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1. INTRODUCTION

Because of the physical systems are naturally analog, the signals related to these systems are represented
in continuous-time. By developments of digital systems in parallel with progress of technology, various
discrete-time techniques have been developed for analysis and design of continuous-time systems. In
order to integrate classical analog systems into digital systems, discrete models or discrete equivalents
must be obtained by discretization. Transformation of continuous-time to discrete-time is the fundamental
operation in discrete signal processing and discrete circuit design. This process, which is expressed with
concepts such as "s —to — z transform", "s —to — z transformation", "s — z transform", "s —to —z
mapping" provides a transition from s-domain to z-domain.

There are many methods in the literature for s — to — z transformation: backward or forward difference,
bilinear (Tustin) transform, impulse/step/ramp invariance/invariant methods, magnitude/phase invariance
methods, matched z transform etc. [1-10]. The main purpose of all these methods developed using
different approaches is to obtain the discrete-time equivalent that best describes the transfer function of
the continuous-time system. However, as the order of the systems increases, it becomes more difficult to
perform the relevant transformations manually or to use higher order s — z transformations.

As a result of the development in the computers, computer-aided technologies (CAx) concepts (such as
computer-aided analysis (CAA), computer-aided design (CAD), computer-aided engineering (CAE),
computer-aided instruction (CAI), computer-aided learning (CAL), computer-aided manufacturing
(CAM), computer-aided software, computer-aided software engineering (CASE), etc.) have currently
gained a significant place. Simulators, applications, web pages, etc. are developed in many areas using
computer software. There are many studies in the field of system analysis with software in the literature
[11-21]. However, there are not many software with a user-friendly interface that is specially designed for
discretization and can perform these operations quickly, accurately and effectively with many different
methods. For example, the "c2d" discretization command in MATLAB does this in just six different
methods and provides numerical results [22].
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In this study, a software tool has been developed that discretizes the continuous-time transfer functions
with different methods. With this developed software, very high order transfer functions in the s-domain
are transferred to the z-domain easily, effectively and quickly with the selected method or methods
(comparative analysis). In addition, the software provides detailed numerical and graphical results of
continuous and discrete time transfer functions.

This paper is organized as follows: In Section 2, s —to — z mapping functions are summarized. In
Section 3, designed software tool is explained and sample applications are given. Finally, Section 4
contains conclusions.

2. s-to-z MAPPING FUNCTIONS

Different s —to —z mapping functions are available for obtaining discrete equivalents/models of
continuous time functions. From the similarities in discrete expressions of the unilateral Laplace
transform and z-transform of a continuous-time function f(t) (Table 1),

z=eT
F(s) = F(2)|,zpst = . @))
=-In(2)
S=7
is obtained, where T is the sampling period. Some fundamental mapping functions can be obtained from
the Taylor series of s ve z [23] using first terms are given in Table 2.
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Table 1. Unilateral Laplace and z-transforms Table 2. Popular s — to — z mapping methods
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The general classification of s — to — z mapping methods is given in Figure 1 [2]. Matching responses
methods are based on matching system responses (impulse, step etc.) (Table 3).

s-to-z Mapping/Transformation Methods

Matching responses
(hold equivalents)

Numerical approximation of

Matching pole-zero
ep differentiator or integrator

Figure 1. The general classification of s-to-z mapping methods

For example, the impulse-invariant discrete-time system equivalent of the continuous-time system with
the transfer function H(s) is obtained as follows:

*  Obtain the impulse response of continuous-time system: h(t) = L™ {H(s)}
» Derive samples h(k) from h(t) with suitable sampling interval: h(k) = h(t)|;=xr
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= Obtain z-transform of h(k): H(z) = z{h(k)}

This process can be represented by

H(z) = 2{L H N, )

and this operation commonly indicated as

H(z) = z{H(s)}

Table 3. The some methods based on matching step and other responses

Method

Definition [H (2)]

Impulse invariance

Z{H(s)}

Step invariance (ZOH)

(o))

Ramp invariance (FOH)

1—esT (z—1)?% _(H(s)
z{ = H(s)}: z{ }

Tz 52

Table 4. Some matched pole-zero models
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Matching pole-zero (pole-zero matching, pole-zero mapping, matched z-transform method) is a method
based on mapping all poles and zeros of continuous-time system in s-plane to z-plane locations (z = e57)
for a sample interval (Table 4) [24]. This procedure is summarized as follow:
*  Map all poles and zeros of system according to z = e*7.
= If order of the numerator is lower than the denominator, add powers of (z + 1) to the numerator
until the orders are equal.
= Set equivalent DC or low-frequency gain.

