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Abstract. In this paper, we handle an impulsive Sturm–Liouville equation
with complex potential on the semi axis. The objective of this work is to ex-

amine some spectral properties of this impulsive Sturm–Liouville equation. By
the help of a transfer matrix B, we obtain Jost solution of this problem. Fur-

thermore, using Jost solution, we find Green function and resolvent operator

of this equation. Finally, we consider two unperturbated impulsive Sturm–
Liouville operators. We examine the eigenvalues and spectral singularities of

these problems.

1. Introduction

The modeling of most of the problems encountered in the fields of mathematics,
physics, mechanics and engineering in daily life is done with boundary value or ini-
tial value problems in applied mathematics and spectral analysis. Operator theory
is used to solve these problems in spectral theory. First, many physicists and mathe-
maticians studied the spectral theory of differential operators. The Sturm–Liouville
operator, which is the equivalent of the one dimensional Schrödinger operator, has
gained a wide place in the literature. Let us shortly give information about the
literature of spectral theory of Sturm–Liouville operator. Spectral analysis of the
nonself-adjoint Schrödinger operator was first investigated by Naimark in 1960 [20].
He proved that the spectrum of this operator consists of eigenvalues, continuous
spectrum and spectral singularities. Furthermore, he discovered that the spectral
singularities are poles of the resolvent operator’s kernel on the continuous spectrum
but not the eigenvalues of the operator. Kemp extended the results obtained by

2020 Mathematics Subject Classification. 34B09, 34B24, 34B37, 34K10, 34L05.
Keywords. Impulsive condition, Sturm–Liouville equation, eigenvalues, Jost function, spectral
singularity, resolvent operator.

basakoznur@gazi.edu.tr

0000-0003-4130-5348.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

1080



SPECTRAL SINGULARITIES OF AN IMPULSIVE STURM–LIOUVILLE OPERATORS1081

Naimark to differential operators defined on the whole real axis [16]. Gasymov
also extended these results to three-dimensional Schrödinger operators [12]. Then,
Schwartz investigated the spectral singularities of a certain class of abstract linear
operators in Hilbert space and proved that self-adjoint operators have no spectral
singularity [23]. Furthermore, these equations were studied under different initial
and boundary conditions by Pavlov, Guseinov and Bairamov et al. [7, 9, 10,14,22].

On the other hand, in some processes, instant changes are encountered due to ex-
ternal factors. These are short term sudden changes and can be neglected compared
to the whole process. Ordinary differential equations are not sufficient to model
these processes. For this reason, impulsive differential equations are used to ex-
plain these processes mathematically. Unlike the Schrödinger equation, differential
equations with impulsive conditions do not have a long history in the literature. Im-
pulsive differential systems were first studied by Myshkis and Mil’man [18]. After,
these equations were investigated by Bainov, Simenov and Lakshmikantham [3, 4].
Recently, many authors have examined impulsive differential equations in detail, be-
cause impulsive differential equations have been used in many scientific phenomena
such as heart beat, population dynamics, atomic physics, mathematical economics,
ecology, engineering, medicine and so forth [13, 15, 19]. Bairamov et al, Yardimci
and Erdal investigated scattering analysis and spectral theory of different kinds of
impulsive Sturm–Liouville equations [2, 5, 6, 8, 11, 24]. Different from these stud-
ies, in this paper, we consider the Sturm–Liouville equation with complex valued
potential and impulsive condition in matrix form. Therefore, it creates different
perspective.

Let us introduce the Sturm–Liouville operator T in L2(0,∞), generated by the
equation

−υ′′ + q(z)υ = λ2υ, z ∈ [0, z0) ∪ (z0,∞) (1)

with the boundary condition

(η0 + η1λ) υ
′(0) + (ζ0 + ζ1λ) υ(0) = 0 (2)

and the impulsive condition[
υ
(
z+0

)
υ′ (z+0 )

]
= B

[
υ
(
z−0

)
υ′ (z−0 )] , B =

[
β1 β2

β3 β4

]
, (3)

where βi, ηj , ζj , i = 1, 2, 3, 4, j = 0, 1 are complex numbers such that detB ̸= 0
and η0ζ1−η1ζ0 ̸= 0, z0 is a positive real constant and q is a complex valued function
satisfying the following condition

∞∫
0

(1 + z)|q(z)|dz < ∞. (4)

Throughout the paper, we will show impulsive boundary value problem (1)-(3)
by ISBVP, shortly.

