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Abstract

The Poisson Regression Model (PRM) is commonly used in applied sciences such as eco-
nomics and the social sciences when analyzing the count data. The maximum likelihood
method is the well-known estimation technique to estimate the parameters in PRM. How-
ever, when the explanatory variables are highly intercorrelated, unstable parameter es-
timates can be obtained. Therefore, biased estimators are widely used to alleviate the
undesirable effects of these problems. In this study, a new improved Liu-type estimator
is proposed as an alternative to the other proposed biased estimators. The superiority of
the new proposed estimator over the existing biased estimators is given under the asymp-
totic matrix mean square error criterion. Furthermore, Monte Carlo simulation studies
are executed to compare the performances of the proposed biased estimators. Finally, the
obtained results are illustrated in real data. Based on the set of experimental conditions
which are investigated, the proposed biased estimator outperforms the other biased esti-
mators.
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1. Introduction

In regression modeling, count responses are usually common in the social sciences, eco-
nomic research, and medical fields. The number of hits recorded by the Geiger counter,
the number of patient days in the hospital, and the number of goals scored in major com-
petitions can be given as examples of count responses. In these cases, one of the standard
models for explaining the relationship between the counts as the response variable and a
series of explanatory variables is Poisson Regression Models (PRMs) [11].

The Maximum Likelihood Estimator (MLE) is commonly used to estimate unknown
regression coefficients in the PRM. One of the disadvantages of using MLE is that the
estimates of model parameters usually becomes unstable with high variance when the
multicollinearity exists [4,5,13,15,20,21,23,29,31]. The multicollinearity problem, which
occurs because of the approximately linear relationship between the explanatory variables,
affects the estimates of model parameters in the PRMs as well as in the linear regression
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models [3,7,8,16,22,24,28|.

On the other hand, it is known that the performance of biased estimators proposed
as an alternative to MLE in PRM is affected by the selection of the biasing parameters.
In general, the methods used for the selection of biasing parameters have been adapted
similarly to those used in linear regression models. For example, Mansson and Shukur
[24], Kibria et al. [16] and Alanaz and Algamal [1] have proposed different methods for
estimation of the biasing parameter k in the Poisson Ridge Estimator (PRE). Similarly,
alternative methods for the estimation of d parameter in the Poisson Liu Estimator (PLE)
are given by [24] and [27].

Moreover, the use of the biased estimators with two biasing parameters has become
increasingly widespread as an alternative to the PRE and PLE. As the performances of
these biased estimators depend on two biasing parameters, determining the optimum per-
formance of these estimators becomes difficult. However, Cetinkaya and Kagranlar [8] and
Asar and Genc [7] proposed iterative techniques to estimate biasing parameters in the
Poisson two-parameter Estimator (PTPE). More specifically, because of some constraints
on the biasing parameters, firstly the value of the d parameter is constrained so that the
biasing parameter k is positive. Then, k is estimated based on the biasing parameter d.
In this case, it appears that there is a functional relationship between the biasing parame-
ters k and d.  Because of this relationship of biasing parameters, new biased estimators
with a biasing parameter can be developed. Therefore, our primary aim in this study is
to introduce a new general biased estimator under the assumption that it depends on an
approximate functional relationship between the biasing parameters in order to alleviate
the multicollinearity problem in PRM.

The organization of the article is as follows: In the next section, we will briefly describe
the PRM and review some of the existing biased estimators used in PRMs. In Section 2,
a new biased estimator named the improved Liu-type estimator is defined and some of its
properties are given. The superiority of this estimator over the other biased estimators
under the matrix mean square error criteria are shown in Section 3. In Section 4, the
approaches used to determine the biasing parameters for proposed biased estimators are
summarized. Furthermore, several methods are proposed to determine the biasing pa-
rameters. Also, Monte Carlo simulation studies are executed in Section 5. In Section 6,
a real data application is provided to illustrate the performances of the proposed biased
estimators. Finally, conclusions of the study are given in Section 7.

1.1. Maximum likelihood estimator and some biased estimators for PRM

In the PRM, y; is the response variable and follows a Poisson distribution with mean
i, then the probability function is defined as

fyi) = 7

where p; is expressed by using canonical log link function and a linear combination of
explanatory variables as follows p; = exp(«}f3), where 2} is the ith row of X, which is
an n X (p+ 1) data matrix with p explanatory variables and § is a (p + 1) x 1 vector of
coefficients. The maximum likelihood method is the well-known estimation technique to
estimate the vector of coefficients 5. To use the Maximum Likelihood method, firstly log
likelihood function is given as follows:

Li=1,2,n, y; =0,1,2, ... (1.1)
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The MLE of § is obtained by maximizing the log-likelihood function, so the following
equations are obtained as

s(p) = Ay

o5 ; (yi — exp (2/8))z; = 0. (1.3)

Since Eq. (1.3) is nonlinear in 3, the solution of S(/3) is found using the following iteratively
reweighted least squares (IRLS) algorithm

Byie = (X/WX)_lx’WZ, (1.4)

where Z is a vector with the ith element z; = log (fi;) + % and W = diag[fi;]. The
iterations end when the difference between the old and updated values is less than a
specified small value, which is usually 1078 [9]. The asymptotic covariance matrix of
. R . -1
BmLE is cov (»BMLE) ~ (X’WX) )

To alleviate the undesirable effects of multicollinearity, the biased estimators that are

alternative to the MLE are generalized like that defined in the linear regression model.
For example, Mansson and Shukur [24] proposed the PRE as follows:

N ~ —1 N A
BprE = (X’WX + k:I) X'WXBuyre, k>0, (1.5)

where k is a biasing parameter. The PRE is the generalization of the Ridge estimator
introduced by Hoerl and Kennard [12] for the linear regression model. ~ Ménsson et al.
[22], Amin et al. [6] and Qasim et al. [27] defined the PLE as

Brre = (X'WX + I)_1 (X'WX +dI) Bares, (1.6)

where 0 < d < 1 is a biasing parameter. The PLE is the generalization of the Liu estima-
tor introduced by [18] for the linear regression model.

