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Introduction
Abiotic stress is the major cause of decreasing 

the yield of important food crops by more than 50%, 
leading to the losses worth of million dollars every 
year (Rasool et al. 2013; Lamaoui et al. 2018). Among 
abiotic stresses, high salinity stress is the most severe 
environmental stress, which impairs crop production 
on at least 20% of irrigated land worldwide. Out of the 
1500 million hectares agricultural land, 32 million (2%) 
is affected by secondary salinity of varying degrees. 
Further, problems will be worsened as nearly 50% of 
the arable land will hit salinity by 2050 (Machado and 
Serralheiro, 2017). Extensive economic losses due to 
salinity include costs of $27 billion-plus loss of crop 
value per year (Kumar et al. 2017).

Excess of salt in soil is one of the major 
devastating abiotic stresses for global agriculture as 
it may cause degradation of arable soils, particularly 
those that are heavily irrigated via adverse impacts 
on seed germination, plant growth and development, 
plant vigour and crop yields and hence drastically 

reducing agricultural productivity (Cheeseman 2015; 
Akram et al. 2017; Kumar et al. 2017). A saline soil 
is defined as one in which the electrical conductivity 
(EC) of the saturation extract (ECe) in the root zone 
exceeds 4 dS/m (approximately 40 mM NaCl) at 25ᵒC 
and has an exchangeable sodium of 15%. The yield of 
most crop plants is reduced at this ECe, though many 
crops exhibit yield reduction at lower ECes (Munns, 
2005; Jamil et al. 2011). The repercussions of salinity 
stress on crop productivity and concerns regarding 
its management have been the focus of several prior 
comprehensive reviews (Hoffman et al. 2007; Grattan 
et al. 2011; Pereira et al. 2014). The direct effects of 
excess of soluble salts in soil causes imbalance or 
accumulation of specific ions (Cl, Na) in plants which 
results in osmotic stress because of reduced soil water 
availability and ion imbalance and ion toxicity (Munns 
2005) which lead to plant demise ultimately (Maas and 
Hoffman 1977; Zorb et al. 2014). 

Recent estimates show an increase in global 
salt-affected area with an area of 1,128 million ha 
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(Mandal et al. 2018). According to Shrivasata and 
Kumar (2015) approx. 20% of total cultivated and 33% 
of irrigated agricultural lands worldwide are affected 
by high salinity. Moreover, the salt affected areas are 
increasing at a rate of 10% annually for several reasons, 
including high surface evaporation, low precipitation, 
irrigation with saline water, weathering of native rocks, 
and poor agricultural practices. In India, nearly 5% 
of the net cultivated area is having salt affected soils, 
spreading from Jammu & Kashmir (Ladakh region) 
in north to Kanyakumari in south, and Andaman & 
Nicobar Islands in the east to Gujarat in the west. 
Increasing trend in the salt-affected soils is becoming 
a major threat to economic development and national 
food security in India. 

Salinity stress affects plant health in two ways, 
first is decrease in soil porosity that leads to decrease 
in oxygen and water movement around the roots and 
secondly increased Na+ concentration is toxic for 
essential enzymes which in turn alter the physiology 
of plants (Munns and Tester, 2008). It has been reported 
that when salinity rises to 100 mM NaCl in a field, most 
of the legume species die before maturity (Munns et 
al. 2002). 

Legumes belong to the important plant family 
Leguminosae or Fabaceae and provide the prime 
single source of vegetable protein in human diets 
and livestock feed (Dita et al. 2006). Legumes can 
serve as resource-conserving alternative as these 
plants can fix atmospheric nitrogen, thus plummeting 
the requirement for chemical fertilizers and hence 
playing a role in improving soil health and increasing 
overall crop productivity. Reduction in pests, diseases 
and weed populations has been observed in farming 
systems, when legumes are used as an inter-crop. 
Legumes occupy 12-15% of worldwide arable land to 
provide 33% of dietary protein and 27% of major crop 
production (Flexas et al. 2004). In legumes, seedling 
and developmental stages are more sensitive to salinity 
stress than the germination stage (Al-Mutawa et al. 
2003).

Salinity also has an adverse effect on shoot 
biomass, pod set and pod filling in chickpea (Cicer 
arietinum), causing reduced yields (Flowers et al. 2010; 
Atieno et al. 2017). High salt concentration reduces 
the NO3 supply from the soil which leads to lower 
protein content in chickpea, faba bean and mung bean 
(Cordovilla et al. 1995; Ghassemi-Golezani et al. 2010; 
Qados et al. 2011).