This paper is organized as follows: This study consists of five chapters including
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the introduction. In the next Section, we give basic solutions and definitions. Unlike
other studies in the literature, we examine the effect of the impulsive condition on
the Sturm–Liouville equation with complex potential in Section 3. We find the
Jost solution of ISBVP (1)-(3). In Section 4, we obtain the set of eigenvalues and
spectral singularities of (1)-(3). Also, we present an asymptotic equation to obtain
the properties of eigenvalues. Then, we get the resolvent operator of the Sturm–
Liouville operator T. Finally, we handle two different problems to apply our main
results in Section 5.

2. Preliminaries

Let S
(
z, λ2

)
and C

(
z, λ2

)
be the fundamental solutions of (1) in the interval

[0, z0) satisfying the initial conditions

S(0, λ2) = 0, S′(0, λ2) = 1,

C(0, λ2) = 1, C ′(0, λ2) = 0.

It is evident that the solutions S
(
z, λ2

)
and C

(
z, λ2

)
are entire functions of λ and

W [S(z, λ2), C(z, λ2)] = −1, λ ∈ C,
where W [υ1, υ2] denotes the Wronskian of the solutions υ1 and υ2 of the equation
(1). The integral representations of S

(
z, λ2

)
and C

(
z, λ2

)
are well known in the

literature as

S(z, λ2) =
sinλz

λ
+

z∫
0

Q(z, t)
sinλt

λ
dt (5)

C(z, λ2) = cosλz +

z∫
0

R(z, t) cosλtdt, (6)

where Q(z, t) and R(z, t) are expressed in terms of the potential function q [17].
On the other hand, e(z, λ) is bounded solution of the equation (1) in the interval

(z0,∞) fulfilling the following condition

lim
z→∞

e(z, λ)e−iλz = 1, λ ∈ C+ := {λ ∈ C : Imλ ≥ 0}

and it has an integral representation

e(z, λ) = eiλz +

∞∫
z

K(z, t)eiλtdt, λ ∈ C+, (7)

where K(z, t) is defined by the potential function q [1]. The bounded solution
e(z, λ) is analytic with respect to λ in C+ := {λ ∈ C : Imλ > 0} and continuous up
to the real axis. Similarly, e (z,−λ) is bounded solution of (1) in (z0,∞) satisfying
the condition

lim
z→∞

e(z,−λ)eiλz = 1, λ ∈ C− := {λ ∈ C : Imλ ≤ 0}.
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It is well known that

W [e (z, λ) , e (z,−λ)] = −2iλ, λ ∈ R\{0}.
Furthermore, ĕ(z, λ) is unbounded solution of (1) in (z0,∞) subjecting the con-

ditions [21]

lim
z→∞

ĕ(z, λ)eiλz = 1, lim
z→∞

ĕ′(z, λ)eiλz = −iλ, λ ∈ C+.

It is clear that

W [e (z, λ) , ĕ (z, λ)] = −2iλ, z ∈ (z0,∞) , λ ∈ C+.

3. Solutions of Impulsive Sturm–Liouville Equation

By the help of linearly independent solutions (1), we will define the general
solutions of (1) for λ ∈ R\{0},

Ψ1 (z, λ) =

{
υ−
1 (z, λ) = a−(λ)S

(
z, λ2

)
+ b−(λ)C

(
z, λ2

)
; 0 ≤ z < z0

υ+
1 (z, λ) = a+(λ)e (z, λ) + b+(λ)e (z,−λ) ; z0 < z < ∞,

(8)

Ψ2 (z, λ) =

{
υ−
2 (z, λ) = c−(λ)S

(
z, λ2

)
+ d−(λ)C

(
z, λ2

)
; 0 ≤ z < z0

υ+
2 (z, λ) = c+(λ)e (z, λ) + d+(λ)e (z,−λ) ; z0 < z < ∞

(9)

and for λ ∈ C+\{0},

Ψ3 (z, λ) =

{
υ−
3 (z, λ) = f−(λ)S

(
z, λ2

)
+ h−(λ)C

(
z, λ2

)
; 0 ≤ z < z0

υ+
3 (z, λ) = f+(λ)e (z, λ) + h+(λ)ĕ (z, λ) ; z0 < z < ∞,

(10)

respectively.
Using (3) and (8), we obtain [

a+(λ)
b+(λ)

]
= N

[
a−(λ)
b−(λ)

]
, (11)

where

N :=

[
N11(λ) N12(λ)
N21(λ) N22(λ)

]
= L−BM (12)

such that

L =

[
e (z0, λ) e (z0,−λ)
e′ (z0, λ) e′ (z0,−λ)

]
and

M =

[
S
(
z0, λ

2
)

C
(
z0, λ

2
)

S′ (z0, λ2
)

C ′ (z0, λ2
)] .

