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Abstract 
 
Until today, various approaches have been proposed in order to create Augmented Reality 

(AR) environment where virtual-real integration takes place. One of these approaches is 

vision-based model, and it is divided into two branches as Marker-Based Augmented Reality 

(MBAR) and Markerless Augmented Reality (MAR). In the use of MBAR model, a reference 

image is introduced to the system before, and when this image enters the camera view, an AR 

environment is created. However, in MAR model, no image is introduced to the system 

before. Instead, it uses natural characteristics present in the image, such as edges, corners, 

and geometrical shapes to create an AR environment. In order to use MAR model, it is 

necessary to use algorithms which require high processing power and memory capacity. 

Within the scope of this study, MAR model was chosen as reference and an evaluation on 

combinations of descriptive extractors (such as ORB, SIFT, and SURF) and matchers (such 

as Bruteforce, Bruteforce-Hamming, and Flannbase) was presented. In this context, it was 

aimed that we could obtain knowledge about i) the number of key points and detection time 

with the use of different descriptor extractors, and ii) the number of matching key points and 

the amount of positional deviation of a virtual object placed on a real world scene with the 

use of different matchers. In line with this goal, analyses were made, using different image 

scales and brightness levels on both PC and mobile platforms. Results showed that, for both 

platforms, combinations using ORB method could work faster with less deviation than the 

combinations using other methods in all conditions. In addition, RANSAC algorithm was 

also used to reduce the total mean deviation ratio, and it was seen that the rate could be 

reduced from 70% to 4.5%.. 

 

Keywords: Augmented reality, Markerless augmented reality, Performance analysis, ORB,   

SIFT, SURF.  
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1. Introduction 

Rapid advances in technology has brought innovations to our daily life. Augmented Reality (AR) is one of the 

leading ones among these innovations. AR technology is based on enriching the virtual environment by adding 

virtual objects on existing real world assets. While Azuma [1] defines AR concept as overlapping real and virtual 

data, providing a simultaneous interaction between the enriched environment and the user, Milgram et al. [2] state 

that AR concept emerges in the part where real environment starts to become virtual. With the help of AR 

technology built on the real world, 2D or 3D objects created in the virtual environment can be placed on real images, 

thus adding the feeling of being a part of the real world to the perception of the user [3, 4]. 

Supporting the content with 3D data with the help of AR technology has enabled this technology to be used in 

many areas, especially in the field of education. Research carried out within the scope of this study shows that old-

fashion teaching techniques may be insufficient for these young people due to the fact that Generation Z grows 

together with technology. Especially, the increase in the preference of mobile devices, such as tablets and smart 

phones, has provided these devices to enter the field of education and resulted in the emergence of the concept of 

mobile learning. Keskin et al. [5] stated that efficiency in the education process will increase thanks to the fact that 

students can access information practically regardless of time and place by mobile learning. Korucu et al. [6] also 

studied mobile learning technique and stated that positive effects occur in the field of education as the technique 

increases the situations such as supporting personal learning, excitement, curiosity, and the desire to research by 

considering the learning process with a student-centered approach. In another study, Avci et al. [7] used AR 

technology to teach the periodic table, which is one of the basic subjects of chemistry course. They stated that 

students’ interest and curiosity increased by using the developed application due to the possibility of seeing and 

interacting all elements in 3D environment. Uzun et al. [8] developed an AR application to explain human skeletal 

system to children with disabilities. In the application, human anatomy and skeletal system were supported with 

3D visuals, and it was observed that disabled children learned the skeletal system more easily. In the light of this 

finding, by examining the studies in the field of education, it can be seen that AR technology has much to add to 

mobile learning process. 

Especially with the arrival of Generation Z, use of mobile devices, such as tablets and phones, has increased. The 

ease of using these devices, the possibility of performing operations with voice commands, and the increasing usage 

ratio among children have accelerated the integration of AR technology to mobile platforms. At the same time, 

having sensors such as GPS, accelerometer, and compass, mobile devices have gained many advantages in location-

based AR model [9]. AR environment can easily be created by processing the data gathered from sensors. The most 

frequently used application in this area has been Wikitude AR [10–12]. 

