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A Clustering-based Simulated Annealing Algorithm with Taguchi Method for the 

Discrete Ordered Median Problem 

Mustafa Serdar TOKSOY*1 

Abstract 

Researchers have studied discrete location problems for a long time because of their importance 

in practice. The Discrete Ordered Median Problem (DOMP) generalizes discrete facility 

location problems. The DOMP generalizes the main facility location problems' objective 

functions such as the p-median, p-center and p-centdian location problems. As these problems, 

also known as the problems of location-allocation, have NP-hard structure, it is inevitable to 

use heuristic methods for solution. In this study, a metaheuristic algorithmic suggestion will be 

put forward by examining the DOMP to find optimal solutions. For that purpose, we proposed 

a Simulated Annealing (SA) metaheuristic with K-means Clustering Algorithm in initialization 

for the DOMP. Novel approaches for initial solution and K-exchange algorithm-based 

neighborhoods for local search were analysed. In addition, best level of selected parameters 

were determined by Taguchi method. Forty common p-median instances derived from OR-LIB 

were used to test the SA performance, and the results were compared with three state-of-art 

algorithms in the literature. According to the computational results, 21 best solutions were 

obtained on instances despite gap values and CPU times increasing proportionally to the scale 

of the instances. In a conclusion, the proposed clustering-based SA algorithm is competitive 

and can be a robust alternative for the DOMP. 

Keywords: Discrete ordered median problem, Simulated Annealing, Taguchi, K-means 

clustering. 

 

1. INTRODUCTION 

There is no doubt that people have been thinking 

about location decisions since cave life. The term 

of the facility is used intensively. It has a broad 

meaning, including many locations such as air and 

seaports, manufacturing centers, warehouses, 

retail outlets, schools, hospitals, childcare centers, 

bus stops, metro stations, electronic power 

stations, computer terminals, pluviometers, 

emergency warning sirens, and satellites. 
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However, few of these items have been 

investigated in researches [1]. 

Location decision problems have a direct 

relationship with supply chain management and 

logistics. Therefore, location analysis and models 

have a great interest from many disciplines such 

as operations research and administrative science. 

The solution approaches of location models for 

optimality are generally crucial. The simplest 

models for large-scale problem examples are not 

easily obtained numerically. Formulation and 
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solution of location models with numerical 

complexity were complicated until developing 

high-speed working computers. 

Accordingly, the Discrete location theory (DLT) 

that processing in discrete optimization space 

covers a development period about the next thirty 

years with an expeditiously growing and 

developing literature [2]. Uncapacitated facility 

location problem, p-median problem, p-center 

problem, set covering problem, p-dispersion 

problem, maximal covering problem, hub 

location problem can be given fundamental 

facility location problems in DLT [1]. Especially, 

4 location models considering the p-median 

problem, p-center problem, uncapacitated facility 

location problem, and quadratic assignment 

problem are considered more than other location 

problems in literature. These four fundamental 

problems are used for facility location selection 

and allocation of demand points to single or 

multiple facilities. Hence, these kinds of problems 

are primarily described as location-allocation 

problems. The demand points supplied from the 

candidate facilities are given in a network among 

these models. The general problem is the 

establishment of new facilities that will optimize 

different objectives. It is essential for such 

problems that distance or some measurements 

(trip time or cost, demand satisfaction) are less 

functional than others in terms of distance. 

The p-median problem is one of the best-known 

location-allocation problems in the literature 

described initially by Hakimi [3]. The problem 

focuses on selecting the number of p facilities in 

a network covering a minimized 

weighted/unweighted distance to meet all 

demand. Several studies considering the total 

distance between demand points and facilities 

have been published since 1995. Following ten 

years, studies have increased on solution methods 

[4].  

Another location problem called the p-center 

problem involves a number of p facilities in a 

network covering a weighted/unweighted 

maximum distance that must be minimized to 

meet all demand. As can be understood from the 

statement, p-median problem objectives minisum 

considers minimization of the total distance 

between demand points and facilities while p-

center problem objectives minimax considers 

minimizing the maximum distance between 

demand points and facilities. 

The discrete ordered median problem (DOMP) 

observed in this study is a general form of classic 

location facility problems. The solution of the 

DOMP contains possible facility points and a 

finite set of customers whose demands are met by 

these facilities, as in the case of other location 

problems. 

The DOMP is firstly defined by Nickel [5] and 

then Boland et al. [6]. The objective function of 

the DOMP generalizes these well-known facility 

location problems such as median, center, and 

centdian (convex combination) problem 

functions. However, this generalization is not 

limited to these problems. It is possible to obtain 

solutions for different objective functions with a 

coefficient ᴧ and an ordering factor embedded in 

the DOMP formulation. Therefore, the DOMP is 

a beneficial method for solving many location 

problems and having a simple condition in 

applying mentioned factors for problems [6]. 

As in many location problems, the DOMP is NP-

hard and cannot obtain optimal solutions in an 

acceptable time for large-scale problems. Hence, 

heuristic algorithms have to be used in general. In 

recent years, it has been observed that 

metaheuristics that combine basic heuristics 

methods search solution space more effectively 

and have high-quality solutions commonly. 

In this study, the solution of p-median, p-center, 

and p-centdian problems were observed in the 

DOMP simultaneously, and for that purpose, the 

Simulated Annealing (SA) metaheuristic was 

proposed for the DOMP. The SA is a local 

optimization method that solves complex 

combinatorial optimization problems. Studies 

about this topic point out that simulating of solids 

annealing process can be presented as a model 

[7]-[8] and can be proposed for optimization 

problems [9]. Since then, the model has been 

utilized in a large field, from scheduling problems 

to locational analysis, from molecular physics and 

chemistry to image processing. 
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Forty p-median instances between 100-900 nodes 

derived from OR-LIB [10] were used for the 

application. In the 2nd section of the study, a 

definition of the DOMP is available. The 3rd 

section presents the basic steps of the proposed 

SA approach. Computational evaluation in the 4th 

section contains parameter optimization by 

Taguchi experimental design method, application 

of the algorithm to test problems, and compared 

results with other benchmark solutions in the 

literature. The 5th section is composed of the 

conclusion and proposals.  