In recent years, the estimators with two biasing parameters have been proposed as an
alternative to PRE and PLE. The aim here is to encourage the use of more appropriate
estimators by combining few estimators. In this context, Liu [19] introduced a new es-
timator which is based on the biasing parameters k and d. For the PRMs, Algamal [2]
defined the Poisson Liu-type estimator (PLTE) as follows:

BPLTE = (X/WX + k])il (X/WX — dI) BMLE» (17)

where k£ > 0 and d € R are biasing parameters.

Moreover, Asar and Genc [7] and Cetinkaya and Kagranlar [8] proposed another biased
estimator with two biasing parameters with an expectation that the combination of two
different estimators might inherit the advantages of both estimators, first defined by [26]
for the linear regression models. The Poisson two-parameter Estimator (PTPE) is defined
as

Bprpe = (XWX +kI) ™ (X'WX + kdI) By, (1.8)

where k£ > 0 and 0 < d < 1 are biasing parameters.
Following [14], Lukman et al. [20] proposed another biased estimator as follows:

Brre = (XWX +kI) ™ (X'WX — kI) BuLe, (1.9)

where k is a biasing parameter.
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2. A new general biased estimator

Kurnaz and Akay [17] introduced a new general Liu-type estimator to alleviate the
effects of multicollinearity in linear regression models. We can generalize this estimator
to use in PRMs as follows:

~ A~ -1 A~ A~
Brire = (X’WX + k:I) (X’WX + f (k) I) B* k>0, (2.1)

where B* is any estimator of 3, k is a biasing parameter and f(k) is a continuous function
of the biasing parameter k. Note that k is used to control the conditioning of the X' WX
matrix, while f(k) is used to improve the fit and statistical property.

When we selected f(k) as a linear function of k such as f(k) = ak + b where a,b € R,
the Improved Liu-type Estimator (ILTE) becomes a general estimator which includes the
other biased estimators as special cases:

° BILTE = ﬁMLE; for ﬂ = ,BMLE and f(k) = k where a = 1 and b = 0.

° 5ILTE = ﬁpRE, for ﬁ = ,BMLE and f(k) =0 where a =0 and b = 0.

° 51LTE = BPLE, for 5 = BMLE and f(1) = a + b where a + b corresponds to the
biasing parameter d.

. ﬁILTE = BprrE, for ﬁ = ,BMLE and f(k) = —b where b corresponds to the biasing
parameter d.

. ﬁILTE = Bprpg, for B* = BMLE and f(k) = ak where a corresponds to the biasing
parameter d.

° BILTE = BPKLE, for B* BMLE and f(k) = —k where a = —1 and b = 0.

For the suitability of comparisons, we denote @ = Q'B8, A = diag(\1, ..., \p+1) =
Q' (X'WX)Q, where A\ > Ay > ..Ap+1 > 0 are the ordered eigenvalues of XWX, Q
is the orthogonal matrix whose columns constitute the eigenvectors of X’ WX and the ith
element of Q' is denoted as aj,j =1,2,...,p+ 1.

The asymptotic Scalar Mean Squared Error (SMSE) and the asymptotic Matrix Mean
Squared Error (MMSE) of an estimator B = ZBuyrE, where Z is a matrix with proper
order, are defined as

MMSE(B) =E(3 - B)(B - B) = Z(Bure — B) Bure — B) Z' + (28 — B)(Z8 — B,

SMSEQB) =EB - B) (B - B) = Bure — B) Z'Z(Bure — B) + (28 — B) (25 — zz» |
2.2

Note that there is a relationship SMSE(B) = tr(MMSE(B)) between MMSE and

SAMSE criteri:im. Because of the relation of o = Q'83; SmLE, BPrE, BPLE, BPLTE, BPTPE,
Bprxre and Brpre have the same SMSE values as &nre, &prE, &PLE, @PLTE, OPTPE,
GpirLe and arrre, respectively.

Using Eqgs. (1.5), (1.6), (1.7), (1.8), (1.9) and (2.1), it is easily computed that:

MMSE (B ) —QA1Q), (2.3)
MMSE (BPRE) =Q ((A + ED)TIAAN + RD T+ B2(A + kD) oo/ (A + kzI)’l) Q,
(2.4)
MMSE (Bpre) =Q ((A+ 1) (A+dl) A~ (A +dl) (A + 1)
+Hd-1)*A+ D e (A + D7) Q) (2.5)

(
MMSE (Bprre) =Q ((A+kI)™ (A = dI) A~ (A — dI) (A + kI) ™"
+(d+ k(A + k) ad/ A+ kD7) @ (2.6)
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MMSE (Bprpp) =Q (A + kI~ (A + kdl) A= (A + kdI) (A + kI)~"

+h2(d = 1)’ (A + kD) ad/ (A + k1)) Q) (2.7)
MMSE (Bpicrn) =Q ((A+ k)™ (A= kI)A™ (A = kI) (A + kD)
AR (A + kD) ad/ (A + kDT @ (2.8)
MMSE (Brore) =Q (A+ kD)™ (A+ f () A~ (A + f (B) I) (A + kI) ™"
+(f (k) = k) (A + kD)~ 'ac/ (A + k1)) Q. (2.9)
Moreover, we compute the SMSE functions of the biased estimators explicitly as follows:
R p§ Aj fil k2a?
SMSE(Bpre) =Y — 4+ — I (2.10)
S+ k)? g OVES k)?
p+1 2 p+1 2 2
; (g +d) (d—1)%
SMSE(BpLE) = + : (2.11)
jzl A+ 1) jzl (Aj+1)2
p+1 2 p+1 2 9
SMSE(Bprre) = , (2.12)
j; AN+ k) ;1 (A + k)
p+1 2 p+1 1.2 2 2
X (\j + kd) k*(1—d)"o;
SMSE(Bprre) = ; (2.13)
; AN+ k) J; (A + k)
pt+1 2 p+1 2 2
5 (A — k) 1K%a?
SMSE(BprLE) = + ; (2.14)
; AN+ k)? ; (A + k)2
. p+1 2 ptl k) — k)2a2
SMSE(Brre) =) (G 1G))i > (k) = k) oy , (2.15)

SR S k)

where the first term is the asymptotic variance and the second term is the squared bias.
Let Bl and Bg be any two estimators of 5. Then, Bg is superior to Bl with respect
to the MMSE criterion if and only if MMSE(3) — MMSE(fs) is a positive definite
(pd) matrix. If MMSE(f1) — MMSE(f3,) is a non-negative definite (nnd) matrix, then
SMSE(3)) — SMSE(f2) > 0. But, the reverse is not always true [30].
We use the following theorem to compare the above-biased estimators in terms of MMSE
sense.