Conventional breeding approach has been widely 
used to develop stress tolerant and high yielding crop 
plants but this procedure is lengthy, labour intensive 
and costly and dependent on access to germplasm 

with enough genetic variability (Ashraf, 2010; Yu et 
al. 2016., Wani et al. 2016). To resolve these barriers 
associated with conventional breeding, biotechnological 
approaches such as genetic engineering provide a 
viable alternative and are now becoming more widely 
used throughout the world to obtain better results in 
shorter time. Transgenic approach is effectively used 
by plant scientists to impart salinity tolerance in various 
crops which mainly includes integration of genes that 
encode compatible organic solutes, ion transport 
proteins and transcriptional factors for gene regulation 
(Ashraf et al. 2010). These genetic processes demand 
the arbitration of several types of crucial enzymes 
including helicases. Helicases are the proteins which 
play a role in unwinding of nucleic acids and can be 
categorized into three groups- RNA helicases, DNA 
helicases, and Chromatin Remodelers. Other group of 
signal perception and signaling related genes (Passricha 
et al. 2019a). The constitutive expression of such genes 
can be used to construct stress tolerant plants. Studies 
reported that these genes provide stress tolerance 
when overexpressed are PDH45 (Shivakumara et al. 
2017), p68 (Tuteja et al. 2014) and more (Passricha 
et al. 2019b). LecRLK homolog from Pisum sativum 
has been reported to provide salinity stress tolerance 
in overexpressed tobacco and rice plants (Passricha 
et al. 2019b; Vaid et al. 2013). In this review, we 
have summarized the functional validation of signal 
perception gene OsLecRLK, helicase gene and p68 
gene in providing salinity stress tolerance in legume 
crops through transgenic approach. 

Role of helicases in salt s tress tolerance
DNA helicases are involved in replication, 

transcription, recombination, and repair so can also 
be called as ‘genome caretakers’ (Chu and Hickson, 
2009; Brosh et al. 2013). On the other hand, RNA 
helicases play diverse roles in almost all processes 
of RNA metabolism like transcription, translation, 
pre-RNA splicing and export, removal of secondary 
structure of RNA ribosome biogenesis, miRNA 
processing and RNA metabolism which are crucial 
to cell survival (Putnam and Jankowsky, 2013; 
Jarmoskaite and Russell, 2014; Bourgeois et al. 2016; 
Sloan and Bohnsack, 2018). Chromatin remodelers 
perform ATP hydrolysis alter the interaction between 
DNA and histone proteins in a non-covalent fashion 
(Clapier and cairns, 2009). Out of the six helicase SFs, 
the monomeric SF1 and SF2 contain DNA helicases 
which are involved in the transcription, repair and 
recombination. Whereas SF6 contains replicative 
eukaryotic DNA helicases. Different abiotic stresses 
such as heavy metals, drought, salt, temperature, UV, 
etc. increase the amount of endogenous ROS in the cell 
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which cause oxidative damage to the plant (Manova 
and Gruszka, 2015). These damages may end up in 
double-stranded breaks (DSBs), base modifications 
by insertion or deletions, inter - or - intra strand cross-
linking or and formation of pyrimidine dimers. As plant 
cannot readily escape from the harsh climatic changes, 
they rely heavily on DNA damage detection and repair 
pathways for the timely and accurate removal of DNA 
lesions and preservation of genomic stability (Manova 
and Gruszka, 2015). 