2. DOMP DEFINITION 

2.1. Literature Review 

P-median, p-center, and p-centdian problems 

have been studied in detail because of their 

importance in practical applications by Daskin 

[11]; Drezner and Hamacher [1]; Mirchandani 

and Francis [2]. These studies include a finite set 

for potential location areas and another set for 

customers whose demand is supplied by these 

facilities. The focus point of these problems that 

have a significant number of alternative solution 

approaches proposed in the literature is the 

existence of fixed number locations have to be 

diversified areas in a specific set of candidates in 

which any customer can be supplied by only one 

facility. For each customer-facility pair, a 

substantial cost for customer demand must be met 

by a facility settled down in the determined area.  

A remarkable attribute of DLP is the diversity of 

considered objective functions. The primary aim 

of the p-median problem is to minimize total 

service cost for all customers supplied by 

facilities located in all chosen areas. The p-center 

problem is a minimization of the maximum 

service cost of a customer from among chosen 

areas that covers all customers. As for the p-

centdian problem, the primary aim is to obtain a 

convex combination of median and center 

problems. Like this, the minimization of both total 

cost and the highest cost is ensured. There are 

three standard objective functions observed in the 

literature, and there are specific solution methods 

and algorithm approaches for these problems 

[11].  

Kalcsics et al. [12] defined necessity discrete 

location models for strategic supply chain 

management and submitted novel and flexible 

location models. For that purpose, Nickel [5] 

introduced a discrete ordered Weber problem that 

generalizes objective functions frequently in 

discrete location theory. The objective function of 

this problem includes a sanction implementation 

for the service cost of a customer related to a cost 

situation associated with other customers' service 

costs. For example, a different sanction could be 

applied in the presence of 5. highest customer 

service cost rather than 2. highest customer 

service cost. An "ordering" function affects the 

solution and makes formulation more interesting. 

The generalized model that includes the 

"ordering" factor has been studied for large-scale 

planar and network type location problems [14]-

[15]. Due to these various studies, the DOMP 

entered the literature, a specific formulation of 

discrete conditions [5]. Studies about the solution 

of the DOMP were proposed by Nickel [5] and 

Boland et al. [6]. Exact methods can be used in 

instances away from large-scale real-life 

problems. 

The ordered median location problem with 

continuous, discrete, and networks was presented 

by Puerto and Rodriguez [15], which is based on 

a hierarchy of semidefinite programs that can 

approximate up to any degree of solution 

accuracy of any ordered median problem infinite-

dimensional spaces. Another exact solution 

method was the column generation approach to 

solve the continuous relaxation of the model. 

Then, a Branch-Cut and Price algorithm was 

studied to moderate the size of the DOMP in 

competitive computational time [16]. 

A Lagrangean Relaxation was carried out on this 

formulation to produce lower and upper bounds 

on the optimal value of the DOMP, which 

contains p-median, p-center, and k-centrum 

problems through a parallelized algorithm [17]. 

Various Mixed Integer Linear Programming 

(MILP) formulations for the DOMP have been 

investigated in the literature [18] - [20]. Labbé 

[21] carried out a comprehensive study that 

presents several new formulations for the DOMP. 

A polyhedral study of assignment polytope of the 
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formulation was used that showed its proximity to 

the convex hull of the integer solutions.  

Although there have been significant 

improvements in computational processes, none 

of the exact methods are sufficient for solving 

large-scale DOMP samples. Although some 

heuristic methods have been developed to solve 

medium or large scaled samples, their number is 

quite limited.  

For that purpose, a robust tool called Evolution 

Program based on Genetic Algorithms (GA) 

within an acceptable time was submitted firstly by 

Holland [22], Davis [23], Goldberg et al. [24]. 

Variable Neighbourhood Search (VNS) is another 

metaheuristic method for combinatorial problems 

proposed by firstly Mladenovic [25] then Hansen 

and Mladenovic [26], which is a well-known 

technique used for discrete facility location 

problems and generally provides high-quality 

solutions. Domínguez-Marín et al. [27] developed 

two approximate heuristic solution methods, 

comprised of a GA, and an Evolution Program. 

Two GA with different coding schemes (binary 

coded HGA1 and integer coded HGA2) was 

proposed Stanimirovi'c et al. [28]. Later, Puerto et 

al. [29] proposed a modified VNS metaheuristic 

algorithm based on new neighborhood structures 

avoiding sorting in the evaluation of the objective 

function at each considered solution.  

Recently, Olender and Ogryczak [30] developed 

a revised VNS called as REV-VNS outperforms 

the other methods, both in computing time and in 

solution quality. In the study, researchers 

introduced a regularization concept that 

intensifies the searching process for problems 

with a not strictly monotonic objective function. 

However, all these algorithms still yield poor 

quality solutions for the p-center problem. There 

are also significant differences in the quality of 

solutions for other types of problems. 

2.2. Mathematical Model 

The mathematical model presented by 

Domínguez-Marín for the DOMP is as follows 

[31]: Let A denote a given set of M locations 

which {𝐴 = 1 𝑑𝑒𝑓𝑖𝑛𝑒𝑠, … , 𝑀} with i,...,M 

variables. Let 𝑐𝑘𝑗 denote a M x M non-negative 

and symmetric matrix in which total demand of 

customer k is supplied by facility j for 

(𝑐𝑘𝑗)
𝑘,𝑗=1,…𝑀

. P ≤ 𝑀 indicates a number of 

facilities must be located among candidate 

facilities. Let a solution for facility location 

problem be given by a set 𝑋 ⊆ 𝐴 of candidates N 

under the condition that |𝑋| = P. It is assumed 

that each facility is uncapacitated in the study. So, 

supplying the fixed demand of customer k with 

the least cost by a facility j that is located in 

solution set X, can be formulated in Equation (1) 

as follows: 

𝑐𝑘𝑗 = 𝑐𝑘(𝑥) = 𝑐𝑘𝑗𝑖∈𝑋
𝑚𝑖𝑛           (1) 

The objective function ensures the difference of 

the problem from the classic uncapacitated p-

median problem. To get this function, customer 

servicing cost (𝑐1(𝑋), … , 𝑐𝑀(𝑋) is ordered in a 

non-decreasing array. 𝜎𝑥 is defined as a 

permutation on {1,...,M} for the following 

inequalities in Equation (2). 