Apart from location-based AR technology, there are AR types such as projection-based, superimization-based, and 

vision-based. In vision-based AR applications, images or frames of a video shot by a camera are processed. By 

using feature extraction methods, coordinate data of the reference object in the image is tracked, and 2D or 3D 

objects are virtually positioned over this reference object. Vision-based AR technology is divided into two as 

Marked-Based AR (MBAR) and Markerless AR (MAR). 

In order to ensure real&virtual integration with MBAR applications, a marker must be introduced to the system 

beforehand. When the marker gets into the view of the camera of the device, application becomes active and AR 
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environment gets created. In the use of the MBAR model, video stream taken from the camera is separated into 

frame,s and a previously introduced marker is searched in each frame. The search continues till the marker gets 

found in a frame; at this point, a virtual object is positioned on the real-world coordinate of the marker in the frame. 

Finally, AR environment is created by integrating virtual reality. 

When examining applications of AR technology in the field of education, we can see that MBAR model has a wide 

usage. However, due to its dependence on defining and using of a specific marker, it lacks potential of what?. In 

order to eliminate this disadvantage, MAR model, which provides environment and marker independence, can be 

preferred. In this model, natural targets in the image are used as reference instead of introducing a marker to the 

system beforehand. However, in order to create an AR environment using natural targets, feature detection, 

extraction and matching algorithms which require high processing power and memory capacity should be used in 

the background. This model is disadvantageous for mobile devices with low memory capacity and processing 

power. On the other hand, with proper choices on parameters, fore-mentioned algorithms can be efficiently used 

on mobile platforms. 

Within the scope of this study, the aim was to create an AR environment by using MAR model, which provides 

independence from the environment and the marker. For this purpose, analyses were made on PC and mobile 

platforms with various combinations of feature extraction and matching algorithms on video images with different 

brightness, scale, and color levels.  During this process, i) the number of key points in the source image, ii) the 

detection time of key points, iii) the number of matching key points and the required time for matching between 

consecutive frames, and iv) the amount of positional deviation of the repositioned virtual object depending on the 

key points were all examined. Performance measurements were achieved, and the most appropriate algorithm 

combination was selected along with proper parameters. In the second, third, and fourth sections of this study, 

materials and methods used in the study are clearly explained, experiments along with results are presented, and 

discussion on the results are given, respectively. 

2. Material and Method 

In order for the video frames used in the AR environment to get recognized and associated in the digital 

environment, there is a need to determine the descriptors, such as key points, and extract the feature vectors, which 

are accepted as the digital signature of these descriptors. Generally, detection operations are performed, using 

natural descriptors such as edges, corners, and geometric shapes in video frames. Once these descriptors are found, 

feature vectors, which are considered as the digital signature of the image that enables what? It is not clear. Will 

you please write the noun instead of the pronoun here? to be used in the virtual environment, are obtained by using 

feature extraction methods. 

There are various methods proposed for this purpose in the literature. Within the scope of this study, Oriented 

FAST and Rotated BRIEF (ORB), Scale-Invariant Feature Transform (SIFT), and Speeded-Up Robust Features 

(SURF) key point detection and feature extraction methods were employed. Also, at the matching phase, 

Bruteforce, Bruteforce-Hamming, and Flannbase matchers were used to match points detected in consecutive 

frames. In this section, these methods are briefly mentioned. 
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2.1. Key point Detection and Feature Extraction 

2.1.1. Scale-Invariant Feature Transform (SIFT) 

SIFT, by David Lowe [13], is an algorithm that basically consists of four steps which enable detection of key points 

on images and extraction of corresponding feature vectors. In the use of the algorithm, first of all, a Gaussian filter 

is applied to different scales of the pattern and appropriate key points are determined (Figure 1) [13, 14]. 

 

Figure 1. Using DoG at different scales [13]. 

Not all identified key points are stable. For this reason, locations of stable key points are determined by eliminating 

unstable and low-contrast points by using a quadratic Taylor series in Difference of Gaussians (DoG) space. A 

direction is assigned to each key point so that it is not affected by the rotation effect. In order not to get affected by 

other changes, a 16×16 pixel-size window is created for each key point, having the key point in the center. Then, 

16 sub-windows of 4×4 size are obtained from this window; gradients are calculated for each sub-window and 

stored in histograms of 8 parts. By this way, 128 feature vectors having stable descriptors are extracted. SIFT 

algorithm is resistant to changes in rotation, scale, illumination, and perspective transformations in the image area 

thanks to the steps performed [13]. However, the use of this algorithm requires high computing power and memory 

sources. For this reason, this algorithm might be inefficient in smart mobile devices with insufficient memory 

capacity and processing power. 