Theorem 2.1 ([10]). Let A be a positive definite matriz, namely A > 0, and ¢ nonzero
vector. Then, A — cc is a positive definite matriz iff ¢ A~ e < 1.
3. The superiority of the new improved Liu-type estimator in PRMs

In this section, we compare the ILTE with the MLE, PRE, PLE, PLTE, PTPE and
PKLE according to the MMSE criterion.
The following theorem is given to show the superiority of ILTE over MLE.

Theorem 3.1. Let be k > 0 and —2)\; — k < f(k) < k. Then, MMSE(By1r) —
MMSE(B[LTE) > 0 iff

bias(Brore) QA" — (A + kD) TN A + F(MDAT (A + kD) TN A + f(R))) ™
XQ/biQS(B[LTE) < 1, (3.1)

1
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where bias(Brrre) = (F(k) — k)Q(A + kI) ™
Proof. Using Egs. (2.3) and (2.9), we obtain

MMSE(Byre) — MMSE(Brire) = QA'Q — QA+ kI) ™ (A + f(K)I)A™ (A + f(k)I)
x (A + k‘I)ilQ/ — biaS(BILTE)biGS(BILTE)/

1+ SR }”“

N \ ()\ n k;)2 Q/ — bias(B[LTE)bias(B[LTE)/.
J YANAY)

= Qdiag {

j=1

In this case, we set A = Q(A~1 — (A+kI) (A + f(k))A 1(A+ kD) HA + f(k)D))Q

according to Theorem 2.1. The matrix A, that is A='—(A 4+ kI) " (A+f(k))A~ (A + kI) ™
(A + f(k)I), is the pd matrix if (\; +k)* — (\; + f(k))* > 0, which is equivalent to
(k— f(k)2N; + k+ f(k)) > 0 where j = 1,2,....,p+ 1. (k— f(k)2\; +k + f(k)) >
0 is equivalent to —2)\; — k < f(k) < k and k > 0. Thus A~ — (A+ kD 7HA +
FIRYDA™Y(A 4 k1) (A + f(k)I) is the pd matrix if —2)\; —k < f(k) < k and k > 0. By
Theorem 2.1, the proof is completed. O

To show the superiority of the estimator ILTE over PRE, the following theorem is given.
Theorem 3.2. Let be k > 0 and —2)\; < f(k) < 0. Then, MMSE(Bprg)—MMSE(B111E)
>0 iff

bias(Brire) (MMSE(Bpag) — QA+ KD (A + F)DA (A + KD (A + f()DQ)

XbiCLS(B[LTE) <1, (3.2)

where bias(Brrre) = (f(k) — k)Q(A + kI) ™

Proof. Using Egs. (2.4) and (2.9), we obtain

MMSE(Bpre) — MMSEBirre) = QA + kI 'AA + kD)™ — (A4 kI) " (A + F(K)I)
x A"HA + KD THA + F(R))Q' + bias(Bpre)bias(Brre)
— bias(B;LTE)bias(BfLTE)/

N LK) }”“
N+ER)? N0 +E)?

—+ bias (BPRE) bias(BpRE)/ — bias (BILTE) biaS(B]LTE),.

Q'

= Qdiag {

j=1

(A ED AN+ KD —(A + kD) N (A+f(R)D)A (A + kI) " (A+f(k)I) is the pd matrix
if AJQ-—()\j + f(k))* > 0, which is equivalent to f(k)(2\;+ f(k)) < 0 where j = 1,2, ..., p+1.
Thus (A + k) AN+ kD™ — (A4 kD 7HA + f(R)DA YA + kD) A + f(E)) is the
pd matrix if —2\; < f(k) < 0 and k& > 0. By Theorem 2.1, the proof is completed. O

The following theorem is given to show the superiority of ILTE over PLE.

Theorem 3.3. Let be k>0 and 0 < d < 1. MMSE(Bprr) — MMSE(BiprE) > 0 iff

bias(Brire) (MMSE(Bpre) — QA+ kD)~ (A + fR)DAT (A + kD) " (A + f(R)DQ)

XbiaS(B[LTE) <1, (3.3)

where—)g—%<f( )<_)‘j+W'
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Proof. Using Egs. (2.5) and (2.9), we obtain
MMSE(Bpre) — MMSE(Brore) = Q((A+ 1) (A +d)A™ (A +dl)(A+ 1)~
—(A+EDTHA+ FRDAT A+ KD A+ f(R)))Q'
+ bias(Bprr)bias(BpiE) — bias(Brore)bias(Brors)
2 2y Pl
o B
+ bias (BPLE) bias (BPLE), — bias (BILTE) bias (3[LTE)/.
A+ DN A+dDA Y A+dD A+ 1) = (A + ED YA+ FR)DA A+ ED T A+ f(k)T)
is the pd matrix if (/\J+d A&+_{(]§k)) > 0, which is equivalent to f(k) < —\; + %,
and ()‘ icll + J;_{Sf)) > 0, which is equivalent to —\; — W < f(k) where
j=12,...,p+ 1 Thus, A+D A+ dDA YA +dD)(A+1)F — (A+ kD) A +
FRDATY (A + BI) ™ (A + f(k)T) s the pd matrix if —\; — S < f(k) < -, +
A J(r s J)+d) where k > 0,0 <d<1land j=1,2,....,p+ 1. By Theorem 2.1, the proof is
Completed ]

j=1

To show the superiority of the estimator ILTE over PLTE, the following theorem is
given.

Theorem 3.4. Let us consider d—2\; < f(k) < —d or —d < f(k) < d—2\; where k >0
and d € R. Then, MMSE(Bprre) — MMSE(Brrre) > 0 iff

bias(Brore) (MMSE(Bprre) - QA+ KD ™ A+ F(DA (A + KD T (A + f(R)DQ)
xbias(Brrre) < 1, (3.4)
where bias(Brrre) = (f(k) — k)QA + kI o
Proof. Using Egs. (2.6) and (2.9), we obtain
MMSE(fprre) — MMSE(Brire) = QA+ k1) (A —dl)A™ (A — dI)(A + kI)~"
—(A+ kDA + FRIDAT A+ DA+ f(R)))Q
+ bias(BprrE)bias(Brrre) — bias(Brire)bias(Brire)

N —d)? (N S(R)? }”“
Ny +HE? N0y +E)?