𝑐𝜎𝑥(1)(𝑋) ≤ 𝑐𝜎𝑥(2)(𝑋) ≤ ⋯ ≤ 𝑐𝜎𝑥(𝑀)(𝑋)           (2) 

So, a valid permutation for X is searched for any 

permutation mentioned above. Cost vector 

associated with a given set of X and related 

ordered cost vector is presented in following as 

Equation (3) and (4): 

𝑐(𝑋) = (𝑐1(𝑋), … , 𝑐𝑀(𝑋))                                     (3) 

𝑐≤(𝑋) = 𝑐𝜎𝑥(1)(𝑋) ≤ ⋯ ≤ 𝑐𝜎𝑥(𝑀)(𝑋)                (4) 

Then, the objective function utilizes a linear cost 

function for i. least service cost of customer 

𝑐𝜎𝑥(𝑖)(𝑋) for each i=1,...,M with the help of 𝜆1 ≥

0. Supposing that Λ = (𝜆1, … , 𝜆𝑀) is a given 

vector will be required for different discrete 

facility location problems with 𝜆𝑖 ≥ 0, i=1,..., M. 

Inclusive of all this information, the general 

formulation (Equation (5)) of the DOMP can be 

defined as follows.  

 𝐹𝛬(𝑋) = (𝛬, 𝑐≤𝑋⊆𝐴,|𝑋|= 𝑃
𝑚𝑖𝑛  (𝑋)) =

∑ 𝜆𝑖𝑐𝜎𝑥(𝑖)(𝑋)𝑀
𝑖=1                                                       (5) 
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The structure of the DOMP taking into 

consideration formulation elements above is as 

follows in Equation (6). 

𝑃/𝐷/•/•/ ∑ 𝑜𝑟𝑑                                                 (6) 

P represents the number of candidate facilities; D 

represents a distance between facilities, and "ord" 

state represents the ordering factor. Different 

discrete problem solutions derived from the 

DOMP for (0-1) values of λ variable are noted in 

the classification schema of location problems 

proposed by Hamacher and Nickel [32] below. 

Table 1 Classification of the DOMP problems 

No Formulation    Solution 

1 𝑃/𝐷/Ʌ = (1,1, , , ,1,1)/•/ ∑ 𝑜𝑟𝑑  p-median 

2 𝑃/𝐷/Ʌ = (0,0, , , ,0,1)/•/ ∑ 𝑜𝑟𝑑     p-center 

3    𝑃/𝐷/Ʌ = (𝜆, 𝜆, , , , 𝜆, 1)/•/ ∑ 𝑜𝑟𝑑  p-centdian 

Definition of the DOMP enables to model for 

classic facility location problems. Classic facility 

location problems, which are specific cases of the 

DOMP, can be seen according to Ʌ vector ensures 

different varieties for objective functions below. 

Also, novel facility location problems can be 

solved. So that, by exploring this problem, varied 

objective function types can be obtained through 

a unique theoretical point of view (combining 

classic facility location problems) and the 

existence of real-life problems for different vector 

options. 

P / D / Λ = (1,1, … 1,1)/• ∑ 1ord resulted in the 

p-median problem. 𝑃/𝐷/•/•/ ∑ 𝑜𝑟𝑑 points out 

the problem, which minimizes the sum of costs 

for supplying the total demand of each customer. 

𝑃 / 𝐷 / 𝛬 = (0,0, … 0,1)/• ∑ 𝑜𝑟𝑑 resulted in the 

p-center problem. P/D/•/•/max points out the 

problem, which minimizes the maximal cost for 

supplying total demand among customers.  

𝑃 / 𝐷 / 𝛬 = (µ, µ, … , µ, 1)/• ∑ 𝑜𝑟𝑑 resulted in 

the µ-centdian problem for 0 < µ < 1. 𝑃/𝐷/•/•
/𝐶𝐷µ points out the convex combination of 

median ve center objective functions.  

2.3. Illustrative Example 

In 2010, Daskin published a simple p-median 

example with a topological graph to illustrate the 

method of solving a simple p-median problem by 

utilizing spreadsheets (Figure 1). 

 

Figure 1 A graph of candidate facility locations 

Let M= {A,...,G} be a set of candidate facilities in 

an example (Figure 1). Suppose that a decision 

will be made about which p=2 facilities have to be 

selected among them. A cost matrix is below 

associated with facilities and customers 

supplied/serviced by these facilities. Table 2 

represents a distance matrix occurred by the 

closest distances of customers. 

Table 2 Distance matrix of example for the DOMP 

 A B C D E F G 

A 0 8 5 6 13 8 15 

B 8 0 12 13 6 15 12 

C 5 12 0 8 17 4 12 

D 6 13 8 0 16 6 10 

E 13 6 17 16 0 15 7 

F 8 15 4 6 15 0 8 

G 15 12 12 10 7 8 0 

Complete enumeration method can be used to 

analyse all alternative solutions by virtue of 

small-scale structure of the problem. For M=7, 

p=2 and C (M, p) =21, total, 21 number of 

different solutions are obtained. These solutions 

are ordered as 𝑥1 = (𝐴, 𝐵), 𝑥2 = (𝐴, 𝐶), 𝑥3 =
(𝐴, 𝐷), 𝑥4 = (𝐴, 𝐸), 𝑥5 = (𝐴, 𝐹), 𝑥6 = (𝐴, 𝐺), 

𝑥7 = (𝐵, 𝐶), 𝑥8 = (𝐵, 𝐷), 𝑥9 = (𝐵, 𝐸), 𝑥10 =
(𝐵, 𝐹), 𝑥11 = (𝐵, 𝐺), 𝑥12 = (𝐶, 𝐷), 𝑥13 = (𝐶, 𝐸), 