2.1.2. Speeded-Up Robust Features (SURF) 

In 2006, Bay et al. [15] proposed SURF algorithm that is based on integral images and Hessian matrix as an 

alternative to SIFT. Similar to SIFT algorithm, SURF is resistant to changes in scale and rotation; however, it 

requires less computation time for key point detection and feature extraction stages as compared to SIFT. Instead 

of DoG method used in SIFT, box filtering method is used in SURF algorithm. In DoG method, an iterative scaling 

technique is used that is the result of the previous scaling is expected so that the next scaling can be performed. 

However, in the box filtering method, candidate key points are determined by performing different scaling 

operations directly on the original image instead of iterative scaling. All candidate key points are determined by 

using the determinant of the Hessian matrix in the current scale space, and in order to eliminate unstable candidates, 

the “suppress the weak one” approach is used at each scale close to 3×3×3 (Figure 2). In this approach, each 
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candidate key point in the center is compared with a total of 26 neighboring candidate key points in all 3 scales, 

and if the current value of the candidate is low, it gets eliminated [16]. 

 

Figure 2. SURF keypoint detection [16]. 

 

 

 

 

Figure 3. Haar wavelet model [16]. 

 

In SURF algorithm, a pair of Haar wavelets, shown in Figure 3, is used for x and y directions on the input image 

in order to increase stability of the feature vector extraction process and reduce computation time. In this model, 

for each key point, a neighborhood of size 20S×20S with the key point in the center is created where S is the scale 

level. This area is then divided into sub-regions of 4×4. By applying Haar wavelets to these sub-regions, wavelet 

responses dx and dy values on x and y directions are obtained, respectively. Then, in order to be sensitive to rotation, 

wavelet responses are weighted by 2S Gauss, and sum of the absolute values of dx and dy values are found (Figure 

4). Thus, the quadruple (VSURF) shown in Equation 1 is obtained for each 4×4 sub-region. A combination of all 

quadruples forms the final feature descriptive vector [16, 17]. 

𝑉𝑆𝑈𝑅𝐹 = (∑𝑑𝑥 , ∑ 𝑑𝑦 , ∑|𝑑𝑥| , ∑|𝑑𝑦|)                 (1) 



 
Akman and Gumus J Inno Sci Eng 6(2):259-278 

264  

 

Figure 4. Descriptive component diagram [16]. 

 

2.1.3. Oriented FAST and Rotated BRIEF (ORB) 

ORB is yet another key point detection and feature extraction algorithm based on FAST [18] and BRIEF [19] 

algorithms. It was developed by Rublee et al. [20] as an alternative to SIFT and SURF algorithms. ORB gains scale 

invariance by using the scale pyramid. For each scale, key points are determined by using FAST, and top N key 

points are quickly found by using the Harris corner metric. FAST has no orientation feature. To overcome this 

problem, ORB uses “Center of Gravity” method. In order to obtain the orientation vector, density centroid of the 

corners (C) is calculated by using Equation 2 where I is the image itself [21]. 

mpq= ∑ xp
∀ x, y yqI(x,y),  C = (

m10

m00
,

m01

m00
)                 (2) 

After that, an OC⃗⃗⃗⃗⃗⃗  vector is obtained from point C to point O, which is the geometric center of the vertices. Using 

Equation 3, direction of this vector is determined by finding the angle θ between points O and C. Thus, ORB gains 

the feature of orientation. 

θ = arctan (
m01

m10
)                   (3) 

BRIEF, which is another component of ORB, does not provide good results in terms of rotation. To overcome this 

problem, a randomly chosen pixel dataset around each key point is formed. By applying an intensity-based binary 

test to all pixel pairs in this dataset, a new matrix P containing binary test results is obtained. Then, for orientation 

angle θ, rotation matrix Rθ (Equation 4) is calculated and used in Equation 5, to find the oriented matrix Pθ              

[19, 20]. 