Since detL = −2iλ, in accordance with (12), we find that

N21(λ) =
i

2λ
[−e′(z0, λ)

(
β1S

(
z0, λ

2
)
+ β2S

′ (z0, λ2
))

+e (z0, λ)
(
β3S

(
z0, λ

2
)
+ β4S

′ (z0, λ2
))
] (13)
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N22(λ) =
i

2λ
[−e′(z0, λ)

(
β1C

(
z0, λ

2
)
+ β2C

′ (z0, λ2
))

+e (z0, λ)
(
β3C

(
z0, λ

2
)
+ β4C

′ (z0, λ2
))
]. (14)

Now, we shall consider the Jost solution of ISBVP (1)-(3) and denote by E.
Thus, by using (8), the coefficients a+(λ) and b+(λ) turn into 1 and 0, respectively.
For λ ∈ C+, we write the following solution of (1)-(3)

E(z, λ) =

{
a−(λ)S(z, λ2) + b−(λ)C(z, λ2); z ∈ [0, z0)

e(z, λ); z ∈ (z0,∞).

By the help of (11) and (12), we easily obtain the coefficients a−(λ) and b−(λ) as
follows

a−(λ) =
N22(λ)

detN
, b−(λ) = −N21(λ)

detN
. (15)

Let us consider the solution of (1)-(3) satisfying the boundary condition (2) and
denote by F . By (2) and (9), the following can be easily seen

c−(λ) = (ζ0 + ζ1λ) , d−(λ) = (η0 + η1λ) .

For λ ∈ R\{0}, we will consider the following solution of ISBVP (1)-(3)

F (z, λ) =

{
− (ζ0 + ζ1λ)S(z, λ

2) + (η0 + η1λ)C(z, λ2); z ∈ [0, z0)

c+(λ)e(z, λ) + d+(λ)e(z,−λ); z ∈ (z0,∞).

From (3) and (12), we get

c+(λ) = − (ζ0 + ζ1λ)N11(λ) + (η0 + η1λ)N12(λ) (16)

d+(λ) = − (ζ0 + ζ1λ)N21(λ) + (η0 + η1λ)N22(λ), (17)

respectively.

Lemma 1. For λ ∈ R\{0}, the Wronskian of the solutions E (z, λ) and F (z, λ) is
given by

W [E(z, λ), F (z, λ)] =

{
H (λ) ; z ∈ [0, z0)

2iλH (λ) detN ; z ∈ (z0,∞),

where

H (λ) :=
(ζ0 + ζ1λ)N21(λ)− (η0 + η1λ)N22(λ)

detN
. (18)

Proof. Using the definition of Wronskian for z ∈ [0, z0), we find

W [E (z, λ) , F (z, λ)] = − (ζ0 + ζ1λ) b
−(λ)− (η0 + η1λ) a

−(λ).

By using (15), the following can be easily seen

W [E (z, λ) , F (z, λ)] = H(λ)
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for z ∈ [0, z0).
Similarly, we write

W [E (z, λ) , F (z, λ)] = −2iλd+(λ), z ∈ (z0,∞).

By the help of (17), it is clear that

W [E (z, λ) , F (z, λ)] = 2iλH (λ) detN

for z ∈ (z0,∞).
This completes the proof. □

Since H is composed of e (z, λ) , C
(
z, λ2

)
and S

(
z, λ2

)
, it is analytic in C+ and

continuous up to the real axis.

4. Eigenvalues, Spectral Singularities And Resolvent Operator of T

From Lemma 1, a necessary and sufficient condition to investigate the eigen-
values and spectral singularities of the Sturm–Liouville operator T with impulsive
condition (3) is to investigate the zeros of the function H.
The set of eigenvalues and spectral singularities of the operator T are defined as

σd (T) = {µ = λ2 : Imλ > 0 and H(λ) = 0},

σss (T) = {µ = λ2, Imλ = 0, λ ̸= 0 and H(λ) = 0},
respectively.

