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Abstract 

This article proposes an opposite based learning (OBL) enhanced crow search algorithm (CSA) version for solving optimization problems. The 

proposed method, named the opposite based CSA (ObCSA), starts searching with individuals with higher fitness in the initial phase of the 

evolutionary process. In this way, it is aimed to improve the convergence performance of the basic CSA. To validate the proposed method, a set 
of benchmark test suit of different of features is chosen. Its convergence characteristic and statistical results are compared with the basic CSA. 

The results obtained show that the proposed method improves the convergence performance of the basic CSA. And the statistical results indicate 

that it manages to reach the near optimal solution and increases the quality of the solution. 
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1. Introduction 

Over the past 20 years, behavioral patterns of swarm-based organisms have inspired the development of many optimization 

methods. While the teachings of living things individually and in the swarm determine their behavioral strategies in maintaining 

their vital activities, these strategies are modeled and turn into an effective search tool in reaching the optimal solution of a problem. 

Ant colony optimization (ACO), particle swarm optimization (PSO), artificial bee colony (ABC), lion optimization algorithm 

(LOA) and cuckoo search algorithm (CS) are the most famous of these [1-5]. These metaheuristics generally have similar 

evolutionary processing phases, although the behavioral patterns of the swarm or creature they represent may differ. They use 

computational phases such as the random distribution of search agents in the search space, the creation of new agents, random 

selections, and the continuation of the search through iterations.  

On the other hand, various approaches to improve the search skills and performance of metaheuristics are adapted to their 

processing phases. The approaches such as dynamic population [6], weighted accelerations [7], chaotic mapping [8] are the 

preferred methods. One of the places where performance improvement is made is the initialization phase. In this phase, search 

agents are randomly distributed to the search space. They are evaluated according to their fitness value and transferred to the next 

processing phases. However, since their initial distribution is random, individuals with low fitness also participate in the 

computational process. Instead, starting the evolution with individuals with high fitness in the initial phase will undoubtedly 

accelerate the global solution and increase the convergence performance of the algorithm. In this context, one of the suggested 

approaches is the opposite-based learning strategy (OBL) [9]. This strategy evaluates the opposite position in the search space of 

a generated position. Because a solution based on opposite location may be closer to the global solution than a randomly generated 

solution [9]. The results indicating that the OBL approach increases the algorithm performance are presented in various studies in 

the literature. To improve the performance of the PSO, the OBL approach is applied to the PSO and it is reported to produce good 

results [10]. Wang et al. [11] are modified the harmony search algorithm (HSA) with OBL and applied to global optimization 

problems. The obtained results show that the developed approach improves the convergence performance and the solution quality. 

In another study, Dinkar and Deep [12] are developed the antlion optimizer (ALO) version using OBL. The performance was 

observed by applying the developed method to the control systems. Zhao et al. [13] are derived the OBL-ABC algorithm using the 

OBL approach. It is noted that the derived algorithm is suitable for solving complex functions. In addition, it has been presented 
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in other studies that OBL improves algorithm performance [14-16]. As a result, the OBL approach speeds up the search process 

and improves the convergence performance.  

The CSA algorithm is one of the new metaheuristics developed on the intelligence behavior of crows [17]. It manipulates the 

crows' ability to hide and remember their food. It is a population-based metaheuristic that uses random selection and has few self-

parameters. In this paper, the OBL strategy is adapted to the CSA algorithm to improve its convergence performance. Two ObCSA 

methods are derived by integrating different OBL approaches into CSA. The developed methods are applied to high-dimensional 

test functions and their performances are compared. 

2. Basic CSA 

The CSA is a new metaheuristic inspired by the intelligence behavior of crows [17]. It mimics the behavior of crows to hide 

and find their food. Its evolution process starts with the random distribution of crows in the search space. For an n-dimensional 

problem, the initialization phase is defined as: 

   (1)  

Here,  represents the position of the ith crow and the ite_number represents the number of iterations. 

Each crow position is evaluated according to the objective function and their fitness values are calculated. This fitness value 

actually represents the solution quality of the crow. All positions visited by the crows during the search process are recorded in 

their own memory as in Eq. (2). 

   (2)  

The next position of a crow is generated as in Eq. (3), depending on the awareness probability (AP) and flight length (fl) 

parameters. The new location produced is evaluated according to the objective function and the fitness value is calculated. Then, 

the selection process is made for the new location as in Eq. (4). 

   (3) 

   (4) 

Evolutionary operations are continued until the number of maximum iterations (ite_max) is reached. The best solution is 

returned when the stopping criterion is met. 

3. Opposite based CSA (ObCSA) 

In the classical CSA algorithm, the initialization positions of the crows are randomly distributed over the search space. In this 

case, the computational process is started with individuals with a lower fitness value. As a result, the convergence performance of 

the algorithm may decrease. According to the OBL approach proposed by Tizhoosh [9], a solution generated based on opposition 

is closer to the global solution than a randomly generated solution. In this way, the process of reaching a global solution can be 

accelerated.  

In this paper, two different OBL approaches are used for the proposed opposite based CSA algorithms. In the first one (ObCSA-

1), half of the population is randomly generated, while the other half is determined as the opposing positions of these individuals.  

For the second algorithm (ObCSA-2), the initial individuals are generated both randomly and with their opposite positions. 

