from the moving vehicle by On-Board 

Diagnostic (OBD) sensor [27-28]. Although similar studies with 

smartphones encompass the whole range of data processing activ-

ities including code development [29-31], modeling and simula-

tion [32-34], implementation, analysis and visualization [34]; col-

lecting these data through smartphone from a vehicle requires no 

proficiency. The route used for the experiments consisted of 

bridges, skyscrapers, and tall trees which can cause interference by 

blocking GPS signals which may reduce localization accuracy to a 

certain extent. 

The primary process for this methodology is to obtain the near-

est correlation between vehicle speed and distance traveled for 

every two consecutive data points. In other words, the speed pro-

file is to be matched with the distance profile of the vehicle. This 

may be a reasonable expectation since there exists a linear relation-

ship between the two. However, this is not always true as there is 

a non-linear relationship when sudden speed variations happen (In 

the case of sudden braking, a big speed change occurs while dis-

tance change becomes relatively smaller). In addition, GPS re-

sponse is not accurate as in moderate speed variations. As in most 

cases, large amount of data could be double-edged sword if not 

properly processed [7], [35-36]. Therefore, the collected data set 

must be divided into two subsets as direct and indirect correlated 

parts and each subset must be considered independently. When 

there exists a non-linear relationship, correlation ratio, η, which is 

a coefficient of non-linear associations arises. The model proposed 

in this paper was applied to direct correlated data only. 

It is assumed that the vehicle travels through as straight path be-

tween two data points and, thus, Euclidean distances are computed 

between the points. The Euclidean distance between two points in 

the plane with coordinates (𝑢, 𝑣) is the length of the line segment 
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connecting them as shown below. 

 

 𝑑 = ‖𝑢 − 𝑣‖  (1) 

 

Considering each points in the data set, Euclidean space (ℝ𝑛) 

becomes a metric space, also called Euclidean distance matrix 𝑑𝑖,𝑗, 

which is a set possessing a metric as shown in the expression below. 

 

 𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖
2

2
≜ (𝑥𝑖 − 𝑥𝑗 , 𝑥𝑖 − 𝑥𝑗) (2) 

Since it is symmetrical and all diagonal elements are zero, ma-

trix 𝑑𝑖,𝑗  has 𝑖2(or 𝑗2) entries but only 𝑖(𝑖 − 1)/2 pieces of in-

formation. This is reasonable since the speed limit on the traveled 

route can vary between 25 mph and 40 mph. 

Next, the speed profile is overlapped with the computed distance 

profile as they are directly proportional. This could be performed 

by either statistical methods [35-36] or normalization which is 

more practical way. Both methods were applied however normal-

ization method is preferred for the rest of the work. Speed profile 

and corresponding Euclidean distance matrix were normalized to 

common scale. Normalized form of a distance matrix 𝑑𝑖,𝑗is given 

by scaling features that lie between a given minimum (𝛿) and max-

imum (𝜙) value as shown in Eq. (3). 

 

 [𝑑𝑖𝑗] = 𝛿 + |
({𝑑𝑖𝑗−[𝑑𝑖𝑗]

𝑚𝑖𝑛
}{𝛿−𝜙})

([𝑑𝑖𝑗]
𝑚𝑎𝑥

−[𝑑𝑖𝑗]
𝑚𝑖𝑛

)
|  (3) 

 

In fact, this is not only important when comparing measure-

ments that have different units, but it is also a general requirement 

for many machine learning applications [37]. Afterwards, dimen-

sionless speed profile of the vehicle is corrected with dimension-

less form of odometer data which is much more precise than GPS-

sourced speed data. This can simply be done by replacing the speed 

profile obtained from GPS with odometer sensor reading. How-

ever, speed differences between the two data are also computed for 

a deeper investigation. After obtaining the corrected dimensionless 

speed profile, the corrected dimensionless distance profile can fi-

nally be found by combining with root mean square error (RMSE). 

This error will be used as a measure of spread of the distance val-

ues about the corrected distance profile. In the last step of the pro-

cess dimensionless distance values were converted to dimensional 

form. 

3. Implementation 

Satellite, map and schematic views of the route used in the ex-

periments are shown in Figure 1. Since the speed limit on the route 

used in the experiments was 45 mph (72 km/h), the maximum 

speed of the vehicle was not above this limit during the trials. Ex-

periments have been carried out only in the city, thus, it has not 

been tested what kind of result will be obtained at speeds above 

this limit. A 2008 Ford Explorer was used for the travel experi-

ments. The trips were held between the east entrance of the Old 

Dominion University’s main campus and the MacArthur Mall in 

the city center. The average distance between the start and finish is 

about 3,4 miles (5,5 km), which takes about 18 minutes in average 

traffic conditions and about 29 minutes in heavy traffic conditions. 