RuvB is a DNA helicase, which belongs to the 
AAA+ family of proteins and is very well characterized 
in bacteria. Almost all the members of this family are 
ATPases, but some members of this family contain 
helicase activity also. In prokaryotes, it plays a role in 
DNA damage repair mechanism by the formation of 
Holliday junction with RuvA and RuvC (Donaldson et 
al. 2004), branch migration and resolution of Holliday 
junction. A mutation study in Saccharomyces cerevisiae 
has revealed that RuvB is essential for growth of cells 
(Ahmad et al. 2012). It is an important component of 
various multiprotein complexes and is involved in 
multicellular pathways such as cell cycle progression, 
replication fork reversal, nonsense-mediated mRNA 
decay, apoptosis, mitosis, and development (Ahmad 
et al. 2012). RuvB stands as a potential candidate gene 
which can be involved in abiotic stress tolerance. Till 
date there are only two reports on characterization of 
RuvB in plants (Wang et al. 2011; Saifi et al. 2018). 
However, there are reports on other helicases like 
pea DNA helicase 45 (PDH45) which was found to 
be induced in pea seedlings in response to high salt 
(NaCl), dehydration, wounding, and low temperature. 
Transfer of its gene to tobacco provided a high salinity 
tolerance without affecting yield (Sanan-Mishra et al. 
2005). Another helicase from pea (PDH47, pea DNA 
helicase 47) was reported to be induced in response to 
cold and salinity stress in shoots and roots, and heat 
and abscisic acid (ABA) treatment in roots (Vashisht 
et al. 2005). These reports suggest that helicases play 
an important role in stress tolerance. Though the exact 
mechanism of helicase-mediated tolerance of stress has 
not yet been understood. Saifi et al. (2018) highlights 
the role of rice homologue of RuvB gene (OsRuvBL1a) 
under various abiotic stresses. The OsRuvBL1a protein 
was characterized using in silico and biochemical 
approaches. The studies confirmed the presence of all 
the four characteristic motifs of AAA+ superfamily 
in this protein. It was also shown that OsRuvBL1a 
exhibits unique DNA-independent ATPase activity 
and unwinds the duplex DNA in the 3’ to 5’ direction. 
Moreover, the upregulation of its transcript under 
abiotic stress conditions suggested its involvement 

in multiple cellular pathways. Singh et al. (2020) 
developed transgenic pigeon pea lines having OsRuvB 
gene (Kharb et al. 2018; patent application number: 
201811012099) and subjected six T1 generation 
transgenic lines to 75mM salt stress. Observations were 
recorded for different physio-biochemical parameters 
viz. chlorophyll content, relative water content, MDA 
content, membrane injury index, total soluble sugar 
content, proline content, peroxidase activity, and 
catalase activity at 4 and 8 DAT with 3 replications 
for each treatment. The results showed that in addition 
to more chlorophyll and relative water content under 
salinity, the transgenic plants also showed higher 
activity of peroxidase and catalase. Level of proline 
and total soluble sugar was increased in T1 transgenic 
plants, but the increase was lower than in wild type 
plants under salt stress. The transgenic lines didn’t 
have significant increase in osmolytes proline and 
total soluble sugar, which indicates that the tolerance 
is being imparted either by some other osmolytes or 
some entirely different mechanism yet to be uncovered 
might be working in these plants.

OsRuvB gene was integrated in chickpea (cv. HC-
1) plants using tissue culture independent patented 
protocol (Kharb et al. 2012) by Preeti and Kharb 
(2020) and obtained transformation efficiency of 17% 
when screening was done using gene specific primers. 
Transgene copy number in each event was detected by 
Southern hybridization which was later confirmed by 
real time PCR. After 20 days of germination plants were 
subjected to 100mM salt stress and it was observed that 
all the transgenic chickpea plants performed far better 
in comparison to wild type chickpea plants in terms of 
having high chlorophyll content, relative water content, 
proline content, total soluble sugar content, peroxidase 
and catalase activity but reduced MDA content and 
membrane injury index.

Role of p68 gene (DEAD-box family protein)
in salt s tress tolerance
DEAD-box helicases are required mostly 

in all aspects of RNA and DNA metabolism and 
play a significant role in various abiotic stresses, 
including salinity. The p68 is member of DEAD-
box family and plays a very important role in cell/
organ development (Stevenson et al. 1998). It also 
participates in various biological processes including 
pre-rRNA processing (Liu, 2002; Bates et al. 2005; 
Fuller-Pace, 2006), RNA-induced gene silencing 
(Ishizuka et al. 2002), transcription initiation (Fuller-
Pace 2006) and alternative splicing processes (Kar et 
al. 2011). It was also reported that ATPase activity of 
recombinant p68 in yeast was stimulated by double-
stranded RNA and it unwinds RNA in both 3’ to 5’ 
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and 5’ to 3’ directions (Huang and Liu 2002). It has 
been reported that p68 RNA helicase activities are 
stimulated after phosphorylation with protein kinase 
C (Pradhan et al. 2005) which is a general cascade to 
cope with stresses in plants. Wang et al. (2013) reported 
that p68 also interacts with Ca2+-CaM which regulates 
various signaling pathways leading to tolerance in 
plants under stress.

