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Abstract 

This study aims to develop a design procedure for optimizing the abrasive water jet machining (AWJM) 

process in green composites. Multiple non-linear neuro-regression analysis has been performed methodically 

to overcome insufficient approaches to modeling-design-optimizing green composites in AWJM. First, the 

model generation process is carried out according to three criteria: linearity, order, and functions used in the 

model. Next, R2
training, R2

testing, and R2
validation values have been checked for the validity of the models. Then, the 

machining parameters have been optimized by applying a numerical non-linear global optimization algorithm, 

Simulated Annealing. Pressure within the pumping system (PwPS), stand-off distance (SoD), and nozzle speed 

(NS) are design variables; surface roughness (Ra) and process time (PT) are objective functions of introduced 

mathematical optimization problems. The numerical result shows that the optimum process parameters 

obtained are PwPS (150 MPa), SoD (3.5 mm), and NS (125 mm/min). This novel optimization approach is 

also feasible for another modeling design optimization problem. The proposed design can be used as a 

systematic framework for parameter optimization in environmentally conscious manufacturing processes.  

Keywords: Abrasive water jet machining; green composite; neuro-regression; optimization. 

1. Introduction 

Polymer-based composites have been widely used in manufacturing industries for several years. However, the 

rising concerns towards the ecological issues and the need for more flexible materials led to the usage of polymer-

based composites filled with natural organic fillers. Therefore, this type of material is often referred to as green 

composites (GC) or natural filler reinforcement composites (NFRC). These natural fillers are usually drawn from 

natural plant, animal, and renewable sources and have exceptional merits over the synthetic fillers/fibers such as 

low cost, renewable in nature, less abrasive, easy to be destroyed, lower specific weight, environment friendly, 

and also non-toxicity. 

The past literature reveals the application of various forms of natural fillers such as flax, cellulose, cotton, 

sisal, kenaf, curaua, jute, banana, roselle, pineapple, bamboo, rice, and wood as reinforcing agents in order to 

improve the mechanical properties and obtain the properties needed in actual applications [1]. 

Peng P. and She D. study bamboo, a material, and various a compilation have been made about its potential 

and applications in the fields. In its internal structure, the hemicellulose structure was examined, and physical and 

thermal analysis by purification was made. The film layer is produced from pure hemicellulose [2]. 

In the research of Oksman and Selin [3], it is shown that the elastic modulus of wood fibers is approximately 

40 times higher than that of polyethylene, and the strength is about 20 times higher. Nevertheless, many works 

devoted the mechanical behavior and machinability of the natural fiber-reinforced polymer composites none of 

the studies were found in the literature on machining behavior of the wood dust-based polymer composite. 

Getu and Sahu [4] manufactured the composites which are undergone for testing of bending rigidity, shear, 

and absorbency. The tests conducted on the green composites developed reveal that they are suitable for usage fit 

for all users' fields. Furthermore, bagasse, banana, and sisal fibers have excellent tensile strength, allowing them 

to be used without finishing. Finally, it is concluded that it significantly reduces production and processing costs 

while also preserving the environment because the user and the environment will not be harmed during the 

manufacturing, processing, or disposal of this composite. 

Sorgun [5] manufactured the composites with polypropylene matrix using two different particles (100 μm 

below, 100-200 μm) obtained by grinding sandalwood. With the addition of 5% SA into PP, the tensile strength 

of PP increased by 10.2%. However, it was observed that the tensile strength decreased when the amount of SA 

added into the PP was increased. The highest value for the modulus of elasticity was determined in PP composite 

reinforced with less than 100-micron SA particles. 20% SA reinforced PP elasticity module increased 29.1% 

compared to PP elasticity module. When SA is added to PP, a decrease in the bending strength of PP has been 

determined in general, especially 100 μm above PP. The opposite was seen in the bending modulus. Increasing 

the amount of SA increased the PP bending modulus [5]. 
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Similarly, Gökdemir [6] manufactured the composites with polypropylene matrix using two different particles 

(100 μm below, 100-200 μm) obtained by sugar beet pulp. It was observed that the tensile strength decreased 

when the amount of SP added into the PP was increased. In addition, it was observed that when the SP amount 

was increased, the modulus of elasticity increased. Thus, in general, as the amount of SP increased, bending 

strength decreased [6]. 

Raju et al. investigate the feasibility of using groundnut shell particles in the manufacture of composite panels. 