Rθ= [
cos θ - sin θ

sin θ cos θ
]                   (4) 

Pθ= Rθ.P                    (5) 

 

2.2. Descriptor Matching 

Matching phase is the next step that should be applied after key point detection and feature extraction in order to 

create an AR environment. In this phase, descriptor matchers such as Bruteforce, Bruteforce-Hamming, and 

FLANN-based matching [22, 23] are used to determine the correspondence between descriptors in different 

perspectives of a particular object. By this way, it is ensured that operations of great importance such as detection 
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and tracking of the object are carried out. The main idea behind these matchers is based on K-Nearest Neighbors 

algorithm which finds top K-nearest neighbors (in query image) of each descriptor from the reference image. 

However, the proximity values detected between two images may be erroneous due to noise. In order to prevent 

this error and provide a stable matching process, usually a screening system based on a predetermined threshold is 

used. In this system, a metric which is defined as the ratio of distance between closest pairs to distance between 

second closest pairs shows whether the match is correct or not. If this ratio is less than the threshold, it is considered 

as an acceptable match; otherwise, the next pair is evaluated. 

 

2.3. Random Sample Consensus (RANSAC) 

RANSAC algorithm was developed by Fischler and Bolles [24] to predict a strong and successful model from the 

dataset by eliminating outliers according to the input data. Matches found by using descriptor matching methods 

are not always expected to be reliable due to the noise in the image. Therefore, by using the RANSAC method, 

whose steps are given in Algorithm 1, this handicap can be eliminated and most accurate matches can be obtained, 

allowing a stable homograph estimation [25–27]. 

Algorithm 1: Steps of RANSAC algorithm. 

1- S samples are randomly chosen from the dataset X consisting of correct matches, and the model parameter 

is determined according to selected samples. 

2- Points within a specified threshold value t are assigned to the model parameter and the dataset Xi is 

determined according to these assigned values. The dataset Xi is the consensus of the sample data. 

3- If the size of Xi is greater than threshold t, then, the model is re-estimated by using all points in Xi and 

the process is finished. 

4- If the size of Xi is less than threshold t, again, S samples are randomly chosen from dataset X and previous 

steps are repeated. 

5- After N trials, the largest consensus set Xi is selected, and the model is recreated by using all points in 

the Xi dataset. 

 

3. Results and Discussion 

Numerical data associated with the figures in this section can be found at https://github.com/akmancrn/article-

graphics-results. 

AR assisted education is one of the common application fields of AR technology and is chosen as the subject of 

this study. By the literature review, it was seen that majority of the applications developed for this area is based on 

MBAR, which relies on a predefined specific marker. However, relying on such a marker restricts the practicality 

of applications. Because of this disadvantage, MAR, which accepts natural features in the view as reference and 

provides environment and marker independence, is studied instead.  

MAR model, as mentioned in the previous sections, is composed of key point detection, feature extraction, and 

matching processes. These processes of MAR use algorithms which require high computation power and memory 

resource. In order to compensate these needs and create a stable AR environment, tests were performed on both PC 
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and mobile platforms with reasonable sources. PC platform had a 6-cores CPU running at 4.50GHz, and 16GB 

RAM while the mobile platform had a 4-cores CPU running at 2.0GHz, and 2GB RAM. 

In order to create an AR environment on mentioned platforms, a 433-frames long video with the resolution of 

1280×800 pixels were shot using the mobile platform. The first frame was selected as the reference image, and the 

remaining 432 frames were accepted as query images. These images were processed with key point detection and 

feature extraction algorithms such as ORB, SIFT, and SURF under different brightness (Figure 5), and scaling 

conditions, both on mobile and PC platforms. After that, the performance of these algorithms was compared by 

using test results obtained from all query images. 

 

 

(a) Normal brightness level.   (b) 100% increased brightness level. 

Figure 5. Different brightness levels of the sample video. 

 

First of all, average runtimes on PC platform (average of runs at 10 different times) for different scaling levels of 

the query images were examined. In the examination, current brightness level was kept constant (normal 

brightness). 

 

 

Figure 6. Average runtimes at normal brightness level on PC platform. 

 

Figure 6 shows runtimes of various combinations of detection, extraction, and matching algorithms on PC platform 

for four different scaling levels when the brightness is kept at normal level. It can be clearly seen that ORB-based 

combinations were the fastest and SIFT-based combinations were the slowest ones in terms of running time. 
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When the brightness level was increased by 100%, average runtimes (average of 10 different runs) of various 

combinations of detection, extraction, and matching algorithms on PC platform for four different scaling levels 

were found as shown in Figure 7. 