Numerical approximations of differentiator or integrator methods are based on the use of numerical
approaches instead of derivatives or integrals in the continuous-time system equation. For example, using
the finite differences for the derivative and the rectangular and trapezoidal rules for the integral, the
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results in Table 2 are given in Table 5 and Table 6, respectively. In many transformation methods, the
discrete-time transfer function is obtained by using the substitution method: Z{(s¥1)*} = [Z{s%1}]*. But,
it should be noted that in some substitution methods, the terms may change depending on the degree of
derivative and integrator, namely: Z{(sT1)*} # [Z{sT1}]¥, as seen at Table 7. In Table 8, many methods
based on numerical approximation are given [1-5, 10, 25-54].

Table 5. Obtaining the methods in Table 2 with finite difference approximation of derivatives

1st order differential equation Laplace transform Transfer function (s-domain)
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Table 6. Obtaining the methods in Table 2 with rectangular and trapezoidal rules for integration
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Table 7. Common substitution methods[25]
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Method st -2 s73 s~
Backward Tz T?z2 T3z3 T*z*
rectangular z—1 (z—1)? (z—-1)3 (z— 1D*
Bilinear (Tustin) Tz+1 T?(z+1)° T3 (z+1)° T*(z+D*
transform 2z—1 4 (z—1)? 8 (z—1)3 16 (z — 1*
T2 (z% + T3(Z3 + 422 +
z-transform z @+ @ 4z +2)
z—1 (z —1)2 2 (z—1)3 6 (z—D*
T? T3 (22 + T* (23 + 22° +
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z—1 (z—1)? 2 (z—-1)3 4 (z—1*
2 2 3 2 4 3 2 4
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Table 8. The some methods based on numerical approximation
Method Differentiator (s) Integrator (1/s)
Forward rectangular integration (Euler z—-1 Tz 1
approximation of first order) T 1—z1
Backward rectangular integration (Euler z—1 T
approximation of second order) Tz 1— 21
Trapezoidal integration 2z-1 T1+42z71
(Bilinear / Tustin method) Tz+1 21— 41

Trapezoidal integration with prewarping
(Bilinear / Tustin method with prewarping)

wo z—1

can (%) 71

tan (wTUT) 14271
[ON 1—z71

n=1r , (0<a<l)

2 -1 -1
Compensated trapezoidal integration _n(z—) Z 1+z Z
Tn+2)z+(n—-2) 21—2z' n
- . 3z—-1 -1
Upward parabolic integration cZ Z 2+z
T2z+1 31—2z71
— -1
Downward parabolic integration EZ ! Z ﬂ
Tz+2 3 1—z1
AI-/;\Iaoui minimum phase iqtegrator—1 (for. 8 z-1 7T 1+ (1/7)z
a=3/4). (Stabilized version of Al-Alaoui 7T 2+ /7) —_—
nonminimum phase integrator-1) 8 1-z
Al-Alaoui minimum phase integrator-2 (for
a=3/4) (combined backward 8 z-1
rectangular and trapezoidal integration e 7T 1+ (1/7)zt
rules) 7T z+ (1/7) R
Hpr(z)=aHp(2)+(1-a)Hr(2)
2 Tri(3— +

o , __ 8@ =D hcas< mB-aE+n) a1

Al-Alaoui minimum phase integrator-3 Tri(3—a)(z+1y) 6(z2—-1)

(Stabilized version of Al-Alaoui

nonminimum phase integrator-3) 3+a-—2V3a 3+a—2V3a
= T T34

Al-Alaoui nonminimum phase integrator-1

for a=3/4 . (combined forward 871 .

rectangular and trapezoidal integration °z- Zi

rules) Tz+7 8§ 1—z1

Hpp(z)=aHp(z2)+(1-a)Hy(2)

R— . 6(z* - 1) TE-a)[(z+m)(z+1)]
Al-Alaoui nonminimum phase integrator-2 (3 672 — 1
(combined Simpson 1/3 and trapezoidal B-a)lz+mr)(z+n)] (-1
integration rules)  srasayia  sra-ayEa  aras2Ta . 3+a-2via
Hgr(z)=aHg(2)+(1-a)Hr(2) nETEL T T n=Ta T T

n=1/r,, (0<a<l)

Le Bihan nonminimum phase integrator
for y=0,793 .