-1

Q/

= Qdiag {

=1
+ biaS(BPLTE)bias(BPLTE)/ - bias(BILTE)biGS(BILTE),

A+ kD) ™HA —dDA YA —dI)(A+ kD)™ — (A+ KD HA + f(R)DA YA+ D) 7HA +

f(k)I) is the pd matrix if d <0 and d —2\; < f(k) < —dor 0 < \; < dand —d < f(k) <

d—2)\jor0<d< ) andd—2\; < f(k) < —d where k >0and j =1,2,...,p+ 1. Then,

the proof is completed using Theorem 2.1. O

To show the superiority of the estimator ILTE over PTPE, the following theorem is
given.

Theorem 3.5. Let us consider —2\j —kd < f(k) < kd where k >0 and 0 < d < 1. Then,
MMSE(BPTPE) — MMSE(ﬁ]LTE) >0 Zﬁ

bias(Brore) (MMSE(Bprpe) — QA+ k1) (A+ F(R)DAT (A + kD™ (A + (k) 1)Q')
xbias(Brrre) < 1, (3.5)
where bias(Brrre) = (f(k) — k)QA + kI) "«

-1
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Proof. Using Egs. (2.7) and (2.9), we obtain
MMSE(Bprpe) — MMSE(B1rre) = QUA + kI) ™ (A + kd)A™ (A + kdI)(A + kI) ™!
—(A+ kDT A+ FRDAT A+ D THA + f(R)D))Q
+ bias(BPTPE)bias(BpTPE), — biaS(BILTE)biGS(BILTE),

P B VR O R 1(0) i R
deg{Aj()\jJr/f)Q >\j(>\j+k)2} N

j=1
+ biaS(BPTPE)biGS(BPTPE), — biaS(BILTE)biaS(BILTE)/~

(A + kD) N A4 kdD)A (A +kdD) (A + kD)~ = (A + ED) A+ f(B)DA (A + kI) " (A+
f(k)I) is the pd matrix if (kd — f(k)) > 0, which is equivalent to f(k) < kd, and (2X; +
kd + f(k)) > 0, which is equivalent to —2X\; — kd < f(k) where j = 1,2,...,p+ 1. Thus
(A+ED M A+ kdDA Y (A+kdD (A +ED ™ = (A+ED N A+ f(B)DA YA+ RN HA+
f(k)I) is the pd matrix if —2X\; — kd < f(k) < kd where k > 0,0 < d < 1 and j =
1,2,...,p+ 1. By Theorem 2.1, the proof is completed. 0

To show the superiority of the estimator ILTE over PKLE, the following theorem is
given.

Theorem 3.6. Let us consider k:—2)\jA< f(k) < =k or _ki< f(k) < k—2\; where k >0
and j=1,2,...,p+ 1. Then, MMSE(fpxre) — MMSE(SrirE) > 0 iff
bias(Brure) (MMSE(Bpire) — QA+ k)™ (A + FDAT (A + kD) ' (A + F(R)DQ)
xbias(Brrre) < 1, (3.6)
where bias(Brrre) = (f(k) — k)Q(A + kI) ™
Proof. Using Egs. (2.8) and (2.9), we obtain
MMSE(fprre) — MMSE(Brire) = QA+ kI) " (A — kI)A™ (A — EI)(A + kI)™!
—(A+ kDT A+ F(R)DAT A+ RD T A+ f(R)D)Q
+ bias(BPKLE)bias(BPKLE) — wa(BILTE)bZaS(ﬁlLTE)
, A —k)? A+
B Qd’“g{xi(;j - 2:)2 ( N0y f—kk))) } “
+ bias (BPKLE) bias (BPKLE) — bias (51LTE) bias (BILTE)/~
A+ KD A = kDA YA = KD)(A+ kD™ — (A+ kDA + fF(RYDA (A + KD A +
f(k)I) is the pd matrix if k — 2\; < f(k) < —k or —k < f(k) < k —2)\; where k£ > 0 and
j=1,2,...,p+ 1. Thus, the proof is completed by using Theorem 2.1. ([l

-1

4. Determination of f (k) function

Since the performances of biased estimators depend on the estimates of biasing param-
eters, it is an important problem to find the optimal biasing parameters for these biased
estimators. To estimate the biasing parameters in PRE, PLE, PLTE, PTPE and PKLE
methods used in the linear regression models were adapted. Generally, the estimates of
the biasing parameters are obtained in such a way that the SMSEs are minimized. Note
that the SMSEs given by Egs. (2.9) to (2.13) are a function of the biasing parameters and
the unknown parameter o. These functions are sometimes quadratic, sometimes nonlinear
functions of the biasing parameters. In some cases, for the estimates of the biasing pa-
rameters, approximate methods have been proposed because of the SMSE is not a linear
function of the biasing parameter. This situation becomes even more complicated for the
estimators with two biasing parameters.

Note that different approaches have been proposed for the selection of the biasing param-
eter in biased estimators with two biasing parameters. In general, the biasing parameter
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k is considered to be a constant, and then parameter d is estimated or vice versa. More
specifically, since the biasing parameter k is positive, firstly the value of the parameter d
is constrained, and then the parameter k is estimated by using arithmetic mean or geo-
metric mean, or harmonic mean. Besides, iterative techniques have been developed for the
estimation of biasing parameters. In this case, iterative techniques are also not successful
because of the constraints on the biasing parameters.

