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Abstract
We present existence and uniqueness results for a class of higher order anti-periodic fractional boundary value
problems with Riesz space derivative which is two-sided fractional operator. The obtained results are established
by applying some fixed point theorems. Various numerical examples are given to illustrate the obtained results.
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1. Introduction
Recently, many researchers have investigated a large range of problems including fractional differential equations. A variety of
scientific areas such as physics, polymer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium, viscoelasticity, biology, control theory, etc involve fractional differential
equations. Some applications and detailed explanation of fractional differential equations can be found in the books [1, 2, 3]
and references [7, 29, 16]. Geometric and physical interpretation of fractional differentiation and integration can be found in
the paper [27]. Existence results for fractional differential equations have studied and developed by many authors; see the
books [26, 4, 2] and references [11, 12, 24, 15, 9, 26, 4, 2, 17, 18, 19, 30, 31, 39, 41, 42, 43, 44, 45] and references therein.

Much of recent works on fractional boundary/initial value problems involve Riemann-Lioville and Caputo derivatives in the
literature. Unfortunately, these fractional operators are one-sided operators which hold either past or future memory effects.
Unlike these fractional operators, the Riesz space fractional operator is two-sided operator which holds both the history and
future non-local memory effects. This is important in the mathematical modelling for physical processes on a finite domain
because the present states depend both on the past and future memory effects. As an example, Riesz fractional derivative has
been used for the memory effects in both past and future concentrations in the anomalous diffusion problem [13, 5].

Numerical solutions of the fractional calculus, specifically in the anomalous diffusion that involves the Riesz derivative
have been presented in [13, 8, 5, 38]. Analytical and numerical solutions for fractional differential equations using different
definitions for fractional derivatives and integrals have been proposed and studied in the literature [28, 32, 33, 34, 35, 21, 36, 37].
Recently, there are papers on existence and positive solutions for the fractional boundary value problems with the Riesz-Caputo
derivative [14, 25, 20].

The mathematical modelling of many physical phenomena can be expressed in terms of anti-periodic boundary value
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problems [10]. Recently, a large amount of papers are devoted to anti-periodic boundary value problems, for example, see
[22, 23] and references therein.

In this paper, we study the existence and uniqueness of solutions for the following anti-periodic boundary value problem of
the Riesz-Caputo fractional differential equations

RC
0Dν

T u(η) = F(η ,u(η)) ν ∈ (2,3], 0≤ η ≤ T,

u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0,
(1.1)

where RC
0Dν

T is the Riesz-Caputo derivative defined below and F : [0,T ]×R→ R is a continuous function.
The remainder of paper is organized as follows. Section 2 introduces some preliminaries, definitions and lemmas which are

useful in proving main results. Section 3 provides some sufficient conditions for the existence and the uniqueness of solutions
of the problem (1.1) with anti-periodic boundary conditions. Finally, some numerical examples are given to illustrate the
applications of the main results in the last section.

2. Preliminaries
This section is devoted to some important definitions and lemmas that will be needed in the sequel.

Definition 2.1. [26] Let ν > 0. The left and right Riemann-Liouville fractional integral of a function f ∈C[0,T ] of order ν

defined as, respectively

Iν
0 f (x) =

1
Γ(ν)

∫ x

0
(x− s)ν−1 f (s)ds, x ∈ [0,T ].

T Iν f (x) =
1

Γ(ν)

∫ T

x
(s− x)ν−1 f (s)ds, x ∈ [0,T ].

Definition 2.2. (Riesz Fractional Integral) Let ν > 0. The Riesz fractional integral of a function f ∈C[0,T ] of order ν defined
as

0Iν
T f (x) =

1
2Γ(ν)

∫ T

0
|x− s|ν−1 f (s)ds, x ∈ [0,T ].

Note that the Riesz fractional integral operator can be written as

0Iν
T f (x) =

1
2

(
Iν
0 f (x)+ T Iν f (x)

)
(2.1)

Definition 2.3. [26] Let ν ∈ (n,n+1],n ∈ N. The left and right Caputo fractional derivative of a function f ∈Cn+1[0,T ] of
order ν defined as, respectively

C
0 Dν

x f (x) =
1

Γ(n+1−ν)

∫ x

0
(x− s)n−ν f (n+1) ds = (In+1−ν

0 Dn+1)u(x).

C
x Dν

T f (x) =
(−1)n+1

Γ(n+1−ν)

∫ T

x
(s− x)n−ν f (n+1) ds = (−1)n+1(T In+1−ν Dn+1)u(x).

where D is the ordinary differential operator.