𝑥14 = (𝐶, 𝐹), 𝑥15 = (𝐶, 𝐺), 𝑥16 = (𝐷, 𝐸), 𝑥17 =
(𝐷, 𝐹), 𝑥18 = (𝐷, 𝐺), 𝑥19 = (𝐸, 𝐹), 𝑥20 = (𝐸, 𝐺), 

𝑥21 = (𝐹, 𝐺).  
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Then, all 𝑐𝑘𝑗 variables are determined according 

to Equation (1) as 𝑐1(𝑥1) = 0, 𝑐2(𝑥1) = 0, 

𝑐3(𝑥1) = 5,  𝑐4(𝑥1) = 6, 𝑐5(𝑥1) = 6, 𝑐6(𝑥1) = 8 

and 𝑐7(𝑥1) = 12 for 𝑐1𝑗. Afterwards, 𝑐≤(𝐴, 𝐵) =

𝑐𝜎(𝐴,𝐵)(1)(𝐴, 𝐵) ≤. . ≤ 𝑐𝜎(𝐴,𝐺)(7)(𝐴, 𝐵) and 

𝑐≤(𝐴, 𝐵) = (0,0,5,6,6,8,12) is obtained for 

𝑋(𝐴, 𝐵) according to Equation (3) ve (4), 

respectively. In the p-median (2-median) solution, 

the vector Λ = (1,1,1,1,1) is taken and when 

applied to the Equation (5), 

  𝐹𝛬(𝐴, 𝐵) = 𝛬, 𝑐≤𝑋⊆𝐴,|𝑋|= 𝑃
𝑚𝑖𝑛  (𝐴, 𝐵)) =

 (1,1,1,1,1) ∗ (0,0,5,6,6,8,12) = 37 is calculated 

for 𝑋(𝐴, 𝐵). 

Finally, facility C and facility E (𝑋(𝐶, 𝐸) is 

determined for a 2-median optimal solution when 

all solutions (21) are calculated (Figure 2). The 

objective function value is easily obtained as 25. 

Facility C and facility E are supplied by 

themselves; facility A, facility D, and facility F 

are supplied by the closest selected facility C, 

while facility B and facility G are supplied by the 

facility closest selected 4.  

 

Figure 2 Solution graph of 2-median 

While the same problem is analysed for the 2-

center problem with Λ = (0,0,0,0,1), an optimal 

solution of the problem is obtained X (1,4), and 

objective function value is found 12 when the 

solution is analysed. According to the graph, 

facilities 2 and 4 are supplied by themselves, 

facilities 3 and 5 are supplied by closest facility 1, 

and facility 2 is supplied by closest facility 4. If 

we pay attention to the solutions obtained here, it 

can be seen that the same solution value is 

obtained for p-median and p-center problems 

randomly, but due to the structure of Λ =
(λ1, … , λM) objective function values are 

different.  

3. PROPOSED SIMULATED ANNEALING 

ALGORITHM 

3.1. Simulated Annealing Algorithm 

The Simulated Annealing (SA) is a stochastic 

search metaheuristic method capable of getting 

good solutions for combinatorial optimization 

problems, which is similar to the physical 

annealing process of the solids. SA algorithm, 

independent of each other, was described by 

Kirkpatrick et al. [7] and Cerny [8]. SA has been 

used to solve many combinatorial optimization 

problems such as traveling salesman problem, 

scheduling, assignment problem, network design 

[33] - [34].  

In the SA algorithm, the control parameter is the 

temperature and assesses the probability of 

achieving a better solution for minimization 

problems. the SA is one of the neighborhood-

based search algorithms. The descent algorithm, a 

simple form of neighborhood search, begins to 

search with an arbitrarily chosen initial solution. 

This solution produces a neighborhood solution 

through a suitable iteration mechanism, and the 

change in cost is calculated. If there is a cost 

reduction, the neighborhood solution is accepted 

as the new solution; otherwise, the current 

solution is not changed. This process continues 

until neighbours cannot improve the current 

solutions with cost improvements, and the descent 

algorithm ends with a local optimum.  

The quality of the resolution obtained by the 

descent algorithm is based on the initial solution. 

The performance of a heuristic should not depend 

on only the initial solution. The initial solution 

should accept the bad solutions in a controlled 

way to reduce this dependency. To avoid the 

disadvantage of the descent algorithm, sometimes 

the neighborhood iterations leading to the raise at 

cost are accepted in the SA algorithm to escape 

the local optima traps. The acceptance or rejection 

of an iteration leads to an increase at cost is 

randomly determined in a controlled manner. The 

function that gives the probability of accepting the 

iteration leading to arise as a near as Δ in the cost 

function is called the accept function (Equation 

7). In the following accept function, T is a control 
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parameter corresponding to the temperature at the 

physical annealing.  

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑒−(
∆

𝑇
)
                                             (7) 

According to the accept function, the probability 

of accepting small increments in the objective 

function is greater than the probability of 

accepting large increments. Moreover, most 

iterations will be accepted when T is high, and if 

T is near zero, iterations leading to an increase in 

the objective function will be rejected. That is 

why the SA algorithm starts with a relatively high 

T value to prevent the solution from falling into 

the local optima trap. The SA algorithm continues 

to search by attempting a definite number of 

iterations at each temperature value while 

gradually decreases the temperature on the other 

hand. The parameters mentioned above are as 

follows:  

𝑥𝑏𝑒𝑠𝑡: The best solution for the problem. 

𝑀𝑡𝑏: Neighbourhood solution number for each 

temperature level. 

𝑇(𝑡): Temperature value at t. iteration 

The choice of the cooling plan has a very 

significant effect on the algorithm's performance. 

When probing specific decisions are taken, the 

CPU time must be used effectively, and the best 

solution in the SA must be closed to global 

optima.  

The initial solution, neighborhood structure, 

solution space, and cost function are key factors 

affecting these decisions. These parameters 

determine the convergence speed of the SA to 

global optima.  