Psp68 DEAD-box protein exhibits ATPase activity 
in the presence of both DNA and RNA, binds to DNA 
as well as RNA and shows unique bipolar DNA helicase 
activity which suggest that it could be a multifunctional 
protein (Tuteja et al. 2014). Psp68 provided salinity 
stress tolerance in transgenic tobacco and transgenic 
rice by reducing oxidative stress and improving 
photosynthesis machinery (Banu et al. 2015). Karthik 
et al. (2019) evidenced the role of the p68 gene against 
salinity, by enhancing the tolerance towards salinity 
stress in soybean plants. The transgenic soybean (T1) 
plants showed a higher accumulation of chlorophyll, 
proline, CAT, APX, SOD, RWC, DHAR and MDHAR 
than the NT plants under salinity stress conditions. 
The transformed (T1) soybean plants also retained a 
higher net photosynthetic rate, stomatal conductance 
and CO2 assimilation as compared to NT plants. 
Further analysis revealed that (T1) soybean plants 
accumulated higher K+ and lower Na+ than NT plants. 
Yield performance of transformed soybean plants was 
estimated in the transgenic greenhouse under salinity 
stress conditions. The transformed (T1) soybean plants 
expressing the p68 gene were morphologically similar 
to non-transformed plants and produced 22–24 soybean 
pods/plant containing 8–9 g (dry weight) of seeds at 
200 mM NaCl concentration. 

Moreover, Banu et al. (2015) suggested that 
Psp68 interacts with pea argonaute (AGO1), a 
catalytic component of the RNA-induced silencing 
complex (RISC) responsible for the gene silencing. 
The microarray analysis showed that Psp68 regulates 
many transcripts involved in the abiotic and oxidative 
stress responses as well as gene-silencing mechanisms 
in rice. Thus, the Psp68 functions as a molecular 
switch in different signaling path-ways leading to 
stress tolerance. Overall, Psp68 may serve as a useful 
biotechnological tool for the improvement of stress 
tolerance crop.

Neha and Kharb (2019) obtained 16% 
transformation efficiency when transformed pigeon 
pea (cv. Manak) with Psp68 gene (Fig.1). Selected 
PCR positive transgenic plants were subjected to 
75mM NaCl salt stress 15 days after germination and 
observance were recorded 4 days and 8 days after 
treatment. Analysis of various physio-biochemical 

parameters showed that transgenic plants performed 
well with respect to all the parameters with higher 
chlorophyll content, relative water content, total soluble 
sugar content, proline content, catalase and peroxidase 
activity and reduced lipid peroxidation, electrolyte 
leakage. 

Role of OsLecRLK in salt s tress tolerance
Lectin receptor‐like kinase (LecRLK) is an 

important family that plays a major role in stress 
sensing through lectin receptor and further activates 
downstream signaling by kinase domain.

Plant perceives stress by various sensors (Wall‐
associated kinase, G‐protein couple receptors‐like 
protein(s) or receptor like kinases [RLKs]) present 
on the cell membrane, which leads to activation of 
downstream signaling (Tuteja and Sopory, 2008). Plant 
lectin receptor‐like kinases (LecRLKs) are membrane‐
embedded RLK proteins. Extracellular lectin domain 
has a role in stress perception through recognition 
of different ligands (such as hormones and complex 
saccharides) generated in response to environmental 
challenges (Barre et al. 2002; Passricha et al. 2019b). 
RLKs participate in various processes, including 
regulation of development, disease resistance, and 
hormone perception. RLK is a vast family of proteins 
that have 610 genes in Arabidopsis and 1100 genes 
in rice (Morillo and Tax 2006). Members of this gene 
family are not well characterized but some reports 
provide their role in stress such as Arabidopsis, L‐VI.2 
(At5g01540) provide resistance against Pseudomonas 
syringae and Pectobacterium carotovorum (Singh et 
al. 2012). LecRLK‐1 in Nicotiana tabacum which 
is responsive to herbivorous signaling mediated 
through elicitors released by larvae of Medunca sexta 
(Bonaventure, 2011). NbLRK1 (LecRLK in Nicotiana 
benthamiana) directly associate with elicitor protein 
IFN1 released by Phytophthora infestans through 
its kinase domain (Kanzaki et al. 2008). Similar 
studies on LecRLK in different plant systems such as 
Arabidopsis (Deng et al. 2009), Pisum sativum (Vaid 
et al. 2012), Glycine soja (Sun et al. 2013) and rice 
(Saifi et al. 2017) showed the importance of LecRLKs 
in alleviating stress condition. Among the 610 RLKs 
in Arabidopsis thaliana and 1100 RLKs in rice (Shiu 
et al. 2004), some have been characterized as receptors 
for polypeptides, phytohormones and pathogens. Each 
of these RLKs can rapidly initiate signalling through 
the formation of oligomers and cross-phosphorylation 
of the intracellular serine/threonine kinase domain 
upon binding to ligand (Dievart and Clark 2004) and 
together they play diverse roles in plant development 
and resistance (Antolín-Llovera et al. 2012; Osakabe 
et al. 2013). Some RLKs are also reported to play role 
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in drought and salt responses (Ouyang et al. 2010; 
Marshall et al. 2012; Vaid et al. 2013). Rice SIK1 
(Os06g03970), that is expressed most strongly in stem 
and panicle but which is not expressed in root, was 
found to be salt-inducible and a positive regulator of 
salt tolerance (Ouyang et al. 2010).