Definition 2.4. Let ν ∈ (n,n+1],n ∈N. The Riesz-Caputo fractional derivative RC
0Dν f of order ν of a function f ∈Cn+1[0,T ]

defined by

RC
0Dν

T f (x) =
1

Γ(n+1−ν)

∫ T

0
|x− s|n−ν f (n+1)(s)ds

=
1
2

(
C
0 Dν

x f (x)+(−1)n+1C
x Dν

T f (x)
)

=
1
2

(
(In+1−ν

0 Dn+1)u(x)+(−1)n+1(T In+1−ν Dn+1)u(x)
)
.
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Lemma 2.5. [26] Let f ∈Cn[0,T ] and ν ∈ (n,n+1]. Then we have the following relations

Iν
0

C
0 Dν

x f (x) = f (x)−
n−1

∑
k=0

f (k)(a)
k!

(x−a)k,

T IνC
x Dν

T f (x) = f (x)−
n−1

∑
k=0

(−1)k f (k)(b)
k!

(b− x)k.

In the case when ν ∈ (2,3] and f (x) ∈C3(0,T ) we have

0Iν
T

RC
0Dν

T f (x) =
1
2

(
Iν
0

C
0 Dν

x f (x)− T IνC
x Dν

T f (x)
)

= f (x)− 1
2
( f (0)+ f (T ))− 1

2
( f ′(0)+ f ′(T ))x+

T
2

f ′(T )

− 1
4
( f ′′(0)+ f ′′(T ))x2−

T 2−2T x
4

f ′′(T ).

(2.2)

The following fixed point theorems will be needed to establish the existence results.

Theorem 2.6. [6] Let M be a closed convex and nonempty subset of a Banach space X. Let A,B be the operators such that

(i) Ax+By ∈M whenever x,y ∈M;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists u ∈M such that u = Au+Bu.

Theorem 2.7. [6] Let X be a Banach space. Assume that O is an open bounded subset of X with θ ∈O and let T : O→ X be a
completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂O.

Then T has a fixed point in O .

Lemma 2.8. Assume that g ∈C([0,T ],R). A unique solution u ∈C3([0,T ]) of the following fractional boundary problem

RC
0Dν

T u(η) = g(η) ν ∈ (2,3], 0≤ η ≤ T,

u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0,
(2.3)

is given as

u(η) =
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2g(s)ds

+
1

Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds.

(2.4)

Proof. We infer from (2.2) and (2.3) that

u(η) =
1
2
(u(0)+u(T ))+

1
2
(u′(0)+u′(T ))η− T

2
u′(T )

1
4
(u′′(0)−u′′(T ))η2 +

T 2−2T η

4
u′′(T )+

1
Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds.

(2.5)

The anti-periodic boundary conditions u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0 imply that

u(η) =−T
2

u′(T )+
T 2−2T η

4
u′′(T )+

1
Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds. (2.6)
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Then,

u′(η) =− T
2

u′′(T )+
1

Γ(ν−1)

∫
η

0
(η− s)ν−2g(s)ds− 1

Γ (ν−1)

∫ T

η

(s−η)ν−2g(s)ds,

u′′(η) =
1

Γ(ν−2)

∫
η

0
(η− s)ν−3g(s)ds+

1
Γ (ν−2)

∫ T

η

(s−η)ν−3g(s)ds.

Hence, we have

u′(T ) =− T
2

( 1
Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds

)
+

1
Γ(ν−1)

∫ T

0
(T − s)ν−2g(s)ds,

u′′(T ) =
1

Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds.

(2.7)

Plugging the equations in (2.7) into (2.6) gives

u(η) =
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2g(s)ds +

1
Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds,

which completes the proof.

3. Existence of Solutions
We prove the main results of the paper in this section. Let C[0,T ] be the space of continuous functions u defined on [0,T ] with
the norm ‖u‖= supη∈[0,T ] |u(η)|. We assume the following conditions on F are satisfied.

(H1) F satisfies a Lipschitz condition in the second variable, that is,

|F(η ,u)−F(η ,v)| ≤ L|u− v|,∀η ∈ [0,T ],u,v ∈ R.

(H2) F is dominated by a L1 function, that is,

|F(η ,u)| ≤ `(η),∀(η ,u) ∈ [0,T ]×R, and ` ∈ L1([0,T ],R+).

Theorem 3.1. Let F ∈C([0,T ]×R,R) satisfy the assumption (H1) with

L≤
2Γ(ν +1)

T ν(8+ν(ν +1))
.

Then the problem (1.1) has a unique solution.