Theorem 1. Under the condition (4), the function H satisfies the following as-
ymptotic equation

H (λ) =
µ1β2λ

2

detN

(
i

4
+O

(
1

λ

))
, λ ∈ C+, |λ| → ∞,

where µ1β2 ̸= 0.

Proof. By means of (5)-(7), we easily find for λ ∈ C

S′ (z0, λ2
)
= cosλz0 +Q (z0, z0)

sinλz0
λ

+

z0∫
0

Q(z0, t)
sinλt

λ
dt (19)

C ′ (z0, λ2
)
= −λ sinλz0 +R (z0, z0) cosλz0 +

z0∫
0

R(z0, t) cosλtdt (20)

and for λ ∈ C+

e′(z0, λ) = iλeiλz0 −K (z0, z0) e
iλz0 +

∞∫
z0

Kz(z0, t)e
iλtdt. (21)
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From (5)-(7), we get

S
(
z0, λ

2
)
=

e−iλz0

λ

(
i

2
+ o (1)

)
C
(
z0, λ

2
)
= e−iλz0

(
1

2
+ o (1)

)
(22)

e (z0, λ) = eiλz0 (1 + o (1)) ,

where λ ∈ C+ and |λ| → ∞.
In a similar way, by using (19)-(21), we obtain for λ ∈ C+ and |λ| → ∞

S′ (z0, λ2
)
= e−iλz0

(
1

2
+O

(
1

λ

))
C ′ (z0, λ2

)
= λe−iλz0

(
− i

2
+O

(
1

λ

))
(23)

e′ (z0, λ) = λeiλz0
(
i+O

(
1

λ

))
.

By means of (22) and (23), it is obvious that H (λ) satisfies the asymptotic equation
given in Theorem 1. This completes the proof. □

Now, let us define another solution of (1)-(3)

G (z, λ) =

{
− (ζ0 + ζ1λ)S(z, λ

2) + (η0 + η1λ)C(z, λ2); z ∈ [0, z0)

f+(λ)e(z, λ) + h+(λ)ĕ(z, λ); z ∈ (z0,∞)

for all λ ∈ C+\{0}. By the help of (3), we obtain that[
f+(λ)
h+(λ)

]
= V

[
− (ζ0 + ζ1λ)
(η0 + η1λ)

]
, (24)

where

V :=

[
V11(λ) V12(λ)
V21(λ) V22(λ)

]
= U−BM (25)

with

U =

[
e (z0, λ) ĕ (z0, λ)
e′ (z0, λ) ĕ′ (z0, λ)

]
. (26)

From (25) and (26), the following equations can be found as

V21(λ) =
i

2λ
[−e′(z0, λ)

(
β1S

(
z0, λ

2
)
+ β2S

′ (z0, λ2
))

+e (z0, λ)
(
β3S

(
z0, λ

2
)
+ β4S

′ (z0, λ2
))
] (27)

V22(λ) =
i

2λ
[−e′(z0, λ)

(
β1C

(
z0, λ

2
)
+ β2C

′ (z0, λ2
))

+e (z0, λ)
(
β3C

(
z0, λ

2
)
+ β4C

′ (z0, λ2
))
]. (28)
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By using (24), the coefficients f+ (λ) and h+ (λ) must be as follows

f+(λ) = − (ζ0 + ζ1λ)V11(λ) + (η0 + η1λ)V12(λ)

h+(λ) = − (ζ0 + ζ1λ)V21(λ) + (η0 + η1λ)V22(λ).

By using (13), (14), (27) and (28), it is clear that

N21(λ) = V21(λ), N22(λ) = V22(λ).

Therefore, using (18), we rewrite h+(λ) as

h+(λ) = −H(λ) detN. (29)

In view of (29), we obtain that

W [E(z, λ), G(z, λ)] =

{
H (λ) ; z ∈ [0, z0)

2iλH (λ) detN ; z ∈ (z0,∞)

for λ ∈ C+\{0}.