Afterwards, they are selected according to their fitness values and the position with the better fit is included in the initialization 

phase. Thus, the evolutionary calculation begins with individuals with higher fitness values. The pseudocode of the proposed 

ObCSA methods is shown in Figure 1. 
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4. Simulation Results 

In this section, the proposed ObCSA methods are applied to the benchmark set given in Table 1 to demonstrate their 

performance. These test functions are classified into two groups as unimodal (UM) and multimodal (MM). The first four functions 

are UM and have a single global optimum. The remaining functions are MM and have too many local optima. The two-dimensional 

graphs of the test functions used are shown in Figures 2 and 3. 

 

Figure 1. Pseudo code of ObCSA 

Table 1. The benchmark set used in experiments 
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  Figure 2. The illustration two-dimensional UM functions 

 

Figure 3. The illustration two-dimensional MM functions 
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Simulation studies have been performed on PC with the specifications of core i7 8GB.  All methods are run 50 times for 50-

dimensional functions. The settling parameters of CSA and ObCSA are follows: PopSize=25, ite_max=500, AP=1 and fl=1. 

Statistical results obtained for UM functions are given in Table 2 and convergence curves for the best solution are given in Figure 

4, respectively.  

According to Table 2, ObCSA-1 produces the best solutions considering Best value for all UM functions. The convergence 

curves in Figure 4 also support these results. The ObCSA-1 algorithm has a higher convergence rate than the others. Considering 

the Mean values, ObCSA methods are more successful than basic CSA in f1 and f4 functions. 

Table 2. The statistical results of UM functions 

f Methods Best Mean Worst Std. 

f1 CSA 1.245876e-05 1.208577e+02 9.494972e+02 2.789620e+02 

 ObCSA-1 5.548655e-08 3.972850e+01 2.411449e+02 8.133670e+01 

 ObCSA-2 3.948795e-02 6.913407e+02 3.394790e+03 1.059401e+03 

f2 CSA 1.772417e-08 9.587184e-02 8.357679e-01 2.471808e-01 

 ObCSA-1 6.547443e-09 3.552517e-01 1.638986e+00 5.800647e-01 

 ObCSA-2 9.913657e-08 2.320926e-01 1.308630e+00 3.941654e-01 

f3 CSA 9.015058e-11 1.775855e-02 1.111651e-01 3.677735e-02 

 ObCSA-1 5.099702e-13 2.671550e-02 1.854854e-01 5.464461e-02 

 ObCSA-2 4.467390e-11 3.731923e-01 1.630211e+00 6.031711e-01 

f4 CSA 2.847369e-04 1.971604e-03 6.521443e-03 2.247900e-03 

 ObCSA-1 1.215682e-04 1.960128e-03 8.490555e-03 2.576609e-03 

 ObCSA-2 2.819505e-04 6.346028e-04 1.470637e-03 3.346326e-04 

 

Statistical results obtained for MM functions are given in Table 3 and convergence curves for the best solution are given in 

Figure 5, respectively. According to Table 3, ObCSA-1 produces the best solutions in f6, f7 and f8 functions. In f5 function, ObCSA-

2 achieves better result than others.  Considering the Mean values, ObCSA methods are more successful than basic CSA in f5 and 

f8 functions.  

 

Figure 4. The convergence curves of UM functions (a) f1; (b); f2; (c) f3; (d) f4 
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In MM functions, the final value is more important than the convergence rate. Because the problem has too many local optima, 

the method used gets stuck to the local optimum. In Fig. 5, although the convergence rate of the basic CSA is high, it produces 

larger error values. This means that the CSA gets stuck in the local optima. The proposed ObCSA methods reach lower error values 

than basic CSA. 

Table 3. The statistical results of MM functions 

f Methods Best Mean Worst Std. 

f5 CSA 1.705853e-10 7.967219e-02 7.551901e-01 2.252569e-01 

 ObCSA-1 7.332623e-11 7.726171e-03 5.483126e-02 1.621960e-02 

 ObCSA-2 8.951062e-12 1.210252e-01 6.427200e-01 1.861955e-01 

f6 CSA 4.163119e-06 2.011804e-02 1.286980e-01 4.190452e-02 

 ObCSA-1 1.026417e-07 4.053685e-02 1.720274e-01 6.485713e-02 

 ObCSA-2 1.138841e-07 7.631362e-02 5.845917e-01 1.723064e-01 

f7 CSA 1.020848e-10 9.164123e-02 5.909100e-01 1.871892e-01 

 ObCSA-1 1.098233e-12 1.463629e-01 7.858924e-01 2.349170e-01 

 ObCSA-2 1.162426e-11 1.763992e-01 7.500073e-01 2.853353e-01 

f8 CSA 1.553088e-11 3.635947e-03 1.928421e-02 6.162485e-03 

 ObCSA-1 3.365973e-16 7.754907e-03 4.285018e-02 1.292313e-02 

 ObCSA-2 2.581291e-12 2.592147e-03 1.399344e-02 4.931962e-03 

 

 

Figure 5. The convergence curves of MM functions (a) f5; (b); f6; (c) f7; (d) f8 

5. Conclusions 

The fact that the search algorithms start to search with a uniformly distributed population in the search space may cause a 

decrease in performance. Using opposite position instead of sequentially generated random values can produce solutions with 

better fitness values. Thus, the evolutionary computation starts with solution candidates with higher fitness values, and as a result, 

the process of reaching the global solution is accelerated. In this paper, opposite-based initialization strategies are integrated into 
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the CSA algorithm. Two ObCSA methods were derived and their performances were compared with the basic CSA. The results 

show that the proposed approach increases the convergence rate and solution accuracy. In future studies, it is aimed to adapt the 

oppositional approach to new metaheuristics and to apply them to different engineering problems. 
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