The main advantage of the proposed biased estimator over the estimators with two
biasing parameters is based on the prior knowledge of an approximate functional re-
lationship between the biasing parameters. The performance of the proposed ILTE is
based on the f (k) function, and therefore has only the biasing parameter k. The proper
choice of f (k) function result in different biased estimators. We may give a method

to find the optimal f (k) function minimizing SMSFE (BILTE) according to k parame-
ter. Remember that SMSFE (B 7 LTE) is a nonlinear function of k£ parameter. So, writing

h(k) = SMSE (BILTE), we have

+1 2 +1 2 2
k) RS (F(R) — k) e
(k) _; (A4 k)2 +j§_:1 A+ k)2 (4.1)

Then, we find A’ (k) as follows differentiating h (k) with respect to k,

BEL(F (k) O+ k) = (F () +29)) (200 + F (R) + 2002 (f (k) — k)

h' (k) = (4.2)
j=1 Aj(Aj + k)3
When it is accepted b’ (k) = 0, we have two facts as follows:
Fact 1. f' (k) (A\j + k) — (f (k) + Aj) = 0. From this equation we obtain
f(k) :C1k+(01—1)>\], ]:17277p+1 (43)
where ¢; is the constant of integration.
Fact 2. (\; + f (k)) + )\ja? (f (k) — k) = 0. From this equation we obtain
0 P Y R ) DU
T e T\ T aael g 3= 12p
or
L I j=1,2 1 44

According to Fact 1 and Fact 2, the selection of f (k) = ak+b where a,b € R as a linear
function of the biasing parameter k is appropriate. Note that, f (k) which is given in Fact
1 is a solution of the differential equation, which is obtained in Fact 2. Also, depending
on the functions obtained in Fact 1 and Fact 2, we can make the following generalizations.

Firstly, note that f (k) given in Eqs. (4.3) and (4.4) makes the SMSE (BILTE) function
approximately minimum for a j value. Also, the function f (k) depends on the eigenvalues
of XWX, the unknown parameter o and the parameter k. In order to determine this
function, we can propose several function approximations by using Eq. (4.4). In this
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paper, we used the following functions for the determination of f (k) as follows:

f1 (k) =ck + (¢ — 1) Apin where ¢ € (0,1), (4.5)
o) = g (o 1) (16)
f3 (k) z%k - <1i§;:igmax - 1) Amin (4.7)
fa k) :n(ﬁm;ﬁ%&n&x)k * (n (11?5%%) - 1) A, (4.8)
where o2, and o2, is defined as the minimum and maximum value of a?, i=12,..p+1.

Similarly, Amin and Apax is defined as the minimum and maximum eigenvalue of X’ WX ,
respectively.

In this paper, for the determination of f (k) function, we will examine only the first
degree polynomial functions given in Eqs. (4.5) to (4.9). However, it is clear that the
function f (k) can be selected as any continuous function of the biasing parameter k.
Since the proposed estimator will depend on a single biasing parameter k, the suitable
estimates of k can be used [16]. Based on the simulation studies, we can used the following
estimators to estimate k in the ILTEs,

) Amax — AAni
kirp =——>——= 3 ==, (4.10)
A Amax — 3Ami
krirp == 5 -, (4.11)
2 Am X Amin
kioTe :%7 (4.12)

where p is number of explanatory variables. We should note that k£ in the ILTEs must be
estimated in such a way as to control the conditioning of the X'W X matrix.

5. The Monte Carlo simulation study

Many authors executed several simulation studies to compare the performances of the
proposed biased estimators in PRMs in the presence of multicollinearity. Similarly, we will
design a simulation study to compare the performance of the proposed biased estimator
with respect to other proposed biased estimators. We will investigate the effects of sample
size (n), the degree of the collinearity (p) and the number of the explanatory variables (p)
on the comparison of the biased estimators.

The dependent variable of the PRM is generated using pseudo-random numbers from
the Poisson (u;) distribution, where

p; = exp (Bo + Bixia + -+ Bpip) i = 1,2,...n,j =1,2,...p.
Similarly, we generate the explanatory variables by following [7] and [8] as
zi; = (1— p2)1/2 wij + pwipt1, © = 1,2,..,n, j = 1,2,...,p where w;; are independent
standard normal pseudo-random numbers and p is specified so that the correlation be-
tween any two variables is given by p?. Four different sets of correlations are investigated
corresponding to p = 0.8,0.9,0.99 and 0.999.

The explanatory variables are then standardized by using unit length scaling so that
X'X is a matrix of correlations. Number of explanatory variables is chosen as p = 2,p = 4
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and p = 8. The sample sizes are taken as n = 25,50,100 and 200. For each set of ex-
planatory variables, 3 is chosen as the normalized eigenvector corresponding to the largest
eigenvalue of X'X so that /8 = 1. In estimating the model parameters, we use glm()
algorithm in R with the convergence criterion as default epsilon =108 [9]. We also set
the intercept equals 0.

The best estimation of the biasing parameter for the PRE, PLE, PLTE, PTPE and
PKLE in the simulation and application sections is defined based on [1,7,8,16,21,22,24,27].

To estimate the biasing parameter k in PRE, we used the best estimate of k as /Aip RE =

n

ST (wi—)?
max (mij) where m; = , / AQ,j =1,2,..,pand 6% = izlﬂﬁ which is recommended by

[16].
Based on the results given by [27], we use the best estimation of d in PLE as dpLe =

A2—1
max (O min ((%)>> . For PLTE, the biasing parameters k and d were esti-
max | 5 +62 .«

mated by grouping them in five different ways as follows;

PLTETI: kPLTE‘ = max( L ) where m; = 2 ] = 1 2 ,pand CZPLTE = ;,:1 (A]ri};jL(;E) .
" YT

PLTE IL: kprre = 2a0® and dpprp =

Aj _J*PLTE (1"‘)‘1 d?)