Groundnut shell particles were used to make composites with loadings of 20 percent, 30 percent, 40 percent, 50 

percent, and 60 percent (by weight). The results showed that the panels might be made with up to 30% peanut 

husk without impairing their usage. Furthermore, because of its mild mechanical qualities, low moisture content, 

and low water absorption, groundnut shell particles can be used to substitute for wood in fabricating particle 

boards in the indoor environment [7]. 

AWJM is one of the most widely used non-conventional machining processes. This process is a very effective 

method for precision machining hard and brittle materials, and it is a non-contact, less inertia, and faster machining 

process. This offers various advantages such as reduced waste materials, less heat-affected zone, higher flexibility, 

versatility, and minimal force during machining [1]. However, the performance characteristic of this process is 

directly or indirectly influenced by the process parameters, which directly affects the efficiency of the 

manufacturing process. Thus, optimization of process parameters is a vital task to achieve green AWJM. 

On the other hand, several researchers have profited from various optimization approaches for the AWJM 

process during the machining of different materials, such as the Taguchi method on machining of SKD61 mold 

steel [8], transformation-induced plasticity (TRIP) sheet steels, glass sheets, and glass/epoxy composite artificial 

neural network (ANN) model on machining of AA 7075 aluminum alloy [9]; ANN-genetic algorithm (GA) on 

machining of 6063-T6 aluminum alloy[10]; artificial neural network  (ANN)-simulated annealing (SA) and SA-

GA on machining of AA 7075 aluminum alloy [11, 12]; neuro-fuzzy approach on machining of 6063-T6 

aluminum alloy[13]; analysis of variance (ANOVA) and Derringer-Suich multi-criteria decision modeling 

approach on machining of AISI 4340 and aluminum 2219 [14]; Taguchi-fuzzy decision method on machining of 

coal [15]; RSM with sequential approximation optimization (SAO) method on machining of alumina ceramic 

[16]; neural network (NN) model on machining of titanium [17]. However, none of the literature researchers have 

worked on optimizing process parameters for green AWJM on machining of WDFRP composites [1]. 

This study aims to introduce a design procedure for optimizing the abrasive waterjet machining (AWJM) 

process in green composites. First, multiple non-linear neuro-regression analysis was methodically performed to 

overcome the inadequate approaches to numerical part. The values of R2
tranining, R2

testing, and R2
validation were checked 

for the validity of the models. Then, processing parameters are optimized by applying numerical non-linear global 

optimization algorithm, Simulated Annealing. Pressure within the pumping system (PwPS), stand-off distance 

(SoD), and nozzle speed (NS) are design variables; surface roughness (Ra) and processing time (PT) are objective 

functions of the introduced mathematical optimization problems. In order to perform this procedure, we used the 

experimental data in the study [1], which has been investigated before in the literature on this subject. 

2. Methodology 

2.1. Modelling 

At the commencing of the current research, to reap the most efficient values for operational parameters, the 

modeling system has been implemented to receive the most potent mathematical model. In this way, a 

combination of artificial neural networks and regression analysis is used. In this approach, all data is divided into 

three sets comprising 80%, 15%, and 5% of the given data. The data's first, second, and third portions are used 

for training, testing, and validation, respectively. The training process aims to minimize the error between the 

experimental and predicted values by modifying the regression models and their coefficients given in Table 1. 

After the training part, the checking out procedure was once used to eliminate the uncertainties generated via the 

regression items. The feasibility of suitable models similar to R2 values is then checked by testing out if the 

models' severe elements are within the targeted interval of each running parameter. Next, the model analyses are 

made to appreciate main explanations such as model linearity, model order, and functions, affecting each the 

ability of prediction and the model's feasibility. After analyses are finished, a modified non-linear model is 

determined to use for primary regression analyses of output parameters. These modified items are shown in Table 

2. 
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Table 1. Multiple Regression Model Types Including Linear, Second and Third Order; Exponential, Trigonometric, 

Logarithmic and Polynomial. 

2.2. Optimization 

Optimization is the process of obtaining the most appropriate solution by providing certain constraints in line 

with the given purpose or objectives. To express it mathematically; Optimization can be briefly defined as 

minimizing or maximizing a function. Also, optimization can maximize productivity, strength, reliability, 

longevity, efficiency, and utilization. The techniques used in an optimization problem can be categorized into 

traditional and non-traditional. The traditional method starts with the initial solution and with each successive 

iteration converges to the optimal solution. This convergence depends on the selection of initial approximation. 

