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Bes Boyutlu Doniistirilmiis Weyl-Yang—Kaluza—Klein Kiitlecekim Teorisi
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Zonguldak Biilent Ecevit University, Faculty of Science, Department of Physics, Zonguldak, Turkey

Abstract

We study the case in which the five dimensional theory is the transformed Weyl-Yang—Kaluza—Klein gravity. The dimensionally
reduced equations of motion are derived by considering an alternative form of the main equation of the theory in the coordinate basis.
'The conformal transformation rules are applied to the invariants. We also discuss the possible specific cases and the new Lorentz force

density term, in detail.
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Oz

Bes boyutlu teorinin, dontstirilmiis Weyl-Yang—Kaluza—Klein kiitlecekim oldugu durum incelendi. Boyutsal olarak indirgenmis
hareket denklemleri, teorinin ana denkleminin alternatif formu diisiniilerek koordinat bazinda tiiretildi. Degismezler i¢in konformal
dontisiim kurallar: uyguland:. Ayrica olasi 6zel durumlar ve yeni Lorentz kuvvet yogunlugu terimi ayrintili olarak tartigildi.

Anahtar Kelimeler: Weyl-Yang—Kaluza—Klein kurami, Boyutsal indirgenme, Konformal déntisiim, Alan denklemleri

1. Introduction

Quadratic curvature Lagrangians have been used by many
researchers to generalize or expand Einstein’s theory of
general relativity for over a century (for early works, see, e.g.,
Weyl 1918, Weyl 1919, Pauli 1919, Weyl 1921, Eddington
1924). The simple alternative forms of the scalar curvature,
R, could be the square version of the scalar curvature,
R’ the Ricci tensor, R,..R™, or of the Riemann tensor,
R,.;..R*", and a linear combination of those, such as
the well-known Gauss—Bonnet invariant (Lanczos 1938,
Lanczos 1949, Lanczos 1957), as one step forward. Among
them, mathematically, the most similar to the Yang-Mills
gauge theory (Yang and Mills 1954) is the following matter-

free gravitational action quadratic equation in R :
I=2 | d'sy=g R R (1)

where ¥ and ¢ represent the coupling constant and the

*Corresponding author: kuyrukcu@beun.edu.tr

Halil Kuyrukeu ® orcid.org/0000-0002-5585-9838

@ ®@ This work is licensed by “Creative Commons Attribution-
I—-TBT NonCommercial-4.0 International (CC)”.

determinant of ¢, respectively, on a four-dimensional
(4D) spacetime M. By accepting that an affine connection
is a Levi—Civita connection, i.e., torsion is absent, and
considering a Palatini variational method, i.e., the metric
{g} and connection {I'} are assumed to be independent
variables (Palatini 1919, Misner et al. 1973), the connection
O0{C} of this curvature-squared action (1)
provides the field equation without matter (Lichnerowicz

1958, Loos 1963, Loos and Treat 1967, Yang 1974)
D.R*.;;=0 2)

variation

which is known as Yang’s gauge gravity equations in
the literature. The third-order equations (2) are more
complicated than well-established Einstein’s field equations;
however, they include Einstein’s vacuum solutions in a
natural manner. From the relation

D;IR#MJ = DXRL'O‘ - DGRU/I = 07 (3)

which is derived from the second Bianchi identity
DR =0, where D refers to the typical covariant
derivative, the obvious vacuum solutions, R,.=0 and
R,.= Ag., for any constant A, satisfy the equivalent
equation (3). Conversely, the Palatini variation of the action
(1) with respect to the metric {g} without matter can be
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written as follows (Stephenson 1958, Fairchild 1976,
Fairchild 1977):

RupsoR =5 . Reuso R = 0. (4)

'The field equations (4) are initially considered to eliminate
nonphysical solutions (Pavelle 1975, Pavelle 1976, Fairchild
1976) even though numerous physical ones exist in the
literature (Pavelle 1974, Thompson 1975, Thompson 1975a,
Ni 1975, Pavelle 1978, Bagkal 1999, Kuyrukcu 2013,
Kuyrukeu 2021) (for more historical notes, see, e.g., Dean
1999, Kuyrukecu 2021). Besides, Baekler and Yasskin (Backler
and Yasskin 1984) noted that the standard variation of (1)
produces the equations, which is fourth order for a metric

R/zMURvMG - %gvamhRmM + QDADO_RG/IAT = 07 (5)

which is Eddington’s equation (Eddington 1924). They also
noted that “if a metric (or tetrad) satisfies the torsion-free
vacuum equations (2) and (4), it also satisfies the vacuum
Eddington equation (5), but not vice versa”. For the case in
which torsion is zero, but the matter Lagrangian term exists
and x = 1, the field equations (2) and (4) become

DuR#Ma = Sﬂmy (6)