Hpp(2)= yHp(2)+ (1= 0)Hy(2)

2 z—1
TA-xz+1+))

TA-+Q+yz?
2 1—2z1

Le Bihan minimum phase integrator (for
2 =0,793 ). (Stabilized version of Le

2 z—1

T+ +A-xz"!

T(1 1— —
Bihan nonminimum phase integrator) A+0z+A-20 2 1-z
o ) 2,7902 z2 -1 T 1+3,5804z71+272
Tick integration rule
T z2+35804z+1 2,7902 1—272
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Al-Alaoui - Tick integrator 0,852 z2 -1 T 1+0,611z71+0,0932z72
(Stabilized Tick integrator) T 2z2+0,611z +0,0932 0,852 1—2z2
. . 3 z2-1 T 144z 1 +272
Simpson 1/3 integrator -2 - Lot ote
Tz>24+4z4+1 3 1—272
Al-Alaoui — Simpson method 0,8039 z2—1 T 1+0,5358z71+0,0718z2
(Stabilized Simpson 1/3 integrator) T 22+0,5358z + 0,0718 0,8039 1—z2
Parametric BD-BL transform -
Dostal parametric transform (combined 1+rz—1 S
backward difference and bilinear — » (0<r<1) rz
T ———— , (0<r<1
integration rules) z+r 14+4r 1—-2z71 ( )
Hpr(z)=aHg(z)+(-a)Hr(2)
2_1 -1 -2
Papamarkos-Chamzas integrator z T(0,476337 + 1,076644z"" 4+ 0,476337z7°)
T(0,4763372z2% + 1,076644z + 0,476337) 1—2z2
. . 2,9382 z2—1 T 1+3,8765z7 1 +2z7?
Gurova-Georgiev transformation
T z?2+38765z+1 2,9382 1—2z72
Simpson 3/8 integrator 8 z8—1 3T 1+3z7 1 +3272+ 278
3T 234322 4+3z41 8 1—273
. . 45 zt—1 2T 7+32z714+12272+ 32273 + 7274
Boole integration i il
2T 7z* + 3223 + 12224+ 322+ 7 45 1—2z7%
Adams-Moulton 3rd order integration 12 z(z-1) T 5+8z71—272
(Schneider method) T 522+8z2—1 12 1— g1
Adams-Moulton 4th order integration 24 z2(z—1) T 9+19z71 =522+ 773
(SKG method) T 973 +1972—5z+1 24 1—z1
3, -1 _ —2 -3 _ =
Adams-Moulton 5th order integration E Z(z-1) L 251 + 64z 264777 + 1062 19z
T _251z* 4+ 64273 — 264z% + 106z —19 | 720 1—2z"1
AS"AEI‘,’“';A'pha' ‘f_)‘z 0; ) 1,4301224 22 -1 T 14138245271 +0,4777922
(Stabilized version of combine T 2%+ 1,38245z + 0,47779 1,4301224 1-z2
trapezoidal and Simpson rules)
Al-Alaoui - Schneider 2 _ -1 _ -2
(Stabilized Adams-Moulton 3rd order 1,39818 z -1 T 1 +0,466072 0,06788z
T z%2 +0,46607z — 0,06788 1,39818 1—2z772

integration rule)

Al-Alaoui - SKG
(Stabilized Adams-Moulton 4th order
integration rule)

1,1272 22(z—1)

T 1+0,168z71—0,0607z72+ 0,0199z73

T z3+0,16822 - 0,0607z + 0,0199

1,1272 1-2z71

Al-Alaoui - Two segment rule
(combined Simpson 1/3 and trapezoidal
integration rules)