Neighborhood structure must be small enough to 

be researched in a few of the number of iterations. 

Each solution in the neighborhood cluster must be 

reached by simple movements from each solution 

in the same cluster. The neighborhood solution 

must be produced randomly to use the run time 

effectively and must be chosen in which the 

difference between the solution and the objective 

function can be easily calculated. 

3.2. Initialization 

In this kind of classical solution technics, 

selecting a suitable initial population accelerates 

the algorithm's convergence. In the study, we used 

two novel initialization techniques, which are 

described as "sorting min to max", "the number of 

minimal selections” and a well-known 

"clustering-based solution", respectively to reach 

optimal/near-optimal solutions.  

X0 (I) Sorting min to max: Performs by selecting 

a number of p facilities in which the total distance 

of each facility to other facilities is sorted from 

minimum to maximum in the M x M distance 

matrix (see Table 3).  

In Table 3, there is a list comprised of p=5 

candidate facilities (②-⑦-⑨-⑬-⑳) listed 

according to the sum of their minimum distances 

(minisum) 525-642-824-953 to other all facilities 

(customers) (M=100).  

Table 3 Sorting min to max initial solution 

M ② ⑦ ⑨ ⑬ ⑳ 

1 15 47 89 66 87 

- - - - - - 

100 32 73 58 25 48 

Total 

distance 
525 642 724 824 953 

X0 (II) Number of minimal selections: Performs 

by the selection of p facilities that ordered 

minimum to maximum according to the selecting 

number of minimum distances of each facility to 

all other facilities depending on p-median values 

derived from X0(1) initial solution (Table 4).  

Table 4 Number of the minimal selecting initial 

solution 

M ⑳ ⑬ ⑨ ⑦ ② 

1 87 66 89 47 15 

- - - - - - 

100 48 25 58 73 32 

nms 5 13 22 29 31 

In Table 5, the minimal distance to the first 

customer of the candidate facility ② is 

underlined as 15, while the same measure for the 

candidate facility ⑬ to the hundredth customer is 

25. In this context, the total number of selection is 
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13 for the candidate facility ⑬ while 31 for the 

candidate facility ②. Ordered rows from minimal 

to maximum size can be seen in nms line (number 

of selection).  

X0(III) Clustering-based solution: Initial 

solution in which a number of p facility is selected 

by K-means clustering algorithm (KMCA).  

KMCA is one of the best-known and widely used 

clustering algorithms in various applications, 

such as data mining, image processing, and 

machine learning. KMCA is the simplest and un 

tutorial clustering algorithm ever developed used 

to participate the given data into K number of 

clusters according to their characteristics or 

properties [35]. As a result of the clustering, 

although the similarity between the elements 

within the cluster is high, the similarity between 

the inter clusters is very low. 

The algorithm's basic working principle is based 

on randomly determining K initial center points 

of the cluster 𝐶𝑖(𝑖 = 1, … , 𝐾). For this purpose, 

firstly, distances of each node to cluster centers 

are calculated. Then, each element is assigned to 

the cluster at the closest distance. At the second 

step, the centers of the clusters are recalculated. 

These steps are repeated iteratively until the 

centers are no longer changed. Thus, conversion 

stability is provided. This study uses the 

Euclidean distance to calculate the distance 

between nodes and clusters. The clustering is 

provided by the optimization of Equation (8) 

given below [36]. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = ∑ ∑ ‖𝑥𝑗 − 𝐶𝑖‖
2

 𝑁
𝑗=1,𝑗𝜖𝐺𝑖

𝐾
𝑖=1           (8) 

In Equation (8), K symbolizes the number of 

clusters, N symbolizes the number of nodes 

(vertices),  𝑥𝑗 symbolizes the coordinate of vertex 

j, 𝐶𝑖 symbolizes the coordinate of the cluster i, and  

𝐺𝑖 symbolizes the group of nodes belonging to 

cluster i. 

The closest squared distance is determined by 

moving the cluster centers in space. The algorithm 

continuously updates the cluster center 

considering the assignment of all the nodes to it. 

Equation (9) is used for the calculation of centers 

as follows: 

𝐶𝑖 =
1

|𝐺𝑖|
∑ 𝑥𝑗

𝑁
𝑗=1,𝑗𝜖𝐺𝑖

                                                  (9) 

The number of vertices contained in cluster i is 

symbolized as |𝐺𝑖|in Equation (9).  

In this study, KMCA was adopted for the DOMP. 

First, the K number of clusters was assumed to 

equal to p facilities (𝐾 = 𝑝). Then, all distances 

between the cluster centers and their nodes were 

calculated considering the Euclidean distance. 

The closed node to each cluster center was 

determined and accepted the facility that services 

other nodes (customers). Figure 3 represents the 

pseudo-code of KMA adopted for the DOMP.  

 

Figure 3 The proposed KMA pseudo code 

There can be found studies in which the SA and 

the KMCA were used as hybrid or combined 

structures for different problem types in literature 

[37] - [43].  

3.3. Local Search 

After the initializing process, we developed four 

novel solution approaches based on K-exchange 

neighborhoods, one of the most widely used types 

of neighborhood relations, to improve the 

performance of the proposed SA. The algorithm 

improves the current solution by removing a node 

or nodes in the solution and replacing it with a 

node, not in the solution. It is implemented if an 

exchange of this sort can be found and improves 

the solution. The algorithm terminates when there 

is no such exchange that improves the solution. 
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The steps of the K-exchange algorithm is 

described below. 

In the first step, a solution is initialized by any set 

of p facilities. Sites in the current solution and 

candidate sites not in the solution are removed in 

the following steps. Then, it is investigated that 

removing one site from the current solution and 

replacing it with a site that is not in the current 

solution will improve the objective function. If so, 

substitution is actualized, and the algorithm 

terminates. The proposed model adopted four 

different novel neighborhood functions for the 

DOMP. These functions are presented as a 

chromosome structure for p=5 facilities, sorted 

according to their total distance values.  