These methods are not suited for discontinuous objective function. So, the need for a non-traditional method was 

felt [18-20]. The most widely used non-traditional optimization methods are genetic algorithms, simulated 

annealing, and particle swarm. The reliability of the outcomes taken from a non-traditional (stochastic) 

Model Name Nomenclature Formula 

Multiple Linear L F = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 

Second Order Multiple Nonlinear SONL 

F = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥12 + 𝑎5𝑥22 +
𝑎6𝑥32 + 𝑎7𝑥1𝑥2 + 𝑎8𝑥1𝑥3+𝑎9𝑥2𝑥3 

 

Third Order Multiple Nonlinear TONL 

F = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥12 + 𝑎5𝑥22 +
𝑎6𝑥32 + 𝑎7𝑥1𝑥2 + 𝑎8𝑥1𝑥3+𝑎9𝑥2𝑥3 + 𝑎10𝑥13 +

𝑎11𝑥23 + 𝑎13𝑥33 + 𝑎14𝑥12𝑥2 + 𝑎12𝑥12𝑥3 + 𝑎13𝑥22𝑥1 +
𝑎14𝑥22𝑥3 + 𝑎15𝑥32𝑥1 + 𝑎16𝑥32𝑥2 + 𝑎17𝑥1𝑥2𝑥3 

 

Second Order Multiple Nonlinear 

Logarithm 
SOMNL 

F = 𝑎0 + 𝑎1𝐿𝑜𝑔𝑥1 + 𝑎2𝐿𝑜𝑔𝑥2 + 𝑎3𝐿𝑜𝑔𝑥3 +
𝑎4𝐿𝑜𝑔𝑥12 + 𝑎5𝐿𝑜𝑔𝑥22 + 𝑎6𝐿𝑜𝑔𝑥32 + 𝑎7𝐿𝑜𝑔𝑥1𝑥2 +

𝑎8𝐿𝑜𝑔𝑥1𝑥3+𝑎9𝐿𝑜𝑔𝑥2𝑥3 

 

Third Order Multiple Nonlinear 

Logarithm 
TOMNL 

F = 𝑎0 + 𝑎1𝐿𝑜𝑔𝑥1 + 𝑎2𝐿𝑜𝑔𝑥2 + 𝑎3𝐿𝑜𝑔𝑥3 +
𝑎4𝐿𝑜𝑔𝑥12 + 𝑎5𝐿𝑜𝑔𝑥22 + 𝑎6𝐿𝑜𝑔𝑥32 + 𝑎7𝐿𝑜𝑔𝑥1𝑥2 +

𝑎8𝐿𝑜𝑔𝑥1𝑥3+𝑎9𝐿𝑜𝑔𝑥2𝑥3 + 𝑎10𝐿𝑜𝑔𝑥13 + 𝑎11𝐿𝑜𝑔𝑥23 +
𝑎13𝐿𝑜𝑔𝑥33 + 𝑎14𝐿𝑜𝑔𝑥12𝑥2 + 𝑎12𝐿𝑜𝑔𝑥12𝑥3 +

𝑎13𝐿𝑜𝑔𝑥22𝑥1 + 𝑎14𝐿𝑜𝑔𝑥22𝑥3 + 𝑎15𝐿𝑜𝑔𝑥32𝑥1 +
𝑎16𝐿𝑜𝑔𝑥32𝑥2 + 𝑎17𝐿𝑜𝑔𝑥1𝑥2𝑥3 

 

Second Order Multiple Nonlinear 

Trigonometric 
SOMNT 

F = 𝑎0 + 𝑎1𝑆𝑖𝑛𝑥1 + 𝑎2𝑆𝑖𝑛𝑥2 + 𝑎3𝑆𝑖𝑛𝑥3 +
𝑎4𝑆𝑖𝑛𝑥12 + 𝑎5𝑆𝑖𝑛𝑥22 + 𝑎6𝑆𝑖𝑛𝑥32 + 𝑎7𝑆𝑖𝑛𝑥1𝑥2 +

𝑎8𝑆𝑖𝑛𝑥1𝑥3+𝑎9𝑆𝑖𝑛𝑥2𝑥3 

 

Third Order Multiple Nonlinear 

Trigonometric 
TOMNT 

F = 𝑎0 + 𝑎1𝑆𝑖𝑛𝑥1 + 𝑎2𝑆𝑖𝑛𝑥2 + 𝑎3𝑆𝑖𝑛𝑥3 +
𝑎4𝑆𝑖𝑛𝑥12 + 𝑎5𝑆𝑖𝑛𝑥22 + 𝑎6𝑆𝑖𝑛𝑥32 + 𝑎7𝑆𝑖𝑛𝑥1𝑥2 +