Hy(z)=aHg 3(2)+(1-a)Hy(2)

15 z2 -1

22T a=02
T 722+162+7 &

T 7+16z71+7z72

15 1—22 » @=02

Al-Alaoui - Three segment rule
(combined Simpson 3/8 and trapezoidal

80 z3—1

3T 13427271+ 27272+ 13273

; . - , =0,1 ) =0,1
integration rules) 3T 1323 + 2722+ 272+ 13 ' © 80 1-2z73 ¢
Hy(2)=aHgzg(2)+(1-a)Hr (2)
Al-Alaoui - Reduced four segment rule 945 z2—-1 2T 217 4 512,84632° 1 + 217272
(combined backward rectangular and Two 2T 21722 + 512.8463z + 217 945 1= 22
segment integration rules) ’
Hy(z2)=aHp(z)+(1-a)H,(2) a=1/20 a=1/20
2 _ 1 =
Al-Alaoui - Stabilized two segment rule 88438 z—1 T 748254327 +24333z
T 72z%2 48,2543z +2,4333 8,8438 1—272
Al-Alaoui - Stabilized reduced four 945 z2—-1 2T 393,0387 + 434z~ + 119,8075z 2
segment rule 2T 393,0387z% 4+ 434z + 119,8075 945 1—272
- 24 z(2z*—-z-1) T 17451z +32z72+273
Hamming integrator-1 il —
T 1723 +512z24+3z+4+1 24 2—z1—z2
- 24 z(3z2-2z-1) T 25+91z7 ' +43z72+9z73
Hamming integrator-2 - —
T 2523 +9122 4+ 43249 24 3—2z71—z72
- 24 3z2°—-z%-z-1 T 26+ 73z71 430272 + 10273
Hamming integrator-3 - _
T 26 3+Z322+3OZ+ 10 24 3—z1—2722_—7273
15z°—4z-1 -1
Graham-Lindquist integrator-1 i —— _ 2+d4z
T z(2z+4) 5 _—47-1_ 42
11723-922-9z+1 -1
Graham-Lindquist integrator-2 b T 6+18z
T z2(6z +18) 17 —9z-1—_-9z-2 4 z-3
137z* — 823 —-362z2+8z—1 12 + 48271

Graham-Lindquist integrator-3

T z3(12z + 48)

37—8z"1—36z"2+8z3—z"*

NGO integrator

( T ) (z + 2,3658)(z — 0,2167e/%°%27) (z — 0,2167e/2427)

2,7925

z2(z-1)

NGO differentiator

z?(z—1)

(1) (2,7925)
T)\2,3658/ (z + 1/2,3658)(z — 0,2167e/%9427)(z — 0,2167e/09427)
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3. DESIGNED TOOL and APPLICATIONS

In this study, an application/simulator was designed using MATLAB App Designer [22] for s —to — z
transformation/mapping, which is one of the most important application areas of signal processing. With
this application, discretization operations can be performed with numerous different methods easily,
quickly and effectively. In addition, the effectiveness of the methods can be clearly observed by
performing single or comparative analyzes, because the application produces many numerical and
graphical results (transfer functions of systems, zeros, poles, responses, etc.). Besides, it supports a better
understanding of s — to — z transformation/mapping methods with its use in the field of education.

The first application is a fifth order filter with real poles, two real zeros and a dc gain of 1/1152
(sampling time is 0.01 s) [55] which is given with following transfer function:

s2+25+0.75

H(s) = $5427.55%+261.553+103953+16685+864 (5)

Poieszeros  Respanses

R
s

(b)

Figure 2. The screenshots for first application
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The results of discretization using bilinear (Tustin) method are given in Figure 2. As seen in Figure 2, in
the designed application, the numerator and denominator coefficients of the transfer function of the
continuous-time system are entered, the sampling time is determined, and the method to be used is
selected. As a result of the analysis performed, the transfer functions of both continuous-time model and
its discrete-time equivalent are shown and the pole-zero maps of these transfer functions are plotted, and
also the pole-zero numbers are given (Figure 2a). In addition, the impulse and step responses and Bode
diagrams of both continuous time model and its discrete-time equivalent are plotted (Figure 2b).