 

 

 

Figure 7. Average runtimes at 100% increased brightness level on PC platform. 

 

As seen in Figure 7 as well, ORB-based combinations were the fastest and SIFT-based combinations were the 

slowest ones when there was a 100% increase in brightness level. Compared to Figure 6, a negligible increase in 

average runtimes was observed when the brightness level was increased. 

In a similar fashion, Figure 8 and 9 show average runtimes of combinations of detection, extraction, and matching 

algorithms on mobile platform, under normal and 100% increased brightness levels, respectively. 

 

 

 

Figure 8. Average runtimes at normal brightness level on mobile platform. 
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Figure 9. Average runtimes at 100% increased brightness level on mobile platform. 

 

As similar to the previous results, ORB-based combinations were the fastest and SIFT-based combinations were 

the slowest ones under different brightness levels on mobile platform. However, considering average runtimes, it 

was observed that the time spent on mobile platform was much higher than the time spent on PC platform. 

Considering the figures, it is obvious that runtimes can be reduced by decreasing the scaling level, which is an 

advantage for mobile platforms. 

Key point detection and feature extraction processes directly affect average runtime (average of 10 different runs). 

For normal brightness (NP) and increased brightness (AP) levels, average detection times of all key points on the 

PC platform are given in Figure 10. 

 

 

Figure 10. Average keypoint detection times under NP/AP conditions on PC platform. 

 

When average key point detection times for both platforms were examined, it was observed that the process was 

completed at the slowest pace by using SIFT and fastest using ORB. Test runs were also performed on mobile 

platform. It was observed that the application on mobile platform runs 13 times slower than the one on PC platform. 

However, ratios of runtimes of algorithms remained the same. 
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Another factor affecting the total runtime is feature extraction process. For PC and mobile platforms, average times 

to extract the feature vector at normal brightness and increased brightness levels are given in Figure 11 and Figure 

12, respectively. Examining the figures, it was observed that feature extraction process was again completed,at the 

slowest pace by using SIFT and at the fastest pace by using ORB. 

 

 

 

Figure 11. Feature extraction times under NP/AP conditions on PC platform. 

 

 

Figure 12. Feature extraction times under NP/AP conditions on mobile platform. 

 

Number of key points obtained from all query images at normal brightness level was the same for both platforms,as 

shown in Figure 13. The same conclusion can be made for the increased brightness level, the results of which are 

given in Figure 14. In terms of the number of key points, it was seen that SURF detected the most while ORB 

detected the least. Figure 10 reveals that, SIFT was the slowest algorithm, while SURF detected more key points 

than any other algorithms. This shows that box filtering approach used in SURF is more advantageous than 

Gaussian filtering approach used in SIFT. Similar results have been reported in studies in the literature [29-30]. 
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Figure 13. Number of key points at normal brightness level on PC/mobile platform. 

 

 

Figure 14. Number of key points at increased brightness level on PC/mobile platform. 

 

Increasing the brightness level at all scaling levels for mobile platform and at 25%, 50% scaling levels for PC 

platform reduced the average runtime. However, increasing the brightness level at 75%, 100% scaling levels on PC 

platform also resulted in an increase in the average runtime (Figure 7). While the increase and decrease in runtimes 

were negligible, it is not possible to reach the same conclusion for the number of key points. When the brightness 

level was increased, the number of detected key points decreased to a level that could not be neglected (Figure 13 

vs. Figure 14). Thus, it can be seen that, although increasing the brightness level may seem advantageous in terms 

of operating time, this may be a disadvantage in terms of the detected key points, causing loss of valuable data. 

This is a trade of for mobile platforms. 