𝑎8𝑆𝑖𝑛𝑥1𝑥3 + 𝑎9𝑆𝑖𝑛𝑥2𝑥3 + 𝑎10𝑆𝑖𝑛𝑥13 + 𝑎11𝑆𝑖𝑛𝑥23 +
𝑎13𝑆𝑖𝑛𝑥33 + 𝑎14𝑆𝑖𝑛𝑥12𝑥2 + 𝑎12𝑆𝑖𝑛𝑥12𝑥3 +

𝑎13𝑆𝑖𝑛𝑥22𝑥1 + 𝑎14𝑆𝑖𝑛𝑥22𝑥3 + 𝑎15𝑆𝑖𝑛𝑥32𝑥1 +
𝑎16𝑆𝑖𝑛𝑥32𝑥2 + 𝑎17𝑆𝑖𝑛𝑥1𝑥2𝑥3 

 

Second Order Multiple Nonlinear 

Exponential 
SOMNE 

F = 𝑎0 + 𝑎1𝑒𝑥1 + 𝑎2𝑒𝑥2 + 𝑎3𝑒𝑥3 + 𝑎4𝑒𝑥12
+

𝑎5𝑒𝑥22
+ 𝑎6𝑒𝑥32

+ 𝑎7𝑒𝑥1𝑥2 + 𝑎8𝑒𝑥3𝑥2 + 𝑎9𝑒𝑥1𝑥3 

 

Third Order Multiple Nonlinear 

Exponential 
TOMNE 

F = 𝑎0 + 𝑎1𝑒𝑥1 + 𝑎2𝑒𝑥2 + 𝑎3𝑒𝑥3 + 𝑎4𝑒𝑥12
+

𝑎5𝑒𝑥22
+ 𝑎6𝑒𝑥32

+ 𝑎7𝑒𝑥1𝑥2 + 𝑎8𝑒𝑥3𝑥2 + 𝑎9𝑒𝑥1𝑥3 +

𝑎10𝑒𝑥23
+ 𝑎11𝑒𝑥13

+ 𝑎12𝑒𝑥33
+ 𝑎13𝑒𝑥22𝑥1 + 𝑎14𝑒𝑥22𝑥3 +

𝑎15𝑒𝑥12𝑥2 + 𝑎16𝑒𝑥12𝑥3 + 𝑎17𝑒𝑥32𝑥1 + 𝑎18𝑒𝑥32𝑥2 
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optimization evaluation can also be improved via utilizing a couple of methods. The most difficult mathematical 

optimization problems have the following issues: 

• Multiple non-linear objective functions, 

• Objective functions having many local extremum points, 

• Mixed-integer (discrete)-continuous nature of the design variables, and 

• Non-linear constraints [18]. 

In this paper, the optimization scenarios mentioned include the challenges given in the first three items. 

2.2.1 Problem Definition 

By using the above-described methods, the optimal analysis of process parameters of green composite in 

AWJM was organized as follows; 

• The data shown in Table 3 are from the reference study [1].  They have modeled the processing time 

and surface roughness input parameters with Response Surface Method. 

• Three base functional structures were proposed for modeling, and the boundedness of the functions 

was evaluated for appropriateness in terms of R2
training, R2

testing, and R2
validation values. 

• A new updated non-linear model is generated for each of the output parameters from the result of the 

base models, and then, these modified models are also tested in terms of R2 values. 

• Two different optimization scenarios were introduced using the appropriate models, which were 

solved by a direct search method. 

2.2.2 Optimization Scenarios 

Scenario (a) In this optimization problem, all the design variables are assumed to be real numbers for all the 

objective functions, and the search space is continuous. For this case, the constraints are 150 < PwPS < 300, 1.5 

< SoD < 3.5, 125 < NS < 225. The main goal is to get optimum values for objective functions. Mathematically, 

limits of the objective function can also be obtained by this approach. 

Scenario (b) Based on only the prescribed experimental setup, more specific optimization problem can also 

be defined as involving (i) optimization of objective functions, (ii) all the design variables are assumed to be real 

numbers, and (iii) the constraints are PwPS ∈ {150, 225, 300}; SoD ∈ {1.5, 2.5, 3.5}; NS ∈ {125, 175, 225}. 

  
Table 2. Model Formula for Output. 