N(I) Random exchange: A non-solution random 

facility enters the solution in place of a random 

candidate in the current solution. 

N(II) Max2-exchange: 2 non-solution random 

facilities enter the current solution in place of 2 

facilities leading to the maximum total distance 

(Figure 4). 

 

Figure 4 Max2-exchange neighborhood 

In Figure 4, a solution set X comprised of ②, ⑨, 

⑦, ⑬ and ⑳ nodes and their total distance to 

the other whole facilities are sorted from 

minimum to maximum (see Table 4). Then, nodes 

related to max two values (⑬ and ⑳) are 

exchanged with two random nodes ⑰ and ⑪ 

derived from other facilities in the M set.  

Similar exchanges are performed according to 

other neighborhood conditions below. 

N(III) Max-exchange: A non-solution random 

candidate facility enters the solution in place of a 

facility leading to the maximum total distance. 

N(IV) Min-exchange: A non-solution random 

facility enters the solution in place of a facility 

leading to the minimum total distance. 

N(V) Min2-exchange: 2 non-solution random 

facilities enter the solution in place of 2 facilities 

leading to the minimum total distance. 

The main steps of the proposed SA algorithm are 

as follows in Figure 5: 

 

Figure 5 Pseudo-code of the proposed SA 

4. COMPUTATIONAL STUDY 

In the study, 40 p-median test instances [10] 

consisting of 100-900 nodes and 5-90 candidate 

solutions were used. Fundamental decisions in 

adopting DOMP to the SA metaheuristic were 

determined as; T0= 1000-10000, Mtb=1-4, u =
0.999, and T=0.100 (stopping condition of the 

algorithm). On the condition that M defines the 

total number of facility M and the number of 

candidate facility p, two different adopted novel 

initial solutions 𝑥0 and four different novel 

neighborhood structures (N) were proposed for 

the DOMP as probing specific decisions.  

4.1. Data Set 

The performance of the proposed SA algorithm 

with the Taguchi method for the DOMP was 

coded in MATLAB software and evaluated by the 

test problems [10] derived from OR-LIB 

literature. Hence, optimal parameter levels were 

observed using pmed1 data instance comprised of 

M=100 customers and p=5 candidate facilities. 

The experimental procedure was performed on 
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Intel(R) Core (TM) i7-6500U at .59 GHz with 4 

gigabytes of RAM.  

4.2. Parameter Tuning  

Taguchi method was utilized for parameter 

optimization to obtain the best levels of 

parameters of the proposed SA in this study. 

Genichi Taguchi has introduced a solution called 

his name that will enhance realizing and 

evaluating experiments with his approach [44]. In 

this regard, it is possible to significantly reduce 

the number of experiments required for detailed 

analysis and evaluation before the experimental 

process. The Taguchi method is an advantageous 

technique for system design at high quality 

beyond being an experimental design technique.  

The experimental design has been used to reduce 

variation, and Taguchi defined some criteria 

called signal/noise ratio as a performance 

criterion (Table 5) [45]. 

Table 5 Signal/noise ratio criterions 

Target 
Signal/noise  

criterion 

Maximum Best −10𝑙𝑜𝑔 (
∑

1

𝑦𝑖
2

𝑛
𝑖=1

𝑛
)  

Minimum Best −10𝑙𝑜𝑔 (
∑ 𝑦𝑖

2𝑛
𝑖

𝑛
)  

Nominal Best −10𝑙𝑜𝑔 (
𝑦−2

𝑆2 )  

The optimal parameter combination can be 

determined by an experimental study with the 

help of the various parameters and levels 

changing according to the structure of the 

problem. Several studies are available in which 

the Taguchi method is used for the parameter 

optimization for the SA algorithm [46] - [50].  

In this study, four parameters with only three 

levels were used (neighborhood structure, initial 

temperature, number of solutions executed at each 

temperature and initial solution) as input data for 

Taguchi method to design an appropriate 

experimental pattern. Orthogonal array L9 was 

chosen for Taguchi method by the help of 

MINITAB software. Levels of parameters were 

determined by the help of pre-experimental 

studies; in other words, some of the levels were 

ignored which have a low significant effect on the 

solution quality.  

To analyse the effectiveness of neighborhood 

structures by pre-experimental studies, five 

neighborhoods were investigated in preliminary 

studies with %100 and %20 (equal) probability, 

respectively. Then, the current solution was 

converted to the hill-climbing heuristic by 

dividing the P(accept) value with a big number, to 

reduce the probability of accepting a temporary 

bad solution.  

According to the results of all these pre-

experimental studies, obtained parameter set for 

the developed algorithm set is shown in Table 6 

below; efficiency percentages of neighborhood 

structures changed as %41 N(III), %21 N(I), %19 

N(II), %11 N(IV) and % 8 N(V).  

Table 6 Efficiency rates of neighborhood structures 

N(I) N(II) N(III) N(IV) N(V) 

0 - 0.21   0.21 - 0.40 0.40 - 0.81  0.81 - 0.92 0.92 -1 

In this respect, two neighborhood structures were 

ignored. N (4) Min-exchange and N (5) Min2-

exchange with %19 and %11 efficiency 

percentages, respectively, were evaluated as low 

efficient according to other neighborhoods. All 

parameters and levels chosen for the proposed SA 

were presented in Table 7.  

Table 7 Parameters and levels of the proposed SA 

Symbol Parameter 
 Level 

 I 

     Level 

     II 

 Level 

 III 

A  Neighborhood N(I) N(II) N(III) 

B    Initial temperature 900° 600° 300° 

C  Repetition 1 2 3 

D  Initial solution 𝑥0(𝐼) 𝑥0(𝐼𝐼) 𝑥0(𝐼𝐼𝐼) 

In this way, orthogonal array L9 (34) was utilized 

as the experimental pattern, and four trials were 

carried out for each case. Orthogonal array of 

parameter levels, S/N ratios and mean values 

obtained by MINITAB is given in Table 8.  
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Table 8 Orthogonal array and obtained data 

Standard 

Array 
A B C D 

S/N 

ratio 
Mean 

1 1 1 1 1 -75.8922 6231.25 

2 1 2 2 2 -75.7373 6121.50 

3 1 3 3 3 -75.5081 5961.79 

4 2 1 2 3 -75.6856 6084.92 

5 2 2 3 1 -75.6733 6076.50 

6 2 3 1 2 -75.7708 6145.25 

7 3 1 3 2 -75.7204 6109.50 

8 3 2 1 3 -75.6415 6054.33 

9 3 3 2 1 -75.6597 6067.00 

The obtained mean S/N ratio plot for each level of 

the parameters was given in Figure 6. Note that 

the pmed-1 instance was used to determine the 

optimal parameter combination.  