R#MdRz:MG - %gﬂerMaRmM = va, (7)

where Sy, represents the canonical spin tensor and T,
represents the canonical energy-momentum tensor in the
aspect of the quadratic Poincaré gauge theory of gravity
(Baekler and Yasskin 1984). Camenzind and Fairchild
also considered the equation (7) as an energy-momentum
tensor of this alternative theory rather than the typical field
equations (Camenzind 1975, Fairchild 1977). Kilmister et al.
(1961) also introduced the current term S, , which satisfies
a covariant conservation property of the form D,S'" =0,
but they could not clearly define what it was. Besides, the
cyclic symmetry property of S ,i.e., St = 0, is proposed
by Oktem (1985). Furthermore, by considering Einstein’s
field equations, G, = T, along with the field equation (3),

the source term can be written in the following forms
S/hﬂ* = DA (Tz'ﬂ_%gvdT) _DG (Tvﬁ_%gMT)7 (8)

where 7T\, represents the covariantly conservative,
D, T*" =0, energy-momentum tensor, whose trace is
T'=1T.,. This current density term Si, in (8) was first
used for Yang—Mills field equations with the SO(3,1) gauge
group by Camenzind (Camenzind 1975, Camenzind 1975a,
Camenzind 1977, Camenzind 1978, Camenzind 1978a).

The metric is a nondynamic variable, i.e., a priori in this
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sense. Later, Cook used Camenzind’s matter current term
(8) by considering a formal analogy between Einstein’s
theory of relativity and classical electrodynamics, which
means the connection {I"'} and Riemann tensor {R}
correspond to the vector potential {A} and electromagnetic
field tensor {F}, respectively, to solve vacuum energy,
cosmological constant, and dark energy problems (Cook
2008, see also, e.g., Chen et al. 2013). However, even if the
term (8) is suggested to solve the source-term problem of
this simple gravity model, it cannot be obtained from an
action principle, meaning that it is inconsistent.

'The main motivation in this work is to extend and generalize
our previous results (Bagkal and Kuyrukcu 2013) to the
Einstein frame in which the Ricci scalar has its canonical
form by considering that the five-dimensional (5D) theory
is the Weyl-Yang—Kaluza—Klein (WYKK) theory of gravity
(for non-Abelian WYKK theory, see also Kuyrukcu 2014).
Weyl was the first to consider using the R.,..,R“" invariant
in the action to unify gravitation with electromagnetism by
employing the principle of gauge invariance, the vacuum
gravitational field equation (2) was proposed by Yang in
an integral formalism for gauge fields without additional
equations (4) and (5), and Kaluza and Klein (KK) assumed
that gravitation and electromagnetism can be unified in
the 5D spacetime (Kaluza 1921, Klein 1926, Mandel
1926, Klein 1926a). Then, we can prefer to call this higher-
dimensional model the WYKK theory of modified gravity
rather than just KK reduction of a quadratic gravity even
though they are all different situations. Conversely, we can
note that the field equations (2), (4), (6), (7), and (8) are
also known as Stephenson-Kilmister-Yang—Camenzind
equations in the literature. In this sense, we take advantage of
the horizontal lift basis that is given by Misner et al. (1973)
for faster calculations rather than the differential forms
available in the literature (Pope, Perry 2009). Moreover,
the dimensionally reduced vielbein components of the
curvature tensor, which are important for the considered
model, are explicitly presented in the opened-notation form
rather than the compact-notation form. The possible special
cases are also investigated and discussed, along with the new
Lorentz force density term, in detail. Before we attempt to
obtain the reduced conformal equations, we wish to revisit
our previous work (Bagkal and Kuyrukeu 2013) to explain
how we can use an alternative equation (3) to derive the
field equations for the reader’s convenience.

The layout of this paper is as follows: In Section 2, we present

a brief review of the 5D WYKK theory of gravity and
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derive new accurate field equations, in particular. In Section
3, the transformed equations of motion are found for the
generalized KK metric ansatz. Section 4 is concerned with
obtaining the reduced form of the Kretschmann invariant,
RuiR"" , (Kretschmann 1915) both by applying a circle
reduction mechanism and performing the conformal scale
transformations in the so-called Einstein frame. Section
5 is devoted to investigating special cases of the reduced
equations. In Section 6, we finally present our findings and
future work.

2. Revisit of the Reduced Equations of the WYKK
Theory

As usual, the 5D standard KK action, I, is given by
. 1 , .
1= W-//;t d4xdy\/ng, (9)

on the 5D manifold M with compactification of the type
M=MxS8", where M is the usual 4D spacetime as
used previously, and S' has the geometry of a small circle.
Conversely, R, #%,and § refer to the ordinary 5D Ricci
curvature; the coupling constant, which is related to the 4D
coupling constant, ¥ and the radius of the fifth dimension,
r,as X*=x* | dy=2nrx’

e., §=det(guv), respectively. Here the classical metric
ansatz of the theory, which is independent of the fifth
dimension, becomes

) _(9.(@) + ¢ (2)Au(2) A (z) ¢*(2)Au(2)
petan)=( LS o boo

and hence F @4/ —det(g,.) ¢F Moreover, ¢ (z)
is the dilaton field, A, (z) is the gauge potential, and G (2)
is the 4D metric tensor in the usual manner. Kaluza also
assumed that the derivatives of all the fields with respect
to the new fifth coordinate, y, vanish (Kaluza 1921). In
what follows, the hatted/unhatted fields are 5D/4D. We
can also introduce 5D coordinates as 2* = (z*,2°) or, in
short, = (x,y), where the capital curved Latin indices
are A,B,..=0,1,2,3,5, and the Greek curved indices are
u#,..=0,1,2,3.