2
A&

3 . X ) N
PLTE III: dpy7g = ;mln{H)\;&z}, j=1,2,...,pand kprrg = 112 Zl
J j=

PLTE IV: dprrg = %min{l_i_))\\j&z} ,j=1,2,...pand

1/p
A~ P Aj —d* 1+/\

Jj=1

Aj . >
PLTE V: dprp = L mln{wjj@?}, j=12,...,pand kprrp = Zp:( 23 2 )
= \ N0 (143363)
For the PTPE, the iterative method used by [8] was used. For the iterative method
proposed by [8], the pair of the biasing parameters k and d are grouped in three different
ways. In these case, the estimates of the biasing parameters for three PTPEs are defined

as follows:

(’%PTPE a? *572)

P
> >
I P 7 i— Ai+k
PIPB L boros = & oy and dores = S D
EYR .
=1

kpTPE (&2+‘5‘?5‘j)
5 (h+k 2
j j( 5t PTPE)

==
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zp: (kPTPEa2—02)
s . \2
PTPE III: ]%PTPE = p&? and dPTPE _ =1 (’\ +’VPTPE)

j=
P FIUCTON
5 52 Pk ( +42 A»)
3 |a2—dr 62 a2 PTPE
[O‘j dLTPE(j\j +O‘j)} > — i
j=1 %j (’\j+kPTPE>

7 . (64 . . 7 . . >
where dprpp = %mln { GQJiOB} and j = 1,2,...,p. Also, if dprpp is negative, dprpp =

)\j J

T
1ree 18-
Asar and Genc [7] suggested to use the following choice of biasing parameters d and k
as a best option which gives the lowest asymptotic MSE value of PTPE as follows:

1 2ja2 » _ Aj i =
PTPE IV: dPTPE ) min (14.)\ AZ) ’ kPTPE = max ()\]oc (1 dPTIJ?E) CZPTPE) I =
1,2,...p

For the PKLE, we use the following estimates of the biasing parameter k; kpxLE =

\/max (O,min (Hé\/(O[Q)) j=1,2,...,p, as suggested in [20].

The obtained results are reported in Tables 1 to 4, together with the following estimates
of k and f (k) functions.

~ 2 2
ILTE It hpprp = Ao and f (k) = - @p 4 (2t — 1) ),

p+)\max01?n1x p“l’Amaxa?nax
ILTE II ]AC — M and f ( ) )\mma?nm k _|_ mlna?nm -1 )\ .
- RPLTE (1+p)\maxamax) (1+p)‘maxamax) min
. 7. >\max mm % M J— .
ILTE I kpprp = Amociumn and f (k) = Soy5emmy—k + (Gpeoms— — 1) Auin

The performance of the estimated MSEs (EMSEs) is used as basis for comparing the
proposed estimators which are calculated for an estimator 3 of 3 as
2000 p

EMSE (§) = 355 ZZ(@«] 5)"

where Brj denotes the estimate of the jth parameter in rth replication and j; is the true
parameter values. For each case of n,p and p, the experiment was replicated 2000 times
by generating response variable.

The bold numbers in the tables show the estimators with the smallest EMSE values,
and in addition, the signs (**) and (***) represent the second and third smallest EMSE
values, respectively.

The EMSE values for the different n, p, and p are given in Table 1-4. According to the
values in the Tables, the results are summarized as follows:

i.  As the degree of rho correlation p increases, regardless of the n and p values, EMSE
values of MLE, PRE, PLTE1, PLTE2, PLTE4, PLTES5, PTPE1, PTPE2, PTPE3, PTPEA4,
PKLE increase while EMSE values of PLE, PLTE3, ILTE1, ILTE3, and ILTE4 decrease.
1. Regardless of n and p, in the case where the number of variables p is 2, it was observed
that ILTE II has the smallest EMSE values in all cases except for a few cases.

144. In the case where p is 0.8 and 0.9, it was observed that ILTE II performs best as it
has the smallest overall EMSE value.

tv. In the case where p is 0.99 and 0.999, and the number of variables p is 4, 8 and 12,
ILTE III outperformed other estimators in all cases considered.
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Table 1. The EMSE values of the estimators for the model when p = 2.

n p MLE PRE PLE PLTEl1l PLTE2 PLTE3 PLTE4 PLTES5 PTPE1 PTPE2 PTPE3 PTPE4 PKLE ILTE1 ILTE2 ILTE3
25 0.8 2.1906 0.5964 0.7671 1.1713 1.3154 0.9074 0.9740 1.1673 1.4936 1.4867 1.5152 0.9539 0.6572 0.4400***  0.3841* 0.4107**
25 0.9 6.7558 0.4936 0.5296 3.2310 3.2977 0.8182 1.4023 2.6612 4.3166 4.3164 4.3217 1.2431 0.5937  0.3181* (.3185** 0.3252%**
25 0.99 50.9805 0.6094 0.3805 23.8110 23.8503 0.6251 3.0243 18.4141 30.8905 30.8989 30.9062 4.4957 13.4626 0.3302***  0.3259*  0.3263**
25 0.999 365.3614 0.7269 0.3371 166.9668 166.8949 0.4620 4.2653 127.4819 226.6360 226.6387  226.6389 27.4771  219.3860 0.3155%  (0.3174%* 0.3175%**
50 0.8 2.6760 0.5792 0.7472 1.3797 1.5745 0.9613 1.0785 1.3537 1.8166 1.8097 1.8476 1.0023 0.6383 0.4848***  (0.4030**  0.3944*
50 0.9 6.5857 0.5067 0.5780 3.2776 3.3824 0.9394 1.5338 2.7615 4.3625 4.3654 4.3749 1.3231 0.6008 0.3424***  0.3323*  0.3363**
50 0.99 45.9337 0.6033 0.3668 21.3185 21.3221 0.5904 2.7523 16.3888 28.1352 28.1399 28.1430 4.2213 11.7559  0.3184*  0.3203** 0.3210%**
500.999 607.5476 0.7964 0.3505 289.5969 289.5340 0.4971 6.2355 223.7744 385.2196 385.2297  385.2339 47.6157 400.8927 0.3432***  0.3374%  0.3374**

100 0.8 3.1180 0.5457 0.6873 1.5812 1.7231 0.9316 1.1004 1.4674 2.0701 2.0693 2.0939 1.0208 0.5648 0.3947***  0.3593*%  0.3678**
100 0.9 4.6898 0.5334 0.6387 2.3261 2.4575 0.9344 1.2772 2.0247 3.1025 3.1066 3.1192 1.1405 0.5459 0.3770***  0.3578%  0.3624**
100 0.99 51.6504 0.6270 0.3860 24.8723 24.9322 0.7001 3.5518 19.4659 32.7033 32.7076 32.7134 4.8645 13.2279 0.3517***  0.3408*  0.3408**
100 0.999 389.7609 0.7653 0.3414***  185.1483 185.1317 0.5313 5.7399 142.7121 250.5518 250.5659  250.5754 30.7377  234.2662 0.3419  0.3295**  0.3295%*
200 0.8 2.7874 0.5856 0.7302 1.4818 1.6640 0.9423 1.0885 1.4238 1.8880 1.8827 1.9186 0.9948 0.6425 0.4502***  0.4008*  0.4090**
200 0.9 5.5311 0.5386 0.6317 2.7217 2.8650 0.9613 1.3560 2.3338 3.5814 3.5854 3.6088 1.2213 0.5460 0.3817***  0.3590*  0.3602**
200 0.99 46.8409 0.6234 0.3867 22.2652 22.3220 0.7013 3.4286 17.3702 28.4967 28.5025 28.5111 4.5943 11.6414 0.3481***  0.3385*  0.3386**
200 0.999 530.0244 0.7797 0.3321 249.2439 249.1938 0.4961 5.0000 191.3571 332.5028 332.5172  332.5239 38.8103 346.0227 0.3310***  0.3249*  0.3250**
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Table 3. The EMSE values of the estimators for the model when p = 8.