 

Figure 6 The mean S/N ratio plot for each level of the 

parameters (Alpha = 0.5) 

According to Figure 6; the best level for the local 

search was obtained as N (3) Max-exchange, the 

best level for initial solutions was obtained as 

x0(III) clustering-based solution, the best level 

for neighborhood solution number for each 

temperature (Mtb) was obtained as 3, and initial 

temperature (T0) was obtained as 300o. 

It does not mean that N (I) Max2-exchange and 

N(II) Random-exchange does not affect the 

solution quality as much as N (III). Similar to the 

parameter set by pre-experimental studies, the 

max-exchange heuristic has the highest 

percentage value for neighborhood functions. 

Table 9 shows the best levels of parameters 

obtained with the help of the Taguchi method. 

Table 9 The best levels of the parameters 

N 𝒙𝟎 𝑴𝒕𝒃 𝑻𝟎 

N(III) 𝑥0(𝐼𝐼𝐼)        3   3000 

4.3. Computational Results 

In this study, the proposed clustering-based SA 

algorithm was implemented in MATLAB 

software, and the performance of the algorithm 

was tested on the p-median test problems 

(Beasley) derived from OR-LIB [10]. For this 

purpose, 20 trials were run for each problem. The 

results of test problems were given in Table 10, 

with the benchmark results of the DOMP.  

Table 10 includes the instance name, name of the 

problem, the number of facilities (M), number of 

facilities to supply others (p), best-known 

solutions (BKS), gap value (objective function 

value - BKS)/BKS × 100, processing times in 

seconds, respectively. The proposed clustering-

based SA algorithm is compared with the results 

three state-of-the-art algorithms: Evolution 

Program (EP) [27] based on a GA to solve 

optimization problems, hybrid of a GA and a 

generalization of the well-known Fast 

Interchange heuristic (HGA1) [28] and Revised 

Variable Neighbourhood Search (REV-VNS) 

[30] in which a regularization concept that 

intensifies the searching process for problems 

with a not strictly monotonic objective function 

was introduced. 

Table 10 The benchmarking results of algorithms for the DOMP  

Instance M p BKS 

EP HGA1 REV-VNS Proposed SA 

Best 
Gap 

(%) 
CPU Best 

Gap 

(%) 
CPU Best 

Gap 

(%) 
CPU Best 

Gap 

(%) 
CPU 

Pmed1 

1
0

0
 

5 5819 5819 0.00 25.42 5819 0.00 0.93 5819 0.00 0.07 5819    0.00 11.85 

Pmed2 10 4093 4093 0.00 37.55 4093 0.00 1.17 4093 0.00 0.19 4093    0.00 17.47 

Pmed3 10 4250 4250 0.00 37.88 4250 0.00 1.08 4250 0.00 0.17 4250    0.00 17.60 

Pmed4 20 3034 3046 0.40 61.48 3034 0.00 1.62 3034 0.00 0.54 3034    0.00 28.59 

Pmed5 33 1355 1361 0.44 93.22 1355 0.00 1.91 1355 0.00 0.65 1355    0.00 43.17 
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Pmed6 

2
0

0
 

5 7824 7824 0.00 36.25 7824 0.00 2.38 7824 0.00 0.23 7824    0.00 17.20 

Pmed7 10 5631 5645 0.25 55.39 5631 0.00 3.33 5631 0.00 0.59 5631    0.00 26.26 

Pmed8 20 4445 4465 0.45 91.81 4445 0.00 4.29 4445 0.00 1.79 4445    0.00 43.42 

Pmed9 40 2734 2762 1.02 170.25 2734 0.00 4.64 2734 0.00 3.16 2745    0.40 79.65 

Pmed10 67 1255 1277 1.75 290.53 1259 0.32 6.29 1255 0.00 3.05 1265    0.79 81.04 

Pmed11 

3
0

0
 

5 7696 7696 0.00 47.98 7696 0.00 4.16 7696 0.00 0.57 7696    0.00 22.18 

Pmed12 10 6634 6634 0.00 75.63 6634 0.00 7.36 6634 0.00 1.33 6634    0.00 36.69 

Pmed13 30 4374 4432 1.33 193.22 4374 0.00 7.55 4374 0.00 7.07 4386    0.26 91.84 

Pmed14 60 2968 2997 0.98 359.58 2969 0.03 11.89 2968 0.00 11.59 2979    0.37 169.97 

Pmed15 100 1729 1749 1.16 580.98 1736 0.40 15.29 1730 0.06 10.01 1739    0.56 271.46 

Pmed16 

4
0

0
 

5 8162 8183 0.26 56.89 8162 0.00 7.77 8162 0.00 1.10 8162    0.00 28.18 

Pmed17 10 6999 6999 0.00 95.08 6999 0.00 14.13 6999 0.00 2.10 6999    0.00 47.42 

Pmed18 40 4804 4880 1.48 320.38 4809 0.00 13.04 4809 0.00 15.21 4826    0.45 153.17 

Pmed19 80 2845 2891 1.62 604.36 2851 0.21 26.59 2846 0.04 20.66 2862    0.59 287.42 

Pmed20 133 1789 1832 2.40 963.44 1794 0.28 32.03 1789 0.00 29.98 1809    1.10 454.78 