; and the determinant of G,

For shortcut calculations, we can consider the Maurer—
Cartan exterior forms rather than the coordinate basis as
a type of strategy. In this fashion, the 5D line element,
G (z,y) = guvdz" dz" | takes the form

G(x,y) = HuE'QF", (11)

where the coframes one-form become

136

Eﬂ :Eﬂ

4 (z,9) (z), (12)
E(zy) = (@) [A(z) + dy],

and the 5D Minkowski or orthonormal met-

ric is Hap =diag(74,+1). Hence, we can write the
4D line element as G(z) =7.E"(2)QF () with
7w=diag(—1,+1,+1,+1), and the gauge fields as
A(x) =A;(z)E*(z), where all hatted indices refer to the
orthonormal basis, i.e., the flat indices. We can now obtain
the dimensionally reduced components of the spin connec-
tion one-form, I'is, and the curvature two-form R'; by
considering MaurerCartan structure equations (see, e.g.,
Dereli and Ggoluk 1990, Kuyrukcu 2013). However, we
prefer to transform the desired components in opened-no-
tation form rather than the compact-notation form to better
understand the structure of these equations as follows:

7, =T",

[ = %ﬁDFﬂm

[y = [ = —1 P, (13)
[ =—¢ ¢,

u=9"¢,

and

R o = R o — 5 9* (QF" Fy+ F*F— F*,F),

Risis= (oD"FM % (20" Fis + @iF"s — s F"3),  (14)
Risi=—¢'Dp" — %gozF“"F -

Note that R's,=—R"s:, and D@, =D,@, as well as
D, F,,and ¢, refer to the 4D covariant derivative, the
electromagnetic field tensor ie., Fj = 9:A4,— d:4,, and
¢, =D,p=09,¢. The same results, (13) and (14), have
already been discussed in the language of horizontal lift basis
(see, e.g., Bagkal and Kuyrukcu 2013, as well as Lee 1983 for
metric signature (+,-,-,-,-) and ¢(x) =1 ). Conversely, for
later convenience, we set

Ri= P, R: =Q;, Rs=U, (15)

and in terms of vielbeins, which are the orthonormal basis
vectors, the 5D metric takes the form §uy = A" A" v s,
where the vielbeins and the inverse vielbeins are

}ALA :(]:\Lﬂv ]"\Lﬂ;?):(hﬂr 0)
" ]’:I/Sv }"}/55 ¢A1: ¢ ’

(B2 1) o)
A hs/z hSS _A/& go—l )
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which sat1sfy kY = 8%, (" k", = 6%,) and

RY kP = 6Yy (W sk, = 8".) in the five (four) dimensions.
Hence, the final results of the components of the 5D Ricci
tensor are calculated by considering the vielbeins (16) in the

coordinate basis as follows (for the metric signature (+,-,-,-

,-), see, e.g., Liu and Wesson 1997):
R.=Pu+¢A,Q.+0AQ.+ ¢’ AAU,
R

=9Q.+ ¢*A, U, (17)
Ry=9¢'U,
where
Pu=R.— 3¢ Ful."~¢ D¢,
Q.=—5¢(D.F"+3¢ " 0,F"), (18)

U=—¢"(D, 9"~ °FuF™).

The next step is to obtain the corresponding equations
of motion. Thus, we consider the 5D Einstein equations
Gz =0 or, equivalently, R.; = 0; i.e., the Ricci curvature

tensor vanishes, as usual. Hence, we have

RAB:O,ﬁ

R55:072> WIO,

R;,=0,and U=0,-Q.=0,

R,.=0,and U=0, and Q.=0,= P.. =0, (19)

which means that the solution set, Sk« , of the standard KK
theory turns out to be

SKK:{¢MVZO, arzo,

Let us now investigate the dimensionally reduced field
equations of the WYKK theory, where the source-free field

equations become DiR"sp=0 in the five dimensions.

U=0}. (20)

It is useful to consider the equivalent form (3) of field
equations (2) to obtain the computational advantage in the
orthonormal chart, as follows:

DARAB(,‘D = DCRBD _DDRBC'- (21)
If we define
DAR?IM& = P@Z&, DARAS% = S/‘la,

(22)

DARAM’S = Qaz, bARAszs = Uz,

and by substituting the expressions (15) into the equation
(21) together with the connection terms (13), performing
some manipulations, and then employing the vielbeins
(16) to convert the resulting equations into the desired
field equations that are written in coordinate basis, we find
reduced equations in the following forms:
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DA Mo‘
_¢A/‘ QW + (0 A’I'Ao‘ U/K -

Pvm + §0A S/ld + §0A QM
©’A,A; U,

-ADARAS/IG = ¢S/Irf + ¢2An UA - ¢2A/1 UG; (23)

DARAM5 = _DARAvSZ = @QM + ¢2A1'U/l7

DARAS/IS = _DARAW = (02U/1,

where

PMG = DA ¢ﬂ€ - DJ¢M + %@(Evg@/l - F‘Mag + 2F}gaqv)7
(24)