Output Name  Modified Model Formula Model 

Ra  

F = 𝑎0 + 𝑎1𝐿𝑜𝑔𝑥1 +
𝑎2𝐿𝑜𝑔𝑥2 + 𝑎3𝐿𝑜𝑔𝑥3 +

𝑎4𝐿𝑜𝑔𝑥12 + 𝑎5𝐿𝑜𝑔𝑥22 +
𝑎6𝐿𝑜𝑔𝑥32 + 𝑎7𝐿𝑜𝑔𝑥1𝑥2 +
𝑎8𝐿𝑜𝑔𝑥1𝑥3 + 𝑎9𝐿𝑜𝑔𝑥2𝑥3 

 

 

−1.094721042052923
+ 0.048718366176467354Log[x1]

+ 0.024359183088233656Log[x12]
− 0.047892896045495015Log[x2]
+ 0.03550664102887537Log[x1x2]

− 0.023946448022747608Log[x22]
+ 0.030129863589708566Log[x3]
+ 0.019986916583215445Log[x1x3]
+ 0.021228411293550627Log[x2x3]

+ 0.015064931794854283Log[x32] 

PT  

F = 𝑎0 + 𝑎1𝐿𝑜𝑔𝑥1 +
𝑎2𝐿𝑜𝑔𝑥2 + 𝑎3𝐿𝑜𝑔𝑥3 +

𝑎4𝐿𝑜𝑔𝑥12 + 𝑎5𝐿𝑜𝑔𝑥22 +
𝑎6𝐿𝑜𝑔𝑥32 + 𝑎7𝐿𝑜𝑔𝑥1𝑥2 +
𝑎8𝐿𝑜𝑔𝑥1𝑥3 + 𝑎9𝐿𝑜𝑔𝑥2𝑥3 

 

−1.9849045387424702
− 0.01071578210330012Log[x1]

− 0.005357891051649882Log[x12]
− 0.12693642357351628Log[x2]
− 0.010586200398944654Log[x1x2]

− 0.06346821178675836Log[x22]
+ 0.15758114439411514Log[x3]
+ 0.03462614296942368Log[x1x3]
+ 0.11375733676330331Log[x2x3]

+ 0.07879057219705755Log[x32] 
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Table 3. Experimental Data [1]. 

Exp. 

No 

Inputs Outputs 

PwPS (MPa) SoD (mm) NS (mm/min) Ra PT 

1 300 1.5 175 0.2761 0.4012 

2 150 2.5 225 0.1980 0.4125 

3 300 2.5 125 0.2570 0.1058 

4 150 3.5 175 0.1290 0.1853 

5 300 2.5 225 0.2981 0.4663 

6 150 1.5 175 0.1889 0.3250 

7 225 2.5 175 0.1957 0.2568 

8 225 3.5 225 0.2456 0.3425 

9 225 2.5 175 0.2214 0.3805 

10 225 1.5 125 0.1953 0.1569 

11 150 2.5 125 0.1190 0.1137 

12 225 1.5 225 0.2640 0.4472 

13 300 3.5 175 0.2583 0.1665 

14 225 2.5 175 0.2012 0.2912 

15 225 3.5 125 0.1630 0.1026 

 

3. Results 

3.1 Determination of main effects on surface roughness (Ra)  

In this section, the effect of machining parameters on Ra has been determined using the NonlinearModelFit 

solver of Wolfram Mathematica for the experimental Ra. It has been observed from Table 3 that the variables 

PwPS (x1) and NS (x3) have positive effects and SoD (x2) harms the Ra. The process variables PwPS and NS are 

the most influencing parameters and can predict the Ra within the control limits. The value of R2 is calculated to 

be 0,996642 for Ra (See Table 4). Higher the R2 coefficient gives a satisfactory model to the experimental data. 

Finally, the adequacy and fitness of the model are calculated by adjusted R2 values. The high value of adjusted R2 

(0,996642) for Ra indicates that the number of experimental data used to develop the model is compatible with 

the relevant model. It is seen that the surface roughness is mainly affected by PwPS and NS. Surface roughness 

is increased significantly from 0.125728 to 0.285823 μm as PwPS is increased by 150 to 300 MPa. As for NS, a 

slight increment of surface roughness occurred when NS is increased from 125 to 225 mm/min with 0.125728 to 

0.26733 μm. 

Meanwhile, surface roughness is observed to decrease as SoD increased from 1.5 to 3.5 mm. Since PwPS and 

NS showed higher percentage contribution than other factors (SoD), they can be considered the most significant 

to the surface roughness. Therefore, the calculations are performed by increasing the PwPS and NS from 150 to 

300 MPa and simultaneously by decreasing SoD from 3.5 to 1.5 mm. Finally, the optimal surface roughness is 

obtained when machining parameters set at PwPS, SoD, and NS are 300 MPa, 1.5 mm, and 225 mm/min, 

respectively (See Table 5). 