Theorem 2. Assume (4). Then the resolvent operator of T is defined by

Rλϕ =

∞∫
0

R(z, t;λ)ϕ(t)dt,

where

R(z, t;λ) =


E(z, λ)G(t, λ)

W [E(z, λ), G(z, λ)]
; 0 ≤ t < z

G(z, λ)E(t, λ)

W [E(z, λ), G(z, λ)]
; z ≤ t < ∞

is the Green function of (1)-(3) for z ̸= z0, t ̸= z0.

Proof. Let us consider the following equation

−υ′′ + q(z)υ − λ2υ = ϕ(z), z ∈ [0, z0) ∪ (z0,∞). (30)

By using the solutions E (z, λ) and G (z, λ) , we write the solution of (30)

ϕ (z, λ) = θ1(z)E (z, λ) + θ2(z)G (z, λ) .

Using the method of variation of parameters, we get the coefficients θ1(z) and θ2(z)
as follows

θ1(z) = k +

z∫
0

ϕ(t)G(t, λ)

W [E(z, λ), G(z, λ)]
dt

θ2(z) = m+

∞∫
z

ϕ(t)E(t, λ)

W [E(z, λ), G(z, λ)]
dt,
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where k and m are real numbers. Let us write the coefficients θ1(z) and θ2(z) in
solution ϕ (z, λ)

ϕ (z, λ) = kE (z, λ) +

z∫
0

ϕ(t)G(t, λ)

W [E(z, λ), G(z, λ)]
dtE (z, λ)

+mG (z, λ) +

∞∫
z

ϕ(t)E(t, λ)

W [E(z, λ), G(z, λ)]
dtG (z, λ) .

Since the solution ϕ(z, λ) is in L2(0,∞), m becomes zero. In accordance with
the boundary condition (2), we also find that k is equal to zero. The proof is
completed. □

5. Unperturbated Impulsive Operators

In this section, we will investigate two unperturbated impulsive Sturm–Liouville
operators.

Example 1. Now, we consider the Sturm–Liouville operator T0 in L2 [0,∞) cor-
responding to the following impulsive problem

−υ′′ = λ2υ, z ∈ [0, 1) ∪ (1,∞)

(η0 + η1λ) υ
′(0) + (ζ0 + ζ1λ) υ(0) = 0 (31)[

υ (1+)
υ′ (1+)

]
= B

[
υ (1−)
υ′ (1−)

]
, B =

[
γ1 0
0 γ2

]
,

where γ1, γ2, ηj, ζj, j = 0, 1 are complex numbers such that η0ζ1 − η1ζ0 ̸= 0 and
γ1γ2 ̸= 0. Since q = 0, it is evident that

e (z, λ) = eiλz, C
(
z, λ2

)
= cosλz, S

(
z, λ2

)
=

sinλz

λ
.

By using (18), we write that

H(λ) =
ieiλ

2λ detN
[(η0 + η1λ)(iγ1λ cosλ+ γ2λ sinλ)

+(ζ0 + ζ1λ)(γ2 cosλ− iγ1 sinλ)]. (32)

To investigate the eigenvalues and spectral singularities of (31), we examine the
zeros of H. Let us choose ζ1 = η0 = 1 and ζ0 = η1 = 0 in (32) for the simplicity.
Therefore, we rewrite the equation (32)

H(λ) =
ieiλ

2 detN
[iγ1 cosλ+ γ2 sinλ− iγ1 sinλ+ γ2 cosλ].

We obtain that

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ 1

2
Arg

(
1 +D

1−D

)
+ kπ, k ∈ Z,
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where D =
γ1 − iγ2

γ2 − iγ1

. There appear three cases:

Case1: Let D =
eiθ − 1

eiθ + 1
such that θ ∈ R. Since D =

eiθ − 1

eiθ + 1
, it is easily seen that

Arg

(
1 +D

1−D

)
= θ and

∣∣∣∣1 +D

1−D

∣∣∣∣ = 1. Then, we find that

λk =
θ

2
+ kπ, k ∈ Z.

In this case, λk ∈ R\{0}, k ∈ Z are the spectral singularities of (31). However,
there is no eigenvalues.
Case2: Let ImD ̸= 0.
2a: Let D be purely imaginary. We obtain that

λk =
1

2
Arg

(
1 +D

1−D

)
+ kπ, k ∈ Z.

In this case, similar with Case1, the ISBVP (31) has no eigenvalues. But it has
spectral singularity.
2b: Assume ReD < 0. We get

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ 1

2
Arg

(
1 +D

1−D

)
+ kπ, k ∈ Z.