Pmed21 

5
0

0
 

5 9138 9138 0.00 70.14 9138 0.00 8.72 9138 0.00 1.32 9138    0.00 34.49 

Pmed22 10 8579 8669 1.05 116.59 8579 0.00 20.5 8579 0.00 3.67 8579    0.00 59.20 

Pmed23 50 4619 4651 0.69 486.08 4624 0.11 23.55 4619 0.00 25.45 4631    0.26 233.86 

Pmed24 100 2961 3009 1.62 924.66 2966 0.17 50.86 2961 0.00 43.25 2983    0.72 445.09 

Pmed25 167 1828 1890 3.39 1484.13 1838 0.55 71.56 1828 0.00 56.14 1857    1.54 708.71 

Pmed26 

6
0

0
 

5 9917 9919 0.02 84.34 9917 0.00 14.25 9917 0.00 2.15 9917    0.00 42.56 

Pmed27 10 8307 8330 0.28 136.53 8307 0.00 22.73 8307 0.00 5.42 8307    0.00 69.30 

Pmed28 60 4498 4573 1.67 673.30 4500 0.04 42.87 4498 0.00 46.26 4530    0.71 329.32 

Pmed29 120 3033 3099 2.18 1268.89 3036 0.10 85.06 3034 0.03 72.89 3050    0.56 618.06 

Pmed30 200 1989 2036 2.36 2043.33 2008 0.96 110.94 1992 0.15 73.35 2015    1.31 925.05 

Pmed31 

7
0

0
 

5 10086 10086 0.00 92.67 10086 0.00 14.73 10086 0.00 2.55 10086    0.00 44.41 

Pmed32 10 9297 9319 0.24 156.50 9297 0.00 34.05 9297 0.00 6.19 9297    0.00 77.77 

Pmed33 70 4700 4781 1.72 894.19 4719 0.40 60.09 4700 0.00 65.46 4734    0.72 418.23 

Pmed34 140 3013 3100 2.89 1762.69 3027 0.46 135.27 3016 0.10 131.11 3051    1.24 824.26 

Pmed35 

8
0

0
 5 10400 10400 0.00 109.86 10400 0.00 19.44 1040 0.00 3.62 10400    0.00 53.00 

Pmed36 10 9934 9947 0.13 182.06 9951 0.17 36.2 9934 0.00 9.15 9945    0.11 89.61 

Pmed37 80 5057 5126 1.36 1190.25 5063 0.12 70.77 5058 0.02 110.56 5099    0.83 557.03 

Pmed38 

9
0

0
 5 11060 11060 0.00 120.14 11060 0.00 27.13 11060 0.00 4.88 11060    0.00 59.65 

Pmed39 10 9423 9423 0.00 207.75 9423 0.00 38.73 9423 0.00 9.40 9423    0.00 101.35 

Pmed40 90 5128 5188 1.17 1492.59 5133 0.10 213.39 5131 0.06 158.68 5167    0.75 734.58 

Average    564.5    0.86  442.35     5538.50 0.11 31.71 
5301.6

3 
0.01 23.54 5545.55 0.33 208.87 

Number of best solutions  12 24  33  21 

When the best results are examined on 40 Beasley 

test instances in Table 10; it can be seen that the 

proposed clustering-based  SA algorithm achieves 

the best result in a total of 21 instances (Pmed1, 

Pmed2, Pmed3, Pmed4, Pmed5, Pmed6, Pmed7, 

Pmed8, Pmed11, Pmed12, Pmed16, Pmed17, 

Pmed21, Pmed22, Pmed26, Pmed27, Pmed31, 

Pmed32, Pmed35, Pmed38, and Pmed39) while 

the other results are closed optimal solutions. 

Moreover, the average gap value was obtained as 

0.33, and the average CPU was obtained as 

208.87 seconds. 

While considering average gap values of the 

comparison algorithms; it is observed that the 

proposed clustering-based SA (0.33) gives a 

better result than the EA (0.86) with 12 best 

solutions, relatively close to HGGA1 (0.11) with 

24 best solutions and falls behind the REV-VNS 

(0.01) with 33 best solution and ranks as third. 

According to CPU times, the proposed clustering-

based SA (208.87) ranks third again among EP 

(442.35), HGA1 (31.71), and REV-VNS (23.54).  

5. CONCLUSION 

It is seen that the location theory, which 

constitutes the basis of this study and especially 

the discrete location problems which have been 

studied extensively by the researchers as day-to-

day and different studies will continue to increase. 

Therefore, the researchers have received much 

attention to developing a standard solution for 

these kinds of problems. The DOMP, which has 

an NP-hard structure, ensures effective and quick 

solutions for such problems in a single 

formulation. Already the studies focus on the 

DOMP are recent and insufficient.  
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This paper proposed a clustering-based SA 

metaheuristic, which has not been tried to solve 

the DOMP. The performance of the SA was 

compared with the p-median solutions of three 

state-of-the-art algorithms developed for the 

DOMP. Although the SA is a relatively simple 

and easy-to-apply metaheuristic compared to 

other algorithms, it is observed that it can achieve 

effective results for the DOMP. In order to 

improve the performance of the algorithm, novel 

initial solution methods and neighborhood 

structures were analysed. The KMCA was 

adapted to strengthen the initial solution. 

Moreover, The Taguchi method is utilised as a 

parameter tuning tool to determine the best levels 

of parameters used in the SA.  

As a result, we developed a clustering-based SA 

algorithm was developed in this study. The 

algorithm is capable to be used in combination 

with other methods. According to the results, 

although the relatively high processing times are 

remarkable, the proposed algorithm is 

competitive and can be a robust alternative for the 

DOMP. Furthermore, it can be used to solve 

different location problems (not only p-median, p-

center, and p-centdian) that are combined on a 

single model, simultaneously. Future work can be 

summarized as below: 

The performance of the algorithm can be 

improved with other heuristic/metaheuristic 

algorithms in hybrid or combined structure. 

Neighborhood structures can be developed to take 

into account the processing times. Problems can 

be combined into a multi-objective decision-

making problem. Besides, the proposed algorithm 

can be adapted to new models for different 

applications of location analysis. 
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