3.2 Determination of main effects on process time (PT)  

In this section, the effect of machining parameters on PT has been determined similar to that of Ra. It has been 

observed from Table 3 that the variables NS (x3) have a positive effect, SoD (x2) and PwPS (x1) harm the PT. 

The process variables NS are the most influencing parameters and can be used to predict the PT within the control 

limits. The R2 is 0.979413 for PT. It has been examined from the Table 3 that the process time is mainly affected 



TANRIVERDİ and AYDIN / JAIDA vol (2021) 71-79 

76 
 

by NS. The processing time is increased significantly from 0.0785736 to 0.478729 s as NS was increased by 125 

to 225 mm/min. 

Meanwhile, the processing time is observed to decrease as SoD increased from 1.5 to 3.5 mm. Since NS shows 

a higher percentage contribution than the other factors (SoD), they can be considered most significant to the 

processing time. Therefore, the alternative calculations are also performed by increasing the NS from 125 to 225 

mm/min and simultaneously decreasing SoD from 3.5 to 1.5 mm. Finally, the optimal process time is obtained 

when machining parameters are set at SoD of 1.5 mm and NS of 225 mm/min. 
 

Table 4. The candidate model results and their R2 values. 

Minimum Value 

of PT 
Model R2

training R2
testing R2

validation 

0.0775151 TOMNL 0.995707 0.519515 -0.161361 

0.815783 SONL 0.995707 -0.285542 -3.06543 

0.027278 TONL 0.995707 0.0795861 -2.11266 

-0.509278 SOMNT 0.995707 -0.462265 0.45073 

-0.701173 TOMNT 0.995707 -1.07981 -8.572680 

-0.369327 TOMNT 0.995707 -0.0326963 -2.12837 

-7.08517 SOMNT 0.995707 0.619977 -6.36817 

-0.104237 TOMNE 0.960279 -2.02549×106 -2.36169 

-1.02783368×1011 SOMNE 0.960279 -2.82425×106 0.435343 

0.0300375 M1 0.987399 0.653279 0.974805 

-0.147157 M2 0.995707 0.862176 -2.47803 

0.0696715 M3 0.987399 0.653279 0.974805 

-0.017173 M4 0.995707 0.034263 -1.32716 

-0.0595981 M5 0.987399 -1.21209 -6.18308 

 

Table 5. Results of the optimization problems for the selected models. 

Response 

Parameters 
Goal 

Optimum 
Target Model 

PwPS SoD NS 

Ra Minimum 150 3.5 125 0.119 0.112589 

PT Minimum 150 3.5 125 0.1026 0.077516 

4. Conclusions 

This work proposed a design optimization based on non-linear multiple neuro regression analysis for 

machining of a biocomposite in AWJM processes. Thus, a novel approach based on a modeling-design-

optimization process to design an optimum surface roughness and process time has been introduced. The purpose 

of the research study is to reveal the regression model investigated as the best model to predict the experimental 

results of Ra, PT on input parameters and then optimize inputs. A direct search technique, Simulated Annealing, 

is used including stochastic approaches, during the optimization process. The numerical results that optimum 

cutting parameters obtained are 150 MPa, 3.5 mm, and 125 mm/min for PwPS, SoD, and NS, respectively. The 

results also indicate that the parameters PwPS and NS are the most significant factors for Ra, while only parameter 

NS for PT. Therefore, it is concluded that the developed mathematical model is significant and adequate for 

process parameter selection and prediction of AWJM output parameters on the machining of green composites. 

Thus, this approach can be used as a systematic framework model for predicting response parameters in green 

manufacturing applications and helps in selecting optimal machining parameters in practical work for green 

manufacturing industries. 
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APPENDIX 

 

Model Name Model 

TOMNL −2.806528296855611 + 0.24576645769296207Log[x1] + 0.04895764577773693Log[x1]2

− 0.015108744635239061Log[x1]3 − 2.3375909888328423Log[x2]
+ 0.37156869342381355Log[x1]Log[x2]

− 0.007974927955401436Log[x1]2Log[x2] + 0.7544078020289587Log[x2]2

− 0.7427468406531201Log[x1]Log[x2]2 + 3.7945776182670783Log[x2]3

+ 0.06454365663401485Log[x3] + 0.07552076059510957Log[x1]Log[x3]