S/lo = D/laa _DaaA - %(0 (Fjpﬁpa _Fg()?px) + (OFMW,
(25)

QWK :DAa'zv+¢7l (¢1:QK+¢/IQ ) §0F @0/1 §0E/1(I/{
(26)

U, —DA(L(+ ¢_1¢Aﬂ @FApQ §0_1§0 Pp/l (27)

There is no doubt that equations (24) — (27) naturally
contain patterns of (18), as expected. As a result, we have

D,R"5cp=0,=

D,R:=0,= 1T,

D,R*;=0,and U;=0,= Q. =0, (28)
D.R*,,=0,and U,=0,=S,, =0,

D.R*,, =0, and UA 0, and Q,, =0, and
Si=0,=P,=

In this case, the set of solution of the WYKK theory
obviously becomes

Swyrrx = {PMJ = 0, SM = O, QM =

As can be easily seen, equation (25) can be obtained from
(26) using Sio = Qu—

is not necessary. Hence, the final forms of dimensionally

0,U,=0}. (29)

Qss, meaning that equation (25)

reduced field equations are given by

DA ?w _Dg ?’M + %@(Emaﬁ _E:/‘\ad + 2F/laaz:) = 0, (30)

D.Q+¢ (9. Qi+ 9:Q)+ 5 PF Pri— 5 0F U =0,
(31)
09" Po=0, (32)

DU+ ¢ o U~ ¢FApr

and any solutions of the KK theory, (20), solve the reduced
equations of the WYKK theory (30) — (32). It is essential
here to note that the {P..,Q., U} set (18) can turn into

the {P..,Q., U } setvia
Pu=P.,  Q=—3¢Q, U=—¢ U (33)
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The reduced field equations, which can be written by
considering the {%.,Q., U} set, have already been given
in our previous work (Baskal and Kuyrukeu 2013). However,
the expressions (30) — (32) containing the { P, Q,, U }
set clearly seem to be more accurate than those containing
the { P, Q., U} set, and we now have the three equations
corresponding to the three variables. Another way of
obtaining the field equations is the 5D WYKK action,
which is given by

j: %'/‘ d'ix dy\/ngABCDRABCD

By substituting the dlmenswnally reduced form of the
Kretschmann invariant, K = Rucp R, which is found to
be in Bagkal and Kuyrukcu (2013), into action (34) and
dropping the total derivative terms that can come out with
the help of Leibniz rule from the action gives

(34)

o =g @R =50 R F*

+%¢4 Fo F"F, F + %gﬁFWFMFAgF"“ +6 (2@ Fl "
—0,. @ FuF™*) + 49(¢"F*" + ¢"F")D,F,,

—@*F" D, D*F,,— 20F"“F" ,D,¢,— 40 ¢"D"D, @] .
(35)

Finally, the independent variation of action, I[g,I",F,¢,],
(35) with respect to the four variables gives the four field
equations. The Palatini variation of the above action with
respect to the metric {g} should directly produce the
dimensionally reduced equations of (4). However, we cannot
directly obtain equations (30) — (32) from the variational
principle, as expected. For instance, the connection variation
01T} leads to an equation that can transform into (30)
by using various identities (which are given by Baskal and
Kuyrukeu 2013). Additionally, to obtain expressions that
can be written in forms of (31) and (32), we should vary the
action with respect to the field tensor { F'} and the partial
derivative of the boson fields {¢,} rather than the usual
variables {A} and {¢}, respectively; otherwise we cannot

obtain the proper equations (Celik 2021).

3.The Reduced Field Equations from the
Transformed WYKK theory

To obtain the field equations that are not only dimensionally
reduced but also transformed from the conformal rescaling
procedure, it is useful to first write the D-dimensional
Weyl-rescaled Ricci scalar, B (Hawking and Ellis 1999,
Dabrowski et al. 2009), as
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(D-1)(D-4)E7£.8",
(36)

R=&7[R-2(D-1)&'D.E" -

where the tilde quantities denote fields in the Einstein
frame, as usual, under the Weyl rescaling of the metric with
a conformal factor, £(z), as follows:

Juw(z) = E*(2) g (). (37)
After that, for D = 5, the KK action (9) changes

3 1 =

I=5 A)fMd4x dyJ—4 R, (38)

), drdy Vg & QE[R—8E'D,E —4E7E,EY)
39)
by using V=g =E&"y/—¢g. Hence, to obtain the correct

coefficient of R, meaning that £*¢& ™ = 1, we must choose
& = ¢ 'Therefore, the conformal transformation of the
metric (10) becomes

(co’/ "9t @ ALA <p““A#)

4/$AU g04/3 (40)

G

Inspired by equation (40), one can write a generalized KK
metric ansatz, which is the special case of the DeWitt
ansatz (Cvetic et al. 2003), in terms of the actual 4D fields
as follows:

A eZaw
gun =

where the ¥ =¥ () is a new scalar field, and @ and B

are arbitrary constants, which will be determined later. The

.+ 2By ) 2By
gt eAA, e A#>7 (41)

62/3'// Az,« eZW

obvious choice of the vielbein basis is inspired by coframes
(12) as (see, e.g., Pope, Perry 2009).