n P MLE PRE PLE PLTE1 PLTE2 PLTE3 PLTE4 PLTES5 PTPE1 PTPE2 PTPE3 PTPE4 PKLE ILTE1 ILTE2 ILTE3
25 0.8 19.96040.7002*** 1.7117 6.0787 10.5962 0.9563 2.1777 6.3790 8.2742 8.2829 8.6449 0.8612 2.4137  0.4823**  0.3653* 1.0670
25 0.9 50.37320.4010%*** 1.2357 15.24389 20.0306 1.2535 4.0239 15.0817 21.2448 21.5647 22.6219 0.8435 5.1302  0.2714%*  0.2425%* 0.6702
25 0.99 678.7506  0.4648 0.2648 209.1801 214.0220 2.5675 34.7650 195.6696 292.0214 298.1667  323.4471 1.9962 259.8824  0.1324%  0.1613** 0.1747%**

250.9994797.9148  0.6398 0.1190** 1429.5596 1430.7209 1.2640211.9912 1435.6574 2036.6562 2066.2588 2193.8417 11.4756 3088.6060 0.1201%** 0.1565 0.0981*
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50 0.8 23.11180.5276*** 1.5568 6.8909 11.6862 1.0024 2.5944 7.6557 10.9605 10.9489 11.3150 0.8368 2.2327  0.3037**  0.257T* 0.7111
50 0.9 36.72910.4187*** 1.2531 10.7539 16.0530 1.2587 3.8106 11.8446 17.1040 17.1687 17.7393 0.8492 2.3882  0.2658**  0.2281%* 0.6647
50 0.99 223.7915  0.3749 0.3763 64.5415 66.8170 2.1322 16.3142 70.4098 104.4372 105.3266  108.7627 1.0632 35.1382  0.1251* 0.1556***  (0.1553**
50 0.9994347.4910  0.6440 0.0977** 1260.8569 1260.8368 0.8039224.0822 1389.2884 2005.0925 2015.4493 2088.1672 9.5767 2699.2838 0.1108%** 0.1499 0.0803*
100 0.8 17.7779  0.6010 1.6950 5.4219 8.9292 0.9364 2.2290 6.1144 8.9076 8.8171 8.9501 0.8277 2.0538  0.2771**  0.2449% 0.5035%**
100 0.9 39.49050.3900*** 1.1444 11.8371 15.6376 1.2733 4.0712 13.0443 20.0703 20.0842 20.5145 0.8346 1.9978  0.1972**  0.1968%* 0.4066
100 0.99 381.6767  0.4677 0.2611 112.7645 113.2014 1.9397 27.7767 126.0296 188.0628 188.4003  191.3872 1.3365 76.3400  0.1276** 0.1598***  0.1234%*
100 0.9993627.0487  0.7005 0.1225*%** 1075.1131 1075.0786 0.9647187.6869 1180.9691 1783.6746 1788.2760 1831.7104 8.5713 2143.6282  0.1201%** 0.1530 0.1037*
200 0.8 17.2762  0.5981 1.6679 5.2985 8.5759 0.9661 2.1501 5.9332 9.1431 9.0523 9.1458 0.8637 1.9797  0.2640**  0.2382* (.4304***
200 0.9 31.7980  0.4217 1.2216 9.3928 12.4060 1.1264 3.2557 10.4256 16.4409 16.3758 16.5625 0.8319 1.5650 0.1971*  0.2034** (.3402%**
200 0.99 336.0953  0.4916 0.2686 98.7287 98.9368 1.9056 23.2179 109.8654 170.9257 171.0178  172.1852 1.2656 59.5865  0.1295%* 0.1622***  0.1204*
200 0.9993491.9374  0.7161 0.1212** 1029.0573 1028.7909 0.8387168.9759 1140.7771 1781.7882 1783.2158 1799.4035 6.0556 2052.4230 0.1263%** 0.1615 0.1031%*
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v. In the case where p is 0.999, regardless of the n and p, it was observed that ILTE III
has the smallest EMSE values in all cases considered.  All the estimators we suggested
showed superiority over other estimators in all 64 scenarios in the simulation study. In
general, it has been observed that the behavior of the proposed estimators depends on the
correlation p between variables rather than the number of observations n, or the number of
variables p. This shows that the performance of the proposed estimators is affected due to
the multicollinearity problem. Finally, ILTE II provided superiority in lower correlation,
while ILTE I and ILTE III provided superiority in high correlation.

6. Numerical example: the aircraft damage data

In this section, the aircraft damage data, examined by [5,7,20,21,25] reanalyzed to il-
lustrate the benefits of the proposed estimator. There are 30 observations in the data with
three explanatory variables. The first explanatory variable (z1) is a dichotomous variable
showing the type of the aircraft. The explanatory variables (x2) and (x3) are bomb load
in tons and total months of aircrew experience, respectively. The count variable y is the
number of locations where damage was inflicted on the aircraft.

Myers et al. [25] indicated the presence of severe multicollinearity in the data set.
Asar and Genc [7] and Amin et al. [5] made investigations using the following model
= exp (8o + B1x1 + Paxe + Psxs) . The eigenvalues of the data matrix X are 2085.2251,
374.8961 and 4.3333. Thus, the condition number is 219.3654, indicates there is multi-
collinearity problem among the explanatory variables. Also, the eigenvalues of the matrix
X'W X are obtained as \; = 283543.5, Ay = 789.85, A3 = 4.2887 and My = 1.2585. The
condition number is 474.653 which is considerably larger than 30, indicating that MLE is
still affected due to multicollinearity.