Following the key point detection and feature extraction steps, matching methods are used for scene tracking. For 

this step, Bruteforce, Bruteforce-Hamming, and Flannbase matchers were used together with K-Nearest Neighbors 

(KNN) algorithm. Using this algorithm, each descriptor (Q) in the query image is matched with the two nearest 

neighbor descriptors (R1 and R2) in the reference image. By this way, images obtained from the sample video were 
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compared with the reference image, and the matching process was completed. However, detected matches were 

not entirely correct. Therefore, the distance between matching descriptors was compared to a preselected threshold 

value. Considering the present studies in literature, this value is generally chosen as 0.8 [28]. In the calculation 

process, if the distance between Q and R1 was less than threshold × the distance between Q and R2, then, Q-R1 

pair was accepted as a correct matching pair represented by GM (Good Matches). However, all GM were still not 

reliable due to the noise in images. At this point, in order to overcome the problem, researchers have shown that 

absolute correct matches can be detected by using RANSAC algorithm [29-30]. Thus, in this study, RANSAC 

algorithm was used to make a more accurate homograph estimation. The most accurate matching pairs obtained by 

using RANSAC are expressed by RGM (RANSAC Good Matches). For both brightness levels,the  number of 

matches obtained in all cases (TM: Total matches, GM: Good Matches, RGM: RANSAC based Good Matches) 

are given in Figures 15, 16, and 17. Figure 15 shows results for 100% and 75% scaling levels, Figure 16 shows 

results for 50% scaling level, and Figure 17 shows results for 25% scaling level. 

 

 

 

(a) Normal brightness. 

 

(b) Increased brightness. 

 

Figure 15. Number of matches for 100% and 75% scales on both platforms. 

(a): Normal brightness, (b): Increased brightness 
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(a) Normal brightness. 

 

(b) Increased brightness. 

 

Figure 16. Number of matches for 50% scale on both platforms. 

          (a): Normal brightness, (b): Increased brightness 

 

 

(a) Normal brightness. 
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(b) Increased brightness. 

Figure 17. Number of matches for 25% scale on both platforms. 

         (a): Normal brightness, (b): Increased brightness 

 

Considering the number of total matches,  matching after SURF gives the highest number of matches while 

matching after ORB gives the lowest. By applying Equations 6 and 7, proportional GM% and proportional RGM% 

rates were also obtained (Figure 18), respectively. These values are the same for both PC and mobile platforms. It 

was observed that GM% was the highest for SIFT-derived descriptors at 100% and 75% scaling levels, and for 

SURF-derived descriptors at 50% and 25% scaling levels. However, when examining RGM%, it was observed that 

RGM% was the highest for ORB-derived descriptors at all scaling levels. This reveals that RANSAC algorithm 

chooses more descriptors derived by ORB than SIFT or SURF. GM% and RGM% rates for the increased brightness 

level are also given in Figure 19. 

GM% = GM/TM * 100         (6) 

RGM% = RGM/GM * 100        (7) 

 

 

Figure 18. Matching rates at normal brightness level. 
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Figure 19.. Matching rates at increased brightness level. 

Another subject of the study is to compare the performance of detection&matching combinations in terms of 

positioning a virtual object. For this purpose, a virtual object was placed in the center of the black circle shown in 

Figure 5 which is the first frame (reference image) of the video. Then, this object was repositioned on following 

432 frames (query images) of the video by using various descriptor&matcher combinations such as OB (ORB 

Bruteforce), OBH (ORB Bruteforce-Hamming), SB (SIFT Bruteforce), SFL (SIFT Flannbase), SFFL (SURF 

Flannbase), and SFB (SURF Bruteforce). At each repositioning step, one might expect to see the virtual object 

maintaining its position in the very center of the black circle; however, this does not happen all the time causing a 

deviation. In order to measure the amount of this deviation, the distance between the new position of the object and 

the center of the circle should be calculated at each repositioning step. For this, the center of the circle in each 

image was determined by using HoughCircle method provided by OpenCV 2.4.11 library. The amount of deviation 

changes depending on the used descriptor&matcher combinations, brightness level, and scaling level (Figure 20).  

 

 

Figure 20. δ value for each scaling level. 

 

By using Equations 8 and 9, pixel-based deviation value (DV) and deviation ratio subject to the image scale (DRS) 

were calculated for each query image, respectively. Afterwards, a total of 10 query images with the lowest and 

highest deviations were determined as outliers and got eliminated. Then, a mean deviation ratio (MDR) over all 

query images was calculated. 