E'(z,y)=e""E"(2),

g (z,) (2) @)
E(zy) =" [A(2) + dyl.
By using the relation between dual fields,

EP(X4) = ix, 2" = 63, the basis vectors are explicitly
found to be

i, (zy)=e ey, —As(2) Lx, ],

is, (2,y) W()[ #(@)ex] 3)
4}?;(1",?/)_ ’ ‘Xv

where the ¢x,E° =0, is also satisfied in four dimensions.
We can employ the horizontal lift basis formalism, which is
the easiest way to obtain not only field equations but also
invariants. For this purpose, the 5D connection coeflicients
can be written as follows (Misner et al. 1973):

[age = %[ Exefan + Exofiac — ExaGoe + Fane + Facn + fom ). (44)
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Here, the commutation coefficients, fi = —fu’, are
evaluated by [Zx,2s5,]=fi is, and the block diagonal
G = diag(gm, +1). 'The
commutators of the anholonomic basis vectors (43) now
take the form

JAcﬁfvj =—qe™ (Iﬁ# 8%2 -
]Acms — _e(ﬁerI)wFM
Jis=—fo =—Be Y.

Hence, the required higher-dimensional components of the

connection are found by considering (44) and (45):

metric  becomes nonzero

¢i~3/&2)7
(45)

=T —ae™ (Y gu)—¥.6"),
/&%: f‘/livg — %66 zawF#
F)#z = IA“#IE — %e(ﬁ Q«INFM, (46)
f‘#w — _Be—m&wu’
[uws=HRe Y,

Conversely, in the noncoordinate basis the Riemann tensor

is defined by Misner et al. (1973)

A A A AL oA A AL
RABCD = 2X( FABD - 25(,‘;1—“4[?('7 + FAEC FEBD - FAEDFEBC‘ -

(47)

Now, the dimensionally reduced vielbein components of the
curvature tensor can be obtained using (43), (45), and (46)
in (47)

L e %62('97%% (2F" .Fys + F";Fs — F";F,3)
+ae” (guDs¥" — g Diyp" + 8% Dip — 63D 1)

+ate ™ [lﬁﬂ (%gw - lﬂﬁgm) + %W (gaﬁ’% — G 6,;2)

Y. (Y073 —¥:6"%)], (48)
Rﬂsjﬁ — _%e(B*MJWDﬂFM

_’_%(a _ B) e(ﬁ—:}a)w (ZQﬂFz@ + §0A’Fﬁa _ §D@Fﬂj) (49)
+%ae(ﬁ*3d)w ,#p (ij 8ﬂ5 _ F%S%),

Rﬂsjs — _Be—zawDMD/l _ %ez(ﬁfza)wFﬂﬁFM (50)

+e[(2a— ) BY v -

After introducing R, =

aBy v, 0"l

P, and R: = Q. together with
Rs = U and finding the vielbeins and the inverse vielbeins
as
i e”h", 0
M\ A, )
W :( Ry 0 ) G1)
T\ A, )
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r AEE}. 2.

we obtain the following components of the Ricci tensor in
the coordinate basis

Ru=e¢"P,+e " A,Q,+ e "A,Q,+e* A,A,U,
B Q.+ W AL,

Ry =e"U, (52)

where

¢)M — e—zawRW _ %ez(ﬁ—za)wFWFu o __ e—zw [angpwp

+Q2a+B) Dy — e [(2a + B) ag ¥, ¥°
—(2a°+2ap — B)Wﬁ]

1

Q f@ﬂ da)\ﬁD Fo _ B (B- da)\/'prp”

U=—Be ™" Dy’ + %e“"“ CF = (2a+ B) Be Y g
(53)

Finally, one easily finds the solution set of the conformal

KK theory as S ={Pw=0,Q =0,U=0}. Next, we

can introduce that

~ ~

A4 —
DiR% = 0AGs
Aan &
DiR"s5 = QM,

.Z\)‘RA‘M = SA@
e (54)
DiR"s = Us.

Then, we can derive the desired field equations in coordinate

basis, as mentioned before, by substituting the connections
(46) together with the { P, @, U } set in (53),and use the
vielbeins fields (51) in the following forms:

DARAU/IU = em'llpula + e<2a+£WAu S/la + e(ZKHBNAo @wl
_6(2(1%)‘/’144‘@@0 + G(MM)‘/’AUAGUA _ G(MM)‘/’A,,AAUM
A= e(QwﬁNxS + ety @ — ey, [[j
— _DARA[/5/1 2a+ﬂ ‘I/Q + e (a+2B) wA U/"
— _DARA:):) (a+2E)|/rU/‘

)

(55)
where
P =e“{D:Py—D,Pu
+ 56N (F,Q,— FuQ, + 2F.0Q))
T [V (goaPos = goo Pri) + %% — ¥, Pl
Siw=e"D:Q,—D.Q:— 5" (Fi*Pos — F.*Pra)
+e "V E U+ a(YQ, — ngx)],

(56)

(57)

a) wyé/l
_6 B*ﬂr)llfFM.i(]’

éu} = eimll [D}Qv_‘_ agvllﬁpép + (B -

+B¢/léu + %e(ﬁiawFuOi)ﬁ/K - (58)