Since 0 <

∣∣∣∣1 +D

1−D

∣∣∣∣ < 1, λk ∈ C+, k ∈ Z are the eigenvalues of (31). However, the

operator T0 doesn’t have any spectral singularity.
2c: For 0 < ReD, the impulsive Sturm–Liouville boundary value problem (31) has
no eigenvalues and spectral singularity.
Case3: Let D be a real number.

3a: If 0 < D < 1, then 1 <

∣∣∣∣1 +D

1−D

∣∣∣∣ . Similar to the Case2c, the eigenvalues and

spectral singularity of (31) are not existing.
3b: For 1 < D < ∞, we see that

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ (2k + 1)
π

2
, k ∈ Z.

Since λk ∈ C−, there are no eigenvalues and spectral singularity.
3c: Assume −1 < D < 0. We obtain that

λk = − i

2
ln

(
1 +D

1−D

)
+ kπ, k ∈ Z.

Since 0 <

∣∣∣∣1 +D

1−D

∣∣∣∣ < 1, there exists eigenvalues but the problem (31) has no spectral

singularty.
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3d: For −∞ < D < 1, we find that

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ (2k + 1)
π

2
, k ∈ Z,

where 0 <

∣∣∣∣1 +D

1−D

∣∣∣∣ < 1. Hence, λk ∈ C+, k ∈ Z are the eigenvalues of T0. But this

operator has no spectral singularity.

Example 2. We investigate the Sturm–Liouville operator T1 in L2 [0,∞) created
by the following ISBVP

−υ′′ = λ2ρ(z)υ, z ∈ [0, 1) ∪ (1,∞)

(η0 + η1λ) υ
′(0) + (ζ0 + ζ1λ) υ(0) = 0 (33)[

υ (1+)
υ′ (1+)

]
= B

[
υ (1−)
υ′ (1−)

]
, B =

[
τ1 0
0 τ2

]
,

where τ1, τ2, ηj, ζj, j = 0, 1 are complex numbers, η0ζ1 − η1ζ0 ̸= 0, τ1τ2 ̸= 0 and
ρ is density function defined as

ρ(z) =

{
ω2; 0 ≤ z < 1

1; 1 < z

such that ω ∈ C\{−1, 0, 1}. It is evident that for this example

e (z, λ) = eiλz, C
(
z, λ2

)
= cos (λωz) , S

(
z, λ2

)
=

sin (λωz)

λω
.

From (18), we obtain that

H(λ) =
ieiλ

2λ detN
[(η0 + η1λ)(iτ1λ cos (λω) + τ2λω sin (λω))

+(ζ0 + ζ1λ)(τ2 cos (λω)− iτ1
sin (λω)

ω
)]. (34)

For the simplicity on calculations, if we choose ζ1 = η0 = 1 and ζ0 = η1 = 0 in
(34), we get

H(λ) =
ieiλ

2 detN
[iτ1 cos (λω) + τ2ω sin (λω)− iτ1

sin (λω)

ω
+ τ2 cos (λω)].

We easily find that

λk = − i

2ω
ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ 1

2ω

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z,

where P =
τ1ω − iτ2ω

τ2ω2 − iτ1
. Let ω = m+ in. We can write the real and imaginary parts

of λk as follows

Reλk =
1

2 |ω|2

{
m

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
− n ln

∣∣∣∣1 + P

1− P

∣∣∣∣}
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and

Imλk = − 1

2 |ω|2

{
m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]}
,

respectively.
It is evident that if[

m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

(
Arg

(
1 + P

1− P

)
+ 2kπ

)]
= 0

then the operator T1 has spectral singularities, and if[
m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

(
Arg

(
1 + P

1− P

)
+ 2kπ

)]
< 0

then the operator T1 has eigenvalues.

Case1: If P =
eiθ − 1

eiθ + 1
, θ ∈ R, then Arg

(
1 + P

1− P

)
= θ and

∣∣∣∣1 + P

1− P

∣∣∣∣ = 1. We find

that

λk =
θ + 2kπ

2ω
, k ∈ Z.

1a: Assume ω ∈ R. λk ∈ R\{0}, k ∈ Z are spectral singularities of the operator T1

but ISBVP (33) has no eigenvalues.
2a: Assume ω ∈ C. We write

Imλk = − 1

2 |ω|2
[n (θ + 2kπ)] , k ∈ Z.