Proof. We convert the problem (1.1) into a fixed point solution of operator T : C([0,T ],R)→C([0,T ],R) defined by

(T u)(η) =
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3F(s,u(s))ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2F(s,u(s))ds

+
1

Γ(ν)

∫ T

0
|η− s|ν−1F(s,u(s))ds, η ∈ [0,T ].

We shall prove that the operator T has a fixed point by showing that T is a contraction. To this end, we first demonstrate that

T Sr ⊂ Sr where Sr = {u ∈C([0,T ],R) : ‖u‖ ≤ r} with r ≥
KT ν(8+ν(ν +1))

2Γ(ν +1)
and K := supη∈[0,T ] |F(η ,0)|. For u ∈ Sr, we
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have

|(T u)(η)| ≤
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3|F(s,u(s))|ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2|F(s,u(s))|ds

+
1

Γ(ν)

∫ T

0
|η− s|ν−1|F(s,u(s))|ds

≤
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3(|F(s,u(s))−F(s,0)|+ |F(s,0)|)ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2(|F(s,u(s))

−F(s,0)|+ |F(s,0)|)ds+
1

Γ(ν)

∫ T

0
|η− s|ν−1(|F(s,u(s))−F(s,0)|+ |F(s,0)|)ds

≤(Lr+K)
(2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3 ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2 ds+

1
Γ(ν)

∫ T

0
|η− s|ν−1 ds

)
≤(Lr+K)

( T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)
≤ r.

Next, for u,v ∈C([0,T ),R) and for any η ∈ [0,T ], we get∣∣(T u)(η)− (T v)(η)
∣∣

≤
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3|F(s,u(s))−F(s,v(s))|ds

+
T

2Γ(ν−1)

∫ T

0
(T − s)ν−2|F(s,u(s))−F(s,v(s))|ds+

1
Γ(ν)

∫ T

0
|η− s|ν−1|F(s,u(s))−F(s,v(s))|ds

≤L‖u− v‖
(2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3 ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2 ds+

1
Γ(ν)

∫ T

0
|η− s|ν−1 ds

)
≤
( LT ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)
‖u− v‖< ‖u− v‖.

This shows that T is a contraction. Therefore, the Banach fixed point theorem tells us T has a fixed point which is a solution
to the problem (1.1).

Theorem 3.2. Let F ∈C([0,T ]×R,R) be a completely continuous function. Assume that the conditions (H1) and (H2) hold

with
LT ν(ν +1)

4Γ(ν)
< 1. Then the fractional boundary problem with anti-periodic boundary conditions (1.1) has a solution on

[0,T ].

Proof. Let Sr = {u ∈C([0,T ],R) : ‖u‖ ≤ r be the ball of radius r with r≥
‖`‖L1 T ν

Γ(ν +1)
(2+

ν(ν +1)
4

), where ‖`‖L1 =
∫ T

0 |`(s)|ds.

We define two operator F and S on Sr given by

(Fu)(η) :=
1

Γ(ν)

∫ T

0
|η− s|ν−1F(s,u(s))ds,

(S u)(η) :=
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3F(s,u(s))ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2F(s,u(s))ds.

For any u,v ∈ Sr, as above, we have

‖Fu+S v‖ ≤
‖`‖L1T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)≤ r.

Hence, it follows that Fu+S v ∈ Sr whenever u,v ∈ Sr. It can easily be shown that S is a contraction using the assumption
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LT ν(ν +1)
4Γ(ν)

< 1. The continuity of F follows from the continuity of F . Moreover, F is uniformly bounded on Sr as follows.

|(Fu)(η)| ≤
1

Γ(ν)

∫
η

0
(η− s)ν−1|F(s,u(s))|ds+

1
Γ(ν)

∫ T

η

(s−η)ν−1|F(s,u(s))|ds

≤
‖`‖L1

Γ(ν)

(∫ η

0
(η− s)ν−1 ds+

∫ T

η

(s−η)ν−1 ds
)

≤
‖`‖L1

Γ(ν +1)
(ην +(T −η)ν)≤

2‖`‖L1T ν

Γ(ν +1)
.

We now show that the operator F is compact on Sr. For u ∈ Sr, we first estimate the derivative (Fu)′(η):∣∣(Fu)′(η)
∣∣≤ 1

Γ (ν−1)

∫
η

0
(η− s)(ν−2)∣∣F(s,u(s))∣∣ds+

1
Γ (ν−1)

∫ T

η

(s−η)(ν−2)∣∣F(s,u(s))∣∣ds

≤
(

ην−1

Γ (ν)
+

(T −η)ν−1

Γ (ν)

)
L≤ 2T ν−1L

Γ (ν)
:= βT,L,ν ,

(3.1)

where βT,L,ν is independent of the function u. Therefore, for any η1,η2 ∈ [0,T ] with η1 < η2, we have

|(Fu)(η1)− (Fu)(η2)|=
∫

η2

η1

|(Fu)′(s)|ds≤ βT,L,ν(η2−η1).