U,= —aw(DA(u_,_Blh _leu@ WFA”QO—BI,W@M).(S‘))
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In this regard, we have the solution set:
SWYKK = {PMU = 07 S/la = 07 QM = OyU/l = 0} .

is easy to see that Sio=0,—Q,, so that we can ignore

Again, it

equation (57) without loss of generality. Hence, the final
forms of the reduced field equations of the transformed
WYKK theory become

D/I@va _D0¢M + %e(ﬁ—a)w (Fuaé/l _FMQU + 2F/Iaéu)
+a’ [wp (gM @pc - gud @M) + ¢/l @uo - ¢0‘ @u/l] - 0,
D.Q,+ag. ' Q.+ (B—a)y,Q;+ %e(‘f’“”Fup o
—%ew"’)‘”FM([{ =0,

DU+ By U~ 5" FrQ,— By Prs = 0.

(60)

As expected, the corresponding equations of motion are
more complicated than those given in (30) — (32).

4.'The Reduced Actions from the Transformed
WYKK Theory

By considering a popular dimensional reduction method,
the quadratic curvature term can be expanded as

«:RABCDRAB’CD :R,m)mej& +4AR/1525R/25M+ 4RQSA‘SR&5A:S-
(61)

As is well-known, the invariant does not depend on the
choice of basis. Thus, by using directly (48) — (50) and the

2R is F*"F”” = R is F* F* and  after long but
careful manipulations and reorganization of the terms, we

relation

have the following reduced expression:

~ B 3 L
7( =e day [R#MUR;:MU _ 762(5 a)wR#MUFpUF/IU

+%e'“£’”)"FWF””FMF“’ + %e’“ﬁ”’)‘”FM,F”FmF”

+(9a*— 14af + 6% * "y . Y' F,, F™

+2(3a*—2aB —2R%) e Y Ny F

+4 (B — a) e " (Y F* + " F*)D,F,,

+e* Y D,F,,D'F* +23a— )" Y F“F",D, ¥,
+4(2a*+ B°) D, Y. D"y’

+4ae*® "y F,,D,F" + 8a(ay ., — D, ¥,) R"

—Aa*Y 'R+ 4a° D,y D,y

+8a (2a*+ B ¥ ¥ D,y —8(2a° + 2aB* — B) ¥ "Y' Dy,

+4(3a" + 40’ 5* —2aB* + B) Y .Y v, ¥,
(62)
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where the 4D Ricci tensor and Ricci scalar appear in the
above conformal equation. Furthermore, the comparison
between the invariants (35) and (62) causes us to introduce
new interaction terms such as YR, ¥*Dy, and ¥*.

Another way of obtaining the reduced Kretschmann scalar
(62) is directly using the conformal transformation rule of
the squaring curvature R,..,R*", which is expressed as
(see, e.g., Carneiro et al. 2004, Bao et al. 2008)

RMMGR#MG =e® {RuMoR#MU +8 (5# éu —D, Ev)RW
+4[D,&"D,&"+ (D—2)D,&,D"E’]

B ER+S(D-EEDE—EEDE)
+2(D-1)(D—2)€.6"€,€},

if the metric changes as

g/m (.7/') = 625(1)9/41) (.T) . (64)

Conversely, the 5D metric (41) can be rewritten in terms of

4D fields as follows:

Gt PR B PRl | )
Iz ufly iz
)

Z(B*H)WAU 62(E*a)w

(65)

Na ¥l

MN = 6204//(
€

which means that the new conformal factor is equal to
E(z) = ay (z). Hence, equation (63) changes the following
result for D=5

ﬁABCD}:zABCD = e "“{RupcprR"™ + 8ar (0/1},4 I;B —D. E&B)RAB

—4a*Y W R+ 4a* D Dp” + 3D, D]

+240° [ b D” — P Do ] + 240 b s
(66)

Moreover, a comparison between metrics (10) and (65)

E=av@  As aresult,

terms R upen R in (35), the anholonomic components of

leads us to obtain a new potential term, e

R* jand R ,which comes from equation (14), rescale under
the redefined scalar field, ¢ (z) =e% "%  transformation.
For example, the curvature invariant changes accordingly in
the following form:

R=R—2(8—a)¥ ¥ —¢"* " FuF" = 2(8—a)D,y".
(67)

We should also calculate the following necessary relations of
the function ¥ (z) as

Dﬂ% = Dﬂ¢ﬁ7
D#W% = Eﬁ‘## = %6(5WW¢A’F%
Dsyrs=(B—a)y ¥,

(68)
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and it is clear that ¥;=1v’=0, by considering the new
versions of the connections (13), which are obtained the

same way
[ =T%,

s, = %ew—ame

f*ﬂsﬁ — f‘fzgg — _%e(ﬂ—awFﬁﬁ, (69)
[ = —(B—a)y’,

D= (B—a)y,.