In addition, the dispersion parameter ¢ can be estimated by dividing the Deviance or
Pearson Chi-square statistics by the degrees of freedom. According to the model under
consideration, the dispersion parameter is estimated as 0.9981 and 0.9207, respectively,
using these statistics. Therefore the estimated dispersion parameter is approximately 1,
which shows us the considered model does not affect under/over-dispersion.

The parameter values and the estimated variance values corresponding to k,d and f (k)
functions are given in Table 5. As a result of the comparison of estimated variance values
in Table 5, ILTEs have smaller variance values than MLE and the other biased estimators.
This result is also compatible with simulation results.

To illustrate the theoretical results, the f (k) function is set to f (k) = 7.6486 x 10710k —
1.2585 using ILTE I. In computing the MMSE values, djsrg is used in place of the un-
known parameter a.

For Theorem 3.1, cov (BMLE) — cov (BILTE) is the pd matrix for £ > 0. The k& val-
ues satisfying (3.1) criterion are 0 < k < 4.1078. Consequently, MMSE (BMLE) —
MMSE (BILTE) is the pd matrix where 0 < k < 4.1078.

For Theorem 3.2, cov (BPRE> — cov (BILTE) is the pd matrix for 0 < k < 1.6455 x
10°.  Also, k values which provide (3.2) criterion are 0 < k < 0.8665. Therefore,
MMSE (BPRE) — MMSE (BILTE) is the pd matrix where 0 < k < 0.8665.

To illustrate Theorem 3.3, lets take cszE = 0. In this case, cov (BPLE) — cov (BILTE)
is the pd matrix for £ > 0. Also, k values which provide (3.3) criterion are 0 < k& < 0.5859.
Therefore, MM SE (BPLE) ~ MMSE (BILTE) is the pd matrix where0 < k < 0.58586.

Lets take cipLTE = 1.10037 for Theorem 3.4. In this case, cov (BPLTE> — cov (B]LTE)
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is the pd matrix for 0 < k < 1.64546 x 10°. But, the criterion (3.4) given in Theorem 3.4
is not held.

Table 5. The estimated parameter values and the estimated variance values.

Bo B1 B2 B3 variance
BuLe -0.4060 05689 0.1654 —0.0135  1.0290
/BPRE
(kpre = 0.5392) 03062 0.5180 0.1654 -0.0143  0.5747
5PLE
(dpre =0) ~0.2555  0.4789 0.1665 -0.0147  0.4013
Brrrer  (k=05392, d=1.1004)  -0.1024 0.4142 0.1656 -0.0158  0.1091
/BPLTE 1I
(k = 2862.8050, d = —935.6250) 01318 0.1887 0.0827 -0.0026  0.1104
6PLTE 111
(k = 3699.495279, d = 0.568440) 0.0012  0.0033 0.0348  0.0037  0.00004
BpLTE IV
(k = 43.8027, d = 0.5684) ~0.0074 0.0608 0.1798 -0.0153  0.0027
BpLTE Vv
(k = 4.8840, d = 0.5684) ~0.0768  0.2568 0.1760 —0.0159  0.0496
BPTPE I
(k = 5211.5079, d = 0.2665) -0.1076  0.1535 0.0633 —0.0001  0.8981
/BPTPE 11
(k = 97.525582, d = 0.234583) -0.0972 0.1629 0.1692 -0.0138  1.0110
BPTPE 111
(k =12.1237, d = 0.0986) -0.0880 0.2088 0.1789 -0.0157  1.0287
ﬁPTPE v
(k = 15357.8575, d = 0.0483) -0.0193  0.0284 0.0179  0.0056  0.0024
/BPKLE
(k = 0.9905) -0.1068  0.3906 0.1675 -0.0158  0.1036
BPLTEI

(f (k) =17.6486 x 10~ 'k — 1.2585) 0.0001  0.0002 0.0024  0.0059 0.0000021
kprret = 94512.8372

BpLTE 1

(f (k) = 6.3740 x 10712k — 1.2585)  0.0001 0.0002 0.0018  0.0053 0.0000016
kprren = 141769.8851

BprLTE 1M1

(f (k) = 2.5496 x 1071k — 1.2585) 0.0002 0.0003 0.0030 0.0063 0.0000024
kprre m = 70885.5718

To illustrate Theorem 3.5, lets take dprpp = 0.0367. In this case, COV (BPTPE) —
cov (B 1 LTE) is the pd matrix for £ > 0. Also, k values which provide (3.5) criterion are

0 < k < 0.8974. Therefore, MMSE (BPLE) — MMSE (BILTE) is the pd matrix where
0 < k < 0.5859.

For Theorem 3.6, cov (@DKLE) — cov (BILTE) is the pd matrix for 0 < k < 1.2585
and k > 567085.8336. The k values satisfying (3.6) criterion are 0 < k < 0.4294 and
k > 567085.8336. Consequently, MMSE (BPKLE) ~ MMSE (BILTE) is the pd matrix
where 0 < k < 0.4294 and k > 567085.8336.

Finally, based on the above results, we have shown that the theoretical conditions given
in Theorems 3.1 to 3.6 hold for this data set. Therefore, we can say that ILTEs can

outperform other biased estimators when we use f (k) as an appropriate linear function
of k.
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7. Conclusion

In this article, we proposed a new biased estimator named ILTE as an alternative to
MLE and the other biased estimators in the presence of multicollinearity for the PRM.
The ILTE is a general estimator which includes other biased estimators, such as PRE,
PLE, PLTE, PTPE and PKLE as special cases. Also, we investigated several function for
the determination function. These functions were used with different k estimates. The
results obtained with the simulation study show that our proposed estimator performs
best in both low and high correlation between explanatory variables. Especially, ILTE II
provided superiority in lower correlation, while ILTE I and ILTE III provided superiority
in high correlation. Finally, an empirical application is conducted for the PRM and its
results reveal the same results of the simulation study. Therefore, the ILTEs are recom-
mended to the practitioners when there is multicollinearity in the PRMs.
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