If n (θ + 2kπ) < 0, then λk ∈ C+, k ∈ Z are eigenvalues of this problem (33).
Otherwise, the eigenvalues and spectral singularities of (33) are not existing.
Case2: Let ImP ̸= 0.
2a: Let P be purely imaginary. We write

λk =
1

2ω

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z.

For ω ∈ R, λk ∈ R\{0}, k ∈ Z are spectral singularities of the operator T1. However,
the problem (33) has no eigenvalues.
If ω ∈ C, then we find that

Imλk = − n

2 |ω|2

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z.

It is easily seen that, for n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0, the impulsive Sturm–Liouville

boundary value problem (33) has eigenvalues. Otherwise, the problem (33) has no
eigenvalues and spectral singularities.
2b: Assume ReA < 0. For ω ∈ R, we get

Imλk = − m

2 |ω|2

(
ln

∣∣∣∣1 + P

1− P

∣∣∣∣) , k ∈ Z.
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If m > 0, then the operator T1 has eigenvalues. Otherwise, there are no eigenvalues
and spectral singularities of (33).
For ω ∈ C, we obtain that

Imλk = − 1

2 |ω|2

{
m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]}
, k ∈ Z.

If m > 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0, then λk ∈ C+, k ∈ Z are eigenvalues

of (33). However, if m < 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
> 0 then the operator T1

has no eigenvalues and spectral singularities.
2c: Assume ReP > 0. Similar with case2b, if ω ∈ R and m < 0, then there exist
eigenvalues of (33). However, for ω ∈ R and m > 0, there are no eigenvalues and
spectral singularities of ISBVP (33).

Let ω ∈ C, it is clear that if m < 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0, then the

problem (33) has eigenvalues. If m > 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
> 0, then the

eigenvalues and spectral singularities of (33) are not existing.
Case3: Let P be a real number.
3a: For 0 < P < 1, we find that

λk = − i

2ω
ln

(
1 + P

1− P

)
+

kπ

ω
, k ∈ Z.

Assume ω ∈ R. If m < 0, then the operator T1 has eigenvalues. However, if m > 0,
then the problem (33) does not have any spectral singularity and eigenvalues.
Assume ω ∈ C. If m < 0 and n (2kπ) < 0, then λk ∈ C+, k ∈ Z are eigenvalues of
ISBVP (33) but if m > 0 and n (2kπ) > 0, then the operator T1 has no eigenvalues
and spectral singularity.
3b: For 1 < P < ∞, it is evident that

λk = − i

2ω
ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ 1

2ω
[(2k + 1)π] , k ∈ Z.

Let ω ∈ R. Similar with Case3a, for m < 0, the problem (33) has eigenvalues.
Otherwise, the operator T1 has no eigenvalues and spectral singularities.
Let ω ∈ C. If m < 0 and n (2k + 1)π < 0, then there exists eigenvalues of (33) but if
m > 0 and n (2k + 1)π > 0, then there are no eigenvalues and spectral singularities.
3c: For −1 < P < 0, we obtain

λk = − i

2ω
ln

(
1 + P

1− P

)
+

kπ

2ω
, k ∈ Z.

Assume ω ∈ R. The operator T1 has eigenvalues if and only if m > 0.
Assume ω ∈ C. If m > 0 and n (2kπ) < 0, then the problem (33) has eigenvalues.
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But if m < 0 and n (2kπ) > 0, then ISBVP (33) has no eigenvalues and spectral
singularities.
3d: For −∞ < P < 1, we get

λk = − i

2ω
ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ 1

2ω
[(2k + 1)π] , k ∈ Z.

Let ω ∈ R. λk ∈ C+, k ∈ Z are eigenvalues of this example (33) if and only if
m > 0.
Let ω ∈ C. If m > 0 and n (2k + 1)π < 0, then there exists eigenvalues of (33). If
m < 0 and n (2k + 1)π > 0, then the eigenvalues and spectral singularities of (33)
are not existing.
Case4: Let ω be purely imaginary. We easily find that

Imλk = − n

2 |ω|2

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z.

The operator T1 has spectral singularities if and only is

Arg

(
1 + P

1− P

)
+ 2kπ = 0.

The problem (33) has eigenvalues if and only if

n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0.
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