As a mathematical challenge, if we substitute all results into
equation (66), after careful calculations, we exactly obtain
equation (62). Conversely, in the lower dimension, the
modified KK action (38) is transformed into

1= ZL}’EZ[M d'z dyy/—ge e

x[R—2(3a*+2aB+ B) Y . y" — %y(ﬁwawFW (70)
—2(3a+ B)D.y"],

where we use R that is obtained by (48)-(50), and
V=g =ePp/—g=e""""/—g for D=5. We can find
exactly the same result by considering the rescaled curvature

scalar in Einstein frame, which is once again given by

Carneiro et al. (2004) and Bao et al. (2008)
R=¢¥*[R-(D-1)(D-2)&.6"—2(D—-1)D,&", (71)

together with the equations (67) and (68).This is the easy way,
if one wants to obtain field equations from implementing
the least action principle to the action after computing the

Ricci scalar by only considering (71).
5.The Special Cases

It is easy to read off from the action (70) that to rid of the
coeflicient of the Einstein-Hilbert term, i.e., to obtain
minimally coupled gravity, we must choose S =—2a.
Besides, the term ¥ ,¥* can be a canonical normalized
term if @*=1/12, ie., (@,B)=(+1/2/3,F1/V3).
Note that, (a,8) = (—1/3,2/3) in (40) also satisfies the
condition 8 = —2«, and see Gibbons and Wiltshire (1986)
for (a,B) = (—1/@,2/\/5) . Conversely, fora D=N+1
dimensional spacetime, the proper values of the constants
become a*=1/[2(N—1)(N—2)] and f=—(N—2)a
in Pope, meaning that (@,8)= (£1/2/3,F1/v/3) is
obviously correct for N =4.The R term in (70) is also
compatible with the result of Pope for NV = 4, except for the
coefficient of the term D, " ,which is a total divergence and
does not contribute to the field equations, as usual. However,

Karaelmas Fen Miih. Derg., 2022; 12(2):134-145

we can say that it seems that there is a typographical error
in Pope because the same coefficient, i.e., —=2(3a + ), was
also obtained in Perry (2009). Finally, if we consider the
modified WYKK action from (62), then we have

j': 2}%2&de dy /_ge(4a+5)wef4a¢ [R;MMR#MG
3

eV R s P FY + gew’“)"’Fﬂ,,F’“FMF*"

+_€4(BWWFWFMFMFW

+ (92> — 14ap + 6B%) ey . ' F,, F*
+2(3a*—2af —2B%) Y Yy F
+4(B—a)e* " (Y F* +y"F*)D,F,,

+e* Y D,F,D'F*" +2(3a — B)e** " F*F* Dy,
+4(2a* + B*) D, , D"Y’ + 4ae** """ F,,D,F”*
+8a(ay ¥, —D.Y.)R” —4a* Y . Y"R

+4a*D, "Dy’ + 8a (2a* + B Y " D,y
—8(2a*+2ap* — B) Y "Y' Dy,

+4(3a' +4a* B° = 22+ B) Y. ¥ .y

ool pofeo

(72)

Now, we have to set 8 =0 to obtain a standard form of
R R™" . Hence, the two special cases are investigated to
find the new reduced equations in the following subsections:

5.1The B = —2a case
For B =—2a case, the field equations (60) are simplified

as follows:

D/l¢uo _Doi)u/l + %673(1'# (Fudé/l _Fu/lézf + 2F/Id@v)
+a [Iﬁp (gM {Dpd v ¢p/l) + lﬂx ¢ua - wg ¢M] = O,
DA@U + agu/llppép - 3a'l//uéj - 2a¢AQU

+%673&¢Fup NM - %67&1me7:( = O,

DA([/(_ 2Q|ﬂjﬂ_ %B%WFAOQP + 2&'¢p¢p)\ =0.
(73)
Here, the conformal KK equations {%,., Q., U} become

¢,uu = e*Za;bRw) - %eisawFﬂpFuﬂ - aeizawgﬂqulﬁp

—6a’e ‘//Mﬁm

Q. =3¢ D, F*, +3ac Y I, (74)

U=2ae™ D,y + %e’meF“,

from the 4D point of view. There is full agreement between
the above equations (74) and Pope for IV = 4. Conversely, for
action (72) one finds that
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I= ﬁ ./M d'zdyJ/—ge R R — %e’wR wis ' F%

+%e'“""’FwF““FMF‘“ + %e'”WFWF”FMF‘”

+61a’e Y Y F, F* = 2ae ' W F, F
—12ae” (Y F* +y*F*)D,F,,+ e’ D,F,,D'F*"
+10ae ™ F*' F*;D, ¥, + 24a° D\, D"y’
+4ae " F,,D,F” +8a(ay .\, — D, ¥,) R*
—4a*y W R+ 40’ D, Y DY’ + A8a*y W D,y
—144a° "y’ D, + 2040 ¥ b 0.

(75)
Finally, we can say that the quadratic term R, R*"
does not have its canonical form in this case, as expected.
However, to avoid this problem, we can set ¥ (z) = 0 which
is not an acceptable condition in the KK theories, so that
a nonphysical constraint, F,.F" =0, arises from the last
equation of (74).In fact, this is the well-known inconsistency
problem of the KK theories. Conversely, in the considered
model, @Q,and U in (74) are not necessarily zero, and even
if ¥(z) =0, we do not have F,.F” =0, but the Lorentz
force density term, f;=F,"D.F*,, appears in the last
equation of (73) as

[1=—Di(F..F"), (76)

which can also be obtained from equations (18) and (32)
if we recall that ¢ (z) = 1 in Bagkal and Kuyrukcu (2013).