+ 0.00015695539522465223Log[x1]2Log[x3]
+ 0.2976846759003845Log[x2]Log[x3]
+ 0.1123559335083702Log[x1]Log[x2]Log[x3]

− 1.2931833357284106Log[x2]2Log[x3] + 0.022028436007974182Log[x3]2

+ 0.0005379959833349629Log[x1]Log[x3]2

+ 0.13856252558673193Log[x2]Log[x3]2 − 0.015170136062410909Log[x3]3 

SONL −0.8877456875662202 + 0.008241494259063021x1 − 0.000011435172427547529x12

− 0.28367413885945597x2 − 0.0009099999999999931x1x2
+ 0.04247284490495425x22 + 0.006194517222810836x3
− 0.000006986666666666543x1x3 + 0.001296913796198187x2x3
− 0.000015430862038018096x32 

TONL −0.26427947911334526 + 0.0016701981156721608x1 + 0.00000490004321900638x12

− 1.436362198383393 × 10−8x13 − 0.1457247612928245x2
+ 0.00021909952693669683x1x2 − 0.000001889806824953462x12x2
− 0.021970532359016786x22 − 0.000025565211545939657x1x22

+ 0.008686457799320446x23 + 0.0016337594337852773x3
+ 0.000008022624456241609x1x3 − 9.224429991622914 × 10−9x12x3
+ 0.0003024891345997836x2x3 − 8.157681575534157 × 10−8x1x2x3
− 0.00003936983895849437x22x3 + 0.000007097804370059959x32

− 2.470454083985247 × 10−8x1x32 + 0.000003107469335376899x2x32

− 4.267499092338159 × 10−8x33 

SOMNT 0.3464813339886176  + 0.3831843213555272Cos[x1] − 0.6100846360385241Cos[x1]2

− 0.49513849393352827Cos[x2] − 0.15714002906460747Cos[x1]Cos[x2]

− 0.3962049453066922Cos[x2]2 + 0.38278250379852247Cos[x3]
− 0.10791087170147802Cos[x1]Cos[x3] + 0.6377570713976038Cos[x2]Cos[x3]

− 0.4390785559194609Cos[x3]2 

TOMNT 0.1686792618833355  + 0.26568673069337423Cos[x1] + 0.24262614319066322Cos[x1]2

− 0.08130731078829158Cos[x13] − 0.02442678715695238Cos[x2]

− 0.34383374206498113Cos[x1]Cos[x2] + 0.08780713412470981Cos[x2]2

+ 0.06281327558625166Cos[x12x2] − 0.06868399476131787Cos[x1x22]
− 0.030587651869661527Cos[x23] − 0.016378143999534658Cos[x3]
− 0.14736509640310413Cos[x1]Cos[x3] + 0.1619725525663956Cos[x2]Cos[x3]

− 0.30212965117886503Cos[x3]2 + 0.039158811483846Cos[x12x3]
+ 0.02613820585098387Cos[x1x2x3] − 0.1347167581855755Cos[x22x3]
+ 0.02164619613189358Cos[x1x32] − 0.04538789588955367Cos[x2x32]

+ 0.10386828830712264Cos[x33] 
TOMNT 0.010956406333690832  − 0.012880869509242655Sin[x1] + 0.014056843488704831Sin[x1]2

+ 0.04217709102028845Sin[x13] + 0.014644987047005769Sin[x2]
− 0.021633011430284007Sin[x1]Sin[x2] + 0.01039746477383733Sin[x2]2

+ 0.003971444244157852Sin[x12x2] + 0.008361173625667672Sin[x1x22]

+ 0.01214925494581947Sin[x23] − 0.03934453616300522Sin[x3]
+ 0.044824142835632026Sin[x1]Sin[x3] − 0.03896417187256429Sin[x2]Sin[x3]

+ 0.07476462148286063Sin[x3]2 + 0.00881518563270643Sin[x12x3]
− 0.0017988745823680223Sin[x1x2x3] − 0.044227527857748326Sin[x22x3]

+ 0.03145113293156068Sin[x1x32] + 0.09168632058997019Sin[x2x32]
+ 0.18111218870491896Sin[x33] 

SOMNT −1.506481581746801 + 0.6633113978936133Sin[x1] + 0.1985238688002158Sin[x1]2

− 1.2260355188064873Sin[x2] − 0.942131397477979Sin[x1]Sin[x2]

+ 0.001238132309443814Sin[x2]2 − 5.608721192285001Sin[x3]
− 0.43609873206144806Sin[x1]Sin[x3] − 0.5709493827365565Sin[x2]Sin[x3]