Before driving began, the smartphone was fixed in the utility area 

between the front seats so that it would not move during the test. 

Since the forward axis of the smartphone must coincide with the 

forward axis of the vehicle, this was also taken care of when fixing. 

Experiments were mostly carried out during working hours, that is, 

during peak traffic hours, the reason for choosing this time interval 

is that the experiments were intended to simulate a normal daily 

life driving. 

 

Fig. 1. Satellite, map and schematic views of the route used in the experiments. 
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Fig. 2. Flowchart showing the steps of data collection and processing. 

 

The GoGreen application developed by Transportation Re-

search Institute of Old Dominion University was used to collect 

dynamic travel data with a smartphone. This application, particu-

larly developed for Android smart mobile devices, has the ability 

to collect data from Micro-electro-mechanical-system (MEMS) 

sensors and GPS chips embedded in smart devices, as well as On-

Board Diagnostics (OBD) device data that transmits data to the 

smart mobile device via Bluetooth. When the application is acti-

vated with all its features, it can collect data measured by MEMS 

sensors, and also latitude, longitude, speed, time stamp infor-

mation via GPS, as well as speed and throttle position data via 

OBD device. Once the application is stopped, it will prompt the 

user to upload the data into the database so that all readings can be 

saved to smart mobile device’s local database. When uploading is 

finished, the mobile device is connected to a computer via USB 

cable and all dynamic travel data can be retrieved using a code 

written in Java. 

In order to get OBD data, the data acquisition module of the ap-

plication establishes a Bluetooth connection between the mobile 

device and the OBD, and sends a series of queries to the OBD to 

configure this connection. Once the connection is established suc-

cessfully, it sends queries in a similar way and retrieves the real-

time vehicle data at a specified rate. The stages of data collection 

and processing method are shown in the flowchart given in Figure 

2.  

The type of measurement utilized in high-precision applications 

for purposes of ensuring that accuracy is achieved irrespective of 

have very low code measurements is the phase measurements. Due 

to low quality of GPS chips embedded in smart devices and poor 

multipath mitigation, the mean error (RMS) on the code is approx-

imately five meters and this results in a precision of approximately 

ten to fifteen meters in 3D. However, phase measurements produce 

much higher quality results than this. In addition to being preferred 

in many smart mobile device applications recently, phase meas-

urements are thus utilized in studies focusing on Earth rotation, in 

approximation of troposphere with the aim of attaining high qual-

ity observations as well as geodetic topics such as global reference 

to frame realization. Although an application programming inter-

face called GNSS Logger was added to Android operating systems 

with the Android 7 version, the custom-developed application 

GoGreen was preferred for this study. GoGreen stores the col-

lected GPS observation data in ASCII output files. Then, data such 

as epoch time, code, carrier phase from these files are brought into 

readable mode via a converter. An important advantage of using 

this developed code instead of commercial ones is that it provides 

to know all stages of data processing. Moreover, each step can also 

be controlled if the measured data are processed with stochastic 

models, and this indeed helps to get more reliable results. Since 

GPS signals are collected inside a moving vehicle, they are subject 

to signal interferences and signal reflections from time to time, 

which causes a larger positioning error in the measurements com-

pared to static observations. Thus, code and carrier phase observa-

tions are also less consistent in moving, i.e., kinematic situations, 

and therefore positioning involves more errors. It should also be 

noted that the antenna characteristics of smart devices are quite dif-

ferent from those of geodetic antennas and this causes a disad-

vantage in antenna gain. Even the fact that the antenna reference 

center does not coincide with the center of the smart device causes 

at centimeter level error in measurement accuracy. Moreover, the 

smart mobile device used in the experiments contains a single-fre-

quency GPS receiver. This prevents ionospheric monitoring, un-

like mobile devices using dual-frequency. 

4. Results 

An extensive data collection process has been performed in the 

study area during the calendar year 2019 and 2020 to test the pro-

posed method. The speed profiles of the data sets were examined. 

The data sets with less zero-speed values were selected to be stud-

ied as this is an indication that the vehicle is in motion. For the 

remainder of this section, ‘data’ refers to these selected data sets. 

This is a reasonable approach as the proposed method does not 

make any contributions in case of vehicle stops, which effects time 

efficiency. 

In addition to the speed profiles, distance matrices were com-

puted for the data as well as corresponding distance profiles. These 

produce one sample of a distance profile as shown in Figure 3a. 