5.2'The B =0 case

Let us investigate the reduced equations by assuming that
B =0. This strong restriction actually breaks the high-
dimensional structure of the metric (41). Nonetheless,
this case still deserves attention from the viewpoint of the
considered model, and @ is a free parameter. In this regard,
we have from equation (60) that

D/I¢ud _DJ¢M + %efa\// (Fzméﬂ _FMQU + 2F/ldéu)

+a [wﬂ (gu}xi)pa - gua @M) + lﬁ/l ¢UG - Ipy ¢M] = 0,
D/Iéu + agu/llﬁpép - awyé/l + %eia\bFup ~p/1
—Lewr, U=0,

DU~ 5e“FrQ, =0, (77)
where the corresponding equations of motion of the unified
theory are equal to
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Pr= Ry — ¢ F S — ae ™ (g, DY + 2D,

_2a26_2a¢ [g;wwplﬁp - l)b/l wUL
Qu = _%673(1prpr7

1

i{ — Z€_4a¢szFm7 (78)

in the four dimensions. Moreover, the final form of the
action (72) is similarly reorganized as:

1 o3
Izg—}eszdudnyg[RmR o2

+%e"””FﬂyF“”FMF‘” + %e”‘““’FwF”FmF‘”‘

+3a’e (3Y ' FuF"™ + 24 W' Fy, F™)

—dae” (Y 'F* +y"F*)D,F,,+ e D,F,,D'F*
+6ae* F“F*,D,\r, + 4a* (2D, ,D* ¥’ + D,y " D, y")
+4ae " Y"F,,D,F* + 8a (v ., — D, ¥,) R
—4a’Y, Y R+16a° (Y, Y" DY’ —¥" Y’ D)
+12a'Y Y ).

672J¢Ryl;/lgF#UFM

(79)

In this case, the coeflicient of the gravitational part R,
which does not have its canonical form, becomes e**
in (70), but the R, R"" term is canonical in (79). The
equation (78) also gives the D,F*,=0 and F,.F" =0,
if @=0and U =0, respectively, despite ¥ (z) # 0. As
mentioned before, this is not a problem for the WYKK
theory due to the structure of general field equations (77).
Actually, U+0 is the necessary condition in this case;
otherwise all equations in (77) fall into triviality. Besides, we
can now determine the following new Lorentz force density
term including boson fields as follows:

fﬂ =-D, (lﬁFmF”),

from the last equations of (77) and (78) if we choose the
parameter @ =—1/4, and without considering, certainly,

¥(z) #0.

(80)

6. Conclusion

In this work, by employing an alternative form of the basis
equation of the considered model in the review section, we
have recomputed the reduced field equations in terms of
the new { P, Q,, U} set,i.e., the equations of the typical
KK theory. The new expressions (30)—(32) seem to be more
accurate than others, including the {%.,Q,, U} set in
Bagkal and Kuyrukcu (2013). Then, using simplifications
that result from the horizontal lift basis, we have generalized
the resulting equations to the Einstein frame in which the
conformal metric ansatz contains arbitrary parameters @
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and f. After these reduction procedures, we have derived
the desired set of field equations, which are governed by
the new conformal {P,.,Q,, U} set, and the transformed
quadratic action in the coordinate basis both by considering
the vielbeins fields and the conformal transformation rules.
Conversely, we have investigated the consequences of the two
possible cases, 8 =—2aand S =0, on this approach. As
we mentioned in our previous work (Bagkal and Kuyrukeu
2013), for the condition ¥ (x) = 0, the standard KK theory
renders the well-known nonphysical constraint, Fi,. ' = 0,
whereas this Lorentz invariant term does not have to be
equal to zero in the WYKK theory because of the more
general field equation (73). By contrast, the Lorentz force
density, f1=F:,"D.F", ,appears for the former case naturally.
Additionally, even if ¥ (z) # 0, we have demonstrated that
the density term can only be equal to the negative gradient
of the new invariant, i.e., fi=—D;(YF,.F”)for the latter
case with ¢ =—1/4.

Let us finally remark that we can extend our formalism to
investigate the dimensionally reduced form of equation (7),
whose second term had already been calculated in (62),in the
5D generalized KK theory for completeness. Furthermore,
whether the first equation of (60) can be written in the form
of the equation (8) can be studied. We have already shown
that (Kuyrukcu 2016) the first field equations, i.e.,

DAsz _DGPIM - %wz (FzmQ/l _FMQLT + 2FAGQU) = 0, (81)
which is given by Bagkal and Kuyrukcu (2013) or can be
obtained from (30) using P.,=P,and Q,=—(1/2)0Q,

,can exactly be written in the following Camenzind’s current

density form
DuR#Mo :D/l (TUO‘_%QUO‘T) _DU (TUA‘ _%gMT), (82)

for the case in which Q,=0,U =0, or more generally
Q,=0,and D, U=0 . Here T,, represents the stress-
energy tensor that comes from the KK theory of gravity
(Liu and Wesson 1997). We are working on obtaining such
relationships for the model under consideration.
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