Hence, F is relatively compact on Sr. It follows form Arzela Ascoli Theorem that F is compact on Sr. As a consequence
of Theorem 2.6, we infer that F +S has a fixed point which is a solution of the problem (1.1) on [0,T ]. Thus the proof is
completed.

Theorem 3.3. Assume that limu→0
F(η ,u)

u
= 0. Then the problem (1.1) has one solution.

Proof. limu→0
F(η ,u)

u
= 0 implies that there is a δ > 0 such that |F(η ,u)| ≤ ε|u| for 0 < |u|< δ , where ε is chosen such that

( T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)

ε ≤ 1. (3.2)

Set Sr = {u ∈C([0,T ],R) : ‖u‖< r and let u ∈ ∂Sr, that is ‖u‖= r. As before, the continuity of the operator T follows from
the continuity of F , and, as before, it can be shown that T = F +S is bounded on Sr. Note that |(T u)′ = (Fu)′+(S u)′|
where (Fu)′ is given by (3.1) and (S u)′ is given as

|(S u)′(η)|=
T

2Γ (ν−2)

∫ T

0
(T − s)(ν−3)∣∣F(s,u(s))∣∣ds≤

T ν−1L
Γ (ν−1)

.

Hence,

|(T u)′(η)| ≤
(ν +1)T ν−1L

Γ (ν−1)
:= L1.

Therefore, for η1,η2 ∈ [0,T ] with η1 < η2, we have

|(T u)′(η1)− (T u)′(η2)| ≤
∫

η2

η1

|(T u)′(s)|ds≤ L1(η2−η1).

We deduce that T is equicontinuous on [0,T ] . Hence, in view of the Arzela–Ascoli theorem, the operator T is completely
continuous. Morevover, we have

|(T u)(η)| ≤
( T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)

ε‖u‖,

which implies ‖T u‖ ≤ ‖u‖ for u ∈ ∂Sr in light of (3.2). As a consequence of Theorem 2.7, the operator T has a fixed point
which is solution of the problem (1.1).
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Remark 3.4. The results in this paper can be applied to obtain the existence results for nonlinear third-order ordinary
differential equations with anti-periodic boundary conditions [40] by taking ν = 3

u′′′(η) = F(η ,u(η)) 0≤ η ≤ T,

u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0.

4. Numerical Examples
In this section, numerical examples are given to show the applications of the result of this paper.

Example 4.1. Consider the following fractional boundary problem with anti-periodic boundary conditions

RC
0D

5
2
1 u(η) =

1
(2+η)2

u(η)

2+u(η)
0≤ η ≤ 1,

u(0)+u(1) = 0, u′(0)+u′(1) = 0, u′′(0)+u′′(1) = 0.
(4.1)

Here, F(s,u(s)) =
1

(2+η)2

u(η)

2+u(η)
, T = 1 and ν = 5

2 . We have |F(s,u)−F(s,v)| ≤ 1
4‖u− v‖,hence the condition

(H1) is fulfilled with L = 1
4 . Also, we calculate LT ν

Γ(ν+1) (2+
ν(ν +1)

4
)≈ 0.3150 < 1. Therefore, the fractional boundary value

problem (4.1) has a solution by Theorem 3.1.

Example 4.2. Consider the following fractional boundary problem with anti-periodic boundary conditions

RC
0Dν

1 u(η) = u3/2(η)+3(η +2)(u(η)− tanu(η)), ν ∈ (2,3], 0≤ η ≤ 1,
u(0)+u(1) = 0, u′(0)+u′(1) = 0, u′′(0)+u′′(1) = 0,

(4.2)

where F(s,u(s))= u3/2(η))+3(η+2)(u(η)− tanu(η)), T = 1 and ν ∈ (2,3] is any real number. We have limu→0
F(η ,u)

u
=

0, hence the condition of Theorem 3.3 holds. As a result of Theorem 3.3, the fractional boundary value problem (4.2) has at
least one solution.

5. Conclusion
This paper concerns with the existence and uniqueness for fractional differential equations with the Riesz space with anti-
periodic boundary conditions in Banach spaces. With the help of Banach’s contraction principle and some fixed point theorems,
existence results have been presented. As a special value of the fractional order, the results are extended to nonlinear third order
ordinary differential equation with anti-periodic boundary conditions. Some examples are given to illustrate the theoretical
results.
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