DV =  
√x2+y2

δ
                   (8) 

DRS = DV ∗ 100                  (9) 

The mean deviation ratios at each scaling level were examined separately for both platforms, at normal brightness 

level, and without using RANSAC. For 100% scaling level, it was observed that the highest MDR occurred by 

using SIFT-based descriptor&matcher combinations, while the lowest MDR occurred by using ORB-based 

descriptor&matcher combinations (Figure 21).  
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Matching rates and the number of key points are numerically the same for 75% and 100% scaling levels (see Figures 

13-14, 18-19). However, the resolution obtained as a result of scaling on the image is different. Therefore, MDR 

differs for these two scaling levels. Examining Figure 21, it can be said that the decrease in the scaling level reduced 

the deviation ratio for SURF-based descriptor&matchers while this is not valid for other combinations. On the other 

hand, when the deviation ratio axis is examined, one can see that there are deviations above 100%. This indicates 

that the virtual object deviates too much or even goes off the screen. 

 

 

Figure 21. MDR without RANSAC at normal brightness level on both platforms. 

 

MDR values in Figure 22 were obtained by using RANSAC algorithm at normal brightness level for both platforms. 

Paying attention to the deviation ratio axis, one can see that the virtual object remained on the screen for all 

descriptor&matcher combinations at all scaling levels, even if it deviated from the position it should be. It is 

observed that, for all combinations, there is less deviation when using the original 100% scaling level and more 

deviation at 25% scaling level. 

 

 

Figure 22. MDR with RANSAC at normal brightness level on both platforms. 

Similar tests were done, using the test video with the increased brightness. When the deviation ratio axis in Figure 

23 is examined, without using RANSAC, MDR value is observed to be less than MDR value obtained by using the 

normal brightness level. However, MDR values are mostly above 100%. This indicates that the virtual object 

usually moves on screen and is mostly off-screen. When deviations of all combinations at various scaling levels 

were examined, it was observed that the least deviation occurred in OOB combination at 100% scaling level, and 

the highest deviation occurred in SFSFL combination at 75% scaling level. 
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Figure 23.  MDR without RANSAC at increased brightness level on both platforms. 

 

MDR values in Figure 24 were obtained by using RANSAC algorithm at increased brightness level for both 

platforms. When the deviation ratio axis is examined for all combinations, the virtual object is seen to deviate from 

its intended position but remains on the screen at all scaling levels. It is also observed that the virtual object deviates 

the least at 100% scaling by using OOB combination, and the most at 25% scaling level by using SSFL 

combination. RANSAC algorithm seems to be effective in reducing the deviation and gives more accurate results 

as resolution approaches to its original scale level. 

 

 

Figure 24. MDR with RANSAC at increased brightness level on both platforms. 

 

4. Conclusion 

The comparative analysis of the feature extractors used in this study is compatible with the results of previous 

studies [30-31]. A comparative performance analysis of the combinations of various key point detectors, feature 

extractors, and matcher algorithms at different brightness/scale levels has been made on mobile and PC platforms. 

By using these combinations, key points and corresponding feature vectors in frames of a test video were extracted 

and matched. The time spent extracting and matching the key points, the number of key points detected, the number 

of matches and the amount of deviation of the virtual object added to the image are the main areas of interest of the 

study. 

In key point detection and feature extraction algorithms used in the study, according to the hardware used, 
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brightness level and scale levels, gave various results in outputs such as the number of key points, runtime, and 

match rate. When all the results are examined, the increase in the brightness level is observed to have a reducing 

effect on the number of key points detected and the key point extraction time, but it has no significant effect on the 

amount of deviation. This shows that the increase in the brightness level naturally leads to elimination of weak key 

points. This can be interpreted as an advantage for mobile platforms with low processing power. 

Rather than the reduction in runtime, the most important issue is the match rate in the output, so RANSAC algorithm 

was used to improve stability. With the use of the algorithm, mean deviation ratio was reduced to approximately 

5% for all descriptor&matcher combinations at 100% scaling level. However, when the scale level was reduced to 

a quarter, it was observed that the mean deviation ratio increased approximately four folds. This shows that a MAR 

model that makes use of the aforementioned algorithms will be significantly affected by the image scale. At this 

point, especially for mobile platforms, the use of ORB-based detector & matcher combination with RANSAC may 

be a suitable choice due to the advantages in runtime, key point matching rate, and low deviation ratio. 

As future work, it is aimed to hybridize the current study with deep learning networks used for object recognition. 
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