The LecRLKs acting as membrane receptors is 
well-known, however related evidences of downstream 
and upstream components and how they interact with 
various signalling components is still not known.

Vaid et al. (2015) reported that PsLecRLK 
transcripts are upregulated in salinity stress response 
and overexpression of the gene showed enhanced water 
uptake in plants through the activation of water channel. 
In 2014, SIT1 a salt tolerance gene reported mainly 
expressing in root epidermal cells in rice. The gene was 
found rapidly activated by NaCl and phosphorylated 
MPK3/6 then further facilitates ethylene accumulation 
& ROS production and accumulation in plants 
ultimately leads to inhibition of plant death under 
stress. Zhang et al. (2019) reported PnRLK-1 (a type of 
cytoplasmic RLK) in an Antarctic moss (Pohlia nutans) 
upturn ABA sensitivity and also upregulates ROS 
scavenger machinery that suppress ROS accumulation 
that ultimately results in reduction of salt stress. Table 
1 depicts impact of various transgenes inserted in 
different plants.

Pratibha (2019) transformed pigeon pea (cv. 
Manak) plants with OsLecRLK gene and obtained 16 
plants out of 86 showing amplification for the gene 
of interest representing a transformation efficiency 
of 18.6%. Transgenic copy no. and integration was 
confirmed through Southern hybridization and Real-
time PCR analysis in T0 generation and found that 5 
Transgenic lines (L-9, L-17, L-18, L-19 and L-48) 
carried single copy insertion of gene whereas, one 
transgenic line (L-89) with two copies of the transgene. 
Physio-biochemical analysis was done to assess the 
efficacy of transgene via subjecting wild type and 
selected T1 transgenic plants to 75 mM salt stress. The 
results showed that transgenic line performed better 
in terms of maintaining higher relative water content, 
chlorophyll content, total soluble sugar content, proline 
content, peroxidase and catalase activity in comparison 
to the wild type plants. Moreover, membrane injury 
index and MDA content were significantly reduced in 
transgenic lines then wild type plants indicating that 
the transgenic lines were less affected by salt stress 
(Figure 1)

Chickpea (cv. HC-1) plants were transformed 
by Singh (2018) with OsLecRLK gene and obtained 
17.82% transformation efficiency. Transgene copy 
number was confirmed using Real time PCR & 

Southern hybridization. Transgenic chickpea plants 
were subjected to 100 mM salinity stress 15 days after 
germination. The transgenic chickpea plants showed 
& better growth than non-transformed chickpea plants 
and synthesized more compatible solute such as proline, 
high sugar level, increased MDA content and decreased 
membrane injury and significant maintenance of 
chlorophyll content under salt stress conditions. 
(Figure 1). Table 2 shows comparative performance 
of various physio-biochemical parameters in different 
transgenic lines.

Conclusions
The present review highlights the helicases 

(OsRuvB and p68) and kinases (OsLecRLK) mediated 
salt stress tolerance in two legume crops i.e. chickpea 
and pigeon pea. It was also interesting to observe 
that genes isolated from rice, a monocot, induced salt 
tolerance in chickpea and pigeon pea, both being dicot 
plants. Although more research is required to identify 
the exact molecular mechanism and the underlying 
signalling pathway of all these above mentioned genes. 
Till date, no information on ligands, downstream 
targets or factors governing activation or inactivation 
of OsRuvB and OsLecRLK is available. Therefore, 
further research is being undertaken in our laboratory to 
understand the role of these genes in providing salinity 
tolerance in plants. 
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Figure 2: Proposed action of helicases (RuvB & p68) and lectin receptor kinases (Lec-RLK) in legume for 
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