The second application is a sixth order Butterworth filter (sampling time is 0.01 s) [3] which is given
with following transfer function:

1

H(s) = (s2+2Co0s(5m/12)s+1)(s2+2Cos(m/12)s+1)(s2+V2s+1) (6)

The results of comparative discretization using Schneider transform, trapezoidal integration (bilinear,
Tustin) method and Al-Alaoui-Schneider transform are given in Figure 3. In the comparison screen, the
transfer function of the continuous time system is discretized with 3 different methods selected; the
numerator and denominator coefficients of the discrete time transfer functions and their zeros and poles
are listed. In addition, the unit impulse and step responses of discrete-time systems obtained by both
continuous-time and comparative methods are plotted comparatively. Thus, the discretization efficiency
of each method on the relevant system can be clearly observed.

[ — B
Continuous-time system ( O l
1 Analysis
Hisi= ~ ;
58+3.8637s5+7.464154+0.14168°+7 464 15°+3.863Ts+1 [ ) Back |
Method - 1 Method - 2 Method - 3 I
| Schneiger transform ¥ | | Trapezeidal integration (Bilinear, Tustin} - | | Al-Alsoui-Schneider transform - |
Coeffcients of transfer function [ Hiz) ] Coefficients of transfer function [ H(z) | Coeficients of fransfer function [ Hiz) |
Numerstor Denominator Numerstor Denominator Numerator Denominator
24543200 1.0000 12281202 1.0000 10156207 1.0000
4.2786e-08 55817 7.7235e-08 56140 23397e-07 -5.5850
| 1.85722-07 12,0821 1.8321e-07 13.1437 28952e-07 13,0401 |
| 32217e-07 -16.0053 2576207 -16.4262 1082307 -16.1827
| 20375207 110343 1832107 115568 -1.0043=08 112523
7.84162-08 -3.9763 7.7235e-08 -4.3208 -1.5387e-08 -4.1264
-5.0038e-08 0.5450 12881202 06786 -2.04442-10 0.6002
Poles snd zeros of discrete-fime system Poles and zeros of discrete-fime system Poles and zeros of discrete-fime system
Zeros Foles Zeros Foles Zeros Foles |
l -1.7227 +0.0038 0.0580 + 0.0040; -1.0031 + 0.0 0.6700 + 0.0038i -0.5848 + 0.0000i 0.0470 + 0.0024; |
-1.7227 - 0.0036i 0.8600 - 0.0940 -1.0081 - 0.0015 0.0700 - 0.0030 -0.5838 + 0.0018i 0.8670 - 0.0824i
| -1.7166 +0.0072i 0.9284 + 0.0858; -1.0000 + 0.0035 0.8285 + 0.0658i 0.5836 - 0.0018: 0.9286 + 0.0624;
-1.7185 - 0.0072 0.8284 - 0.0653i -1.0000 - 0.0035 0.9295 - 0.0856i -0.5816 + 0.0018i 0.8286 - 0.0634i
-1.7102 + 0.0038i 0.0076 + 0.0235; -0.0068 + 0.0 0.8076 + 0.0235i -0.5216 - 0.0012: 0.0007 + 0.0224;
17103 - 0.0036i 0.8076 - 0.0235i -D.0060 - 0.0015 0.0076 - 0.0235 -0.5806 + 0.0000i 0.6007 - 0.0224i
0.1168 + 0.0002i -0.0017 +0.0083i 0.1170 + 0.0000i -0.0011 + 0.0048 |
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Figure 3. The screenshots for second application
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4. CONCLUSIONS

In this study, an application/simulator was designed out for discretization, which is one of the most
important application areas of signal processing. Continuous-time systems need to be discretized in order
to be used with discrete time systems (microprocessor, computer, etc.). However, discrete-time
equivalents of higher order continuous-time systems are extremely difficult to obtain manually. Complex
mathematical operations are performed especially for obtaining of discrete models with high accuracy
(equivalence). With the software tool designed in this study - regardless of the degree of the system -
discretization can be done easily, quickly and effectively with many different methods. In addition, the
most suitable models can be determined with comparative numerical and graphical results.
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