− 3.031580877733221Sin[x3]2 
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TOMNE 

 
0.3584661145336239  − 2.12909008899949 × 10−132𝑒x1 − 1.096098206972239 × 10−262𝑒2x1

− 5.642933032919888 × 10−393𝑒3x1 − 0.007060458558848227𝑒x2

− 0.00010183898445452515𝑒2x2 + 0.000002467931386099823𝑒3x2

− 6.929418861601583 × 10−134𝑒x1+x2 − 3.567403572448321 × 10−264𝑒2x1+x2

+ 2.993669089540962 × 10−136𝑒x1+2x2 + 4.609101620564808 × 10−100𝑒x3

+ 8.858452386953752 × 10−198𝑒2x3 + 1.702548243714151 × 10−295𝑒3x3

+ 5.208436540978609 × 10−208𝑒x1+x3 + 2.681407415863556 × 10−338𝑒2x1+x3

+ 4.300154303735925 × 10−101𝑒x2+x3 + 1.048472099495983 × 10−209𝑒x1+x2+x3

+ 3.139294829186729 × 10−102𝑒2x2+x3 + 1.911200782591157 × 10−295𝑒x1+2x3

+ 8.26467179335718 × 10−199𝑒x2+2x3 

SOMNE 

 
0.3629282391556579  − 3.880889743896887 × 10−132𝑒x1 − 1.997959744268643 × 10−262𝑒2x1

− 0.008557111121914379𝑒x2 + 0.00002101373912522714𝑒2x2

− 2.211475417414493 × 10−134𝑒x1+x2 + 1.014919706310555 × 10−99𝑒x3

+ 1.95062262346722 × 10−197𝑒2x3 + 1.17422615249896 × 10−207𝑒x1+x3

+ 7.112959103485582 × 10−101𝑒x2+x3 

M1 −6.884621908691676 − 0.003310160990502853x1 − 0.1795128398745423x2
− 0.0028865522932737583x3 + 0.1549702875629974Log[x12]
+ 0.2261277483530626Log[x1x2] − 0.14643670101558337Log[x22]
+ 0.18411179012802942Log[x1x3] + 0.31260647329654834Log[x2x3]

+ 0.21568130611522568Log[x32] 
M2 −0.977969004641075 + 0.00276212738099668x1 + 0.2240464206199017x2

− 0.0035032237523387314x3 − 0.10258271436507711Cos[x1x2]
+ 0.013490427465798985Cos[x1x3] − 0.14848120780365992Cos[x2x3]

− 0.3146631799697366Log[x12] − 0.4152539728710519Log[x22]
+ 0.4563601853244841Log[x32] 

M3 −0.0015204361198190176 + 0.000003025337164551866x1 − 0.0961700305498646x2
+ 0.0025749505639698547x3 − 0.054828121539106836Cos[x12]

+ 0.025372061348625713Cos[x22] + 0.07980279973963535Cos[x32]
− 0.005330598161851888Log[x1x2] + 0.004122547995664559Log[x1x3]
+ 0.007196294643862707Log[x2x3] 

M4 −2.249859550952166 − 0.006928109872329712x1 − 0.49771226494388066x2
− 0.005101177119184265x3 + 0.06000557941356878Log[x1]2

+ 0.01516927828612444Log[x1]3 + 0.0318235538497239Log[x1]Log[x2]
+ 0.013305494068381885Log[x1]2Log[x2] + 0.046691396716127355Log[x2]2

− 0.37202181600089496Log[x1]Log[x2]2 + 1.988484276369986Log[x2]3

− 0.002636937784545171Log[x1]Log[x3]

− 0.003194272752963327Log[x1]2Log[x3] + 0.0828072992790462Log[x2]Log[x3]
+ 0.0031250430535352015Log[x1]Log[x2]Log[x3]

− 0.4855859352601214Log[x2]2Log[x3] + 0.02895120713558113Log[x3]2

− 0.006272112477461329Log[x1]Log[x3]2

+ 0.10893889619088801Log[x2]Log[x3]2 + 0.010023936046673607Log[x3]3 

M5 −2.458711767153076 − 4.448482338065852 × 10−132𝑒x1 + 0.0017245963896776709𝑒x2

− 8.64591339489585 × 10−100𝑒x3 − 0.000909999999999999x1x2
− 0.000006986666666666614x1x3 + 0.002323922664004951x2x3
+ 0.397288274820158Log[x12] − 0.32541957337757754Log[x22]

− 0.11262207004327508Log[x32] 

 