The plot represents the data’s first thousand seconds. A proper data 

selection is inferred as the results show the vehicle is in motion 

approximately 81% of the time. The linearly correlated sections 

were identified and a random sample of 100 second was taken 

from these sections. The selected 100 seconds interval is between 

𝑡 = 318 to 𝑡 = 417 an outlined in red as shown in Figure 3a. 

This sample will be referred as ‘test data’ and can be seen in Figure 

3b. 
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Fig. 3. A sample of distance profile (a) and the ‘test data’ (b). 
 

The distance profile of the test data is linearly correlated with 

the corresponding speed profile of the vehicle. To verify this line-

arity, speed ratios between consecutive points were computed. 

These results can be seen in Figure 4 below. 

Fig. 4. Speed variation ratios between consecutive points. 
 

When comparing decrement or increment in speed between con-

secutive points, it is hypothesized that speed change is not sudden 

when this value remains below 20%. Within 93% confidence, test 

data vehicle speed does not vary more than 20% between consec-

utive points. This provides a confidence as shown in the plot (Fig-

ure 2). A correlation of the test data between speed and distance 

profiles was also computed. The result shown on the next page 

(Figure 5) bolster the hypothesis as their Pearson correlation coef-

ficient is 0.97, this demonstrates a high assurance of proper data 

selection. 

 

 

To show each profile clearly, the test data and corresponding 

speed profiles were plotted as a dual-scaled axes (Figure 6a). With 

normalized data, as shown in Figure 6b, it can be seen that the two 

profiles overlap to a great extent. A RMSE of 0.038 and a mean 

absolute error (MAE) of 0.033 were computed as an indicator for 

prediction error between the two profiles. These errors will be used 

as a measure of spread of the distance values about the corrected 

distance profile. 

Fig. 5. Correlation between speed and distance profiles. 
 

The plot shown in Figure 7a represents the difference between 

GPS-sourced and odometer-based speed profiles corresponding to 

the test data. This figure shows the average speed difference is 2.79 

mph and that 42% of the time the difference is larger than 3 mph. 

The normalized version of the speed difference can also be seen 

below (Figure 7b). By adding the normalized speed differences to  
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Fig. 6. Speed and distance profiles (a), and normalized form (b). 

 

Fig. 7. Speed difference between GPS-sourced and odometer-based speed profiles (a) and normalized form (b). 

 

 

the normalized speed profile, the corrected speed profile is ob-

tained as shown in Figure 8a. Significant distinction can clearly be 

seen between 𝑡 = 347  and 𝑡 = 373;   𝑡 = 381  and 𝑡 =
391 ;   𝑡 = 396 and 𝑡 = 417. Since RMSE is larger than MAE, 

it is preferred for spreading to speed values about the speed profile 

to obtain corrected distance profiles as shown in Figure 8b. 

In the graph shown on the next page (Figure 9a), normalized 

distance and corrected normalized distance profiles are plotted. Fi-

nally, the plot (Figure 9b) shows a corresponding dimensional 

graph that resulted in correction of distance with an average of 9.21 

ft and maximum of 23.15 ft. 

5. Conclusions and Future Work 

A smartphone’s feature to improve positioning accuracy for 

ground transportation systems is surveyed in this paper. The study 

was aimed to reduce GPS-sourced positioning error by processing 

large amount of dynamic travel data collected by smartphones. The 

proposed model is concentrated on generating the nearest correla-

tion between speed and distance profiles of vehicle. The work ad-

vances the existing literature by presenting a practical and efficient 

solution while making minimal use of low-energy sensors of 

smartphones. The model validation was made by applying to vari-

ety of collected test data which consist no sudden speed variations. 

An average of 11.3 ft which corresponds to approximately 20% 

correction in distance was achieved. However, the model demon-

strated in this paper should also be tested with the data which in-

volve sudden speed variations. Using the corrected distance pro-

files, a procedure may be developed to update GPS-sourced posi-

tioning instantaneously. The work may be advanced using a cam-

era application while collecting dynamic travel data to make a  
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Fig. 8. Corrected speed profile (a) and corrected distance profile (b). 

 

Fig. 9. Normalized (a) and dimensional form (b) of corrected distance profile. 

 

deeper investigation on positioning error sources. The data used in 

proposed model may also be incorporated with other low-energy 

sensor data to further enhance the model discussed in this paper.  
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Nomenclature 

u  : any location in the 2D plane 

v  : any location in the 2D plane 

d  : Euclidean distance between any two points (ft) 

jid ,
 : Euclidean distance matrix 

ix
 

: any point in the 2D plane 

jx  : any point in the 2D plane 

  : the element with the lowest value of the norm

alized distance matrix 

  : the element with the highest value of the norm

alized distance matrix 
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