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Abstract − In this paper, we will study the convergence properties of the method designed for the 

convection-diffusion problem.  We will prove that the analytical and numerical methods give the same 

result. Merging the ideas in previous research, we introduce a numerical algorithm on a uniform mesh 

that requires no exact solution to the local convection-diffusion problem. We display how to obtain the 

numerical solution of the local Boundary Value Problem (BVP) in a suitable way to ensure that the 

resulting numerical algorithm recaptures the same convergence properties when using the exact 

solution of the local BVP. We prove that the proposed algorithm nodally converges to the exact 

solution. 

Keywords − Trapezoidal rule, convection-diffusion problem, boundary value problem, singular points, Green’s function, Lagrange 

interpolation 
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1. Introduction 

It is well-known that the piecewise- uniform fitted meshes studied by Shishkin [1] and the corresponding 

numerical algorithms were developed and shown to be 𝜀 −uniform in various studies including the book by 

Shishkin [2]. The numerical results using a fitted mesh method were firstly presented in [3]. We refer the 

readers to Bakhvalov [4], Gartland [5] and Vulanovic [6] for other approaches to adapting the mesh, involving 

complicated redistribution of the mesh points [7, 8]. We note that none has the simplicity of the piecewise 

uniform fitted meshes. 

Motivating by this these considerations, we remark that both fitted operators and fitted meshes need to be 

studied. Since the methods using fitted meshes are usually easier to implement than the methods using fitted 

operators in practice, they recommended to be applied whenever possible. We also note that the methods using 

fitted meshes are easier to generalize to the problems in more than one dimension and to the nonlinear 

problems. 

In this paper, the following convection−diffusion problem with a concentrated source is considered and 

we prove that 𝜀-uniformly convergent methods can be designed for the problem (1). In other words, in this 

article, to investigate the numerical solution of equation (1) and to obtain a suitable method, we will focus on 

the following boundary value problem [9] 

𝐿𝑢 = −𝜀𝑢′′ + 𝑏𝑢′ + 𝑐 𝑢 = 𝑓(𝑥),   𝑢(0) = 0,    𝑢(1) = 0 (1) 
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It is worth mentioning that the modelling of real-world problems including physical, chemical, and 

biological phenomena contain interactions of convection and diffusion processes, which can be 

described by the convection-diffusion- problem [10]. 

We remark that, we have studied the following  

−𝜀𝑔𝑖
′(𝑥𝑖−1) 𝑢𝑖−1 + 𝑢𝑖 + 𝜀𝑔𝑖

′(𝑥𝑖+1) 𝑢𝑖+1 = (𝑓 − 𝑐𝑢) ∫ 𝑔𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

and we obtained the analytical solution  

−
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
𝑈𝑖−1 + 𝑈𝑖 −

1

𝑒𝜌𝑖 + 1
𝑈𝑖+1 = (𝑓𝑖 − 𝑐𝑖 𝑈𝑖) 

ℎ

𝑏
 (
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) (2) 

see [10] and [11] for details. In this article, we will use the equation (1), and after applying various numerical 

treatments, we will get the same solution given by the equation (2) which was studied before in [12]. In this 

study, we have,  

𝑔𝑖
′(𝑥𝑖−1)  ≅ 𝐷

+𝐺0 =
𝐺1−𝐺0
ℎ1
∗  and 𝑔𝑖

′(𝑥𝑖+1)  ≅ 𝐷
−𝐺𝑀 =

𝐺𝑀−𝐺𝑀−1
ℎ2
∗   

−𝜀 𝐷+𝐺0𝑈𝑖−1 + 𝑈𝑖 + 𝜀 𝐷
−𝐺𝑀𝑈𝑖+1 = (𝑓𝑖 − 𝑐 𝑈𝑖) ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = 𝜀𝐷
+𝐺0           

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −𝜀𝐷
−𝐺𝑀          

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖 , 𝑀) = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

At the end of this paper, we will show that 

lim
𝑀→∞

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) =
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
 

lim
𝑀→∞

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −
1

𝜀
 (

1

𝑒𝜌𝑖 + 1
)  

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖, 𝑀) = (
ℎ

𝑏𝑖
)(
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

Now, consider 

−𝜀 𝐷+𝐷−𝐺𝑗 − 𝑏𝐷
+𝐺𝑗 = ∆𝑋𝑖,𝑗,        𝑗 = 1, 2, 3, … ,𝑀 − 1 

 

−𝜀 (
𝐺𝑗+1 − 𝐺𝑗

ℎ𝑗+1
−
𝐺𝑗 − 𝐺𝑗−1

ℎ𝑗
)
1

ℎ𝑗
− 𝑏 (

𝐺𝑗+1 − 𝐺𝑗

ℎ𝑗+1
) = ∆𝑋𝑖,𝑗 

where  

∆𝑋𝑖,𝑗 = {

1

ℎ𝑗+1
,   𝑥𝑖 ∈ (𝑥𝑗, 𝑥𝑗+1)

0,   otherwise
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If  𝑗 = 0  or  𝑗 = 𝑀, then 𝐺0 = 0  or 𝐺𝑀 = 0. 

ℎ𝑗 =

{
 
 
 

 
 
 ℎ1  , 1 ≤ 𝑗 ≤

𝑀

4
− 1

ℎ2 ,   
𝑀

4
≤ 𝑗 ≤

2𝑀

4
− 1

ℎ1 ,   
2𝑀

4
≤ 𝑗 ≤

3𝑀

4
− 1

ℎ2 ,   
3𝑀

4
≤ 𝑗 ≤

4𝑀

4
− 1

 

−𝐺𝑗+1 (1 +
𝑏 ℎ1
𝜀
) + 𝐺𝑗 (2 +

𝑏 ℎ1
𝜀
) + 𝐺𝑗−1(−1) = 0 

In the previous equation, if we take 𝐺𝑗+1 = 𝑟
2, 𝐺𝑗 = 𝑟,  𝐺𝑗−1 = 𝑟

0 = 1 and 𝜆1 = 1 +
𝑏 ℎ1

𝜀
 then we will get 

−𝑟2 (1 +
𝑏 ℎ1
𝜀
) + 𝑟 (2 +

𝑏 ℎ1
𝜀
) − 1 = 0 

−𝑟2𝜆1 + 𝑟(1 + 𝜆1) − 1 = 0  ⇒ (1 − 𝑟𝜆1)(𝑟 − 1) = 0 

Then, the roots of the quadratic equation are given by:   𝑟1 = 1 and 𝑟2 =
1

𝜆1
. Similarly, we get  

−𝐺𝑗+1 (1 +
𝑏 ℎ2
𝜀
) + 𝐺𝑗 (2 +

𝑏 ℎ2
𝜀
) + 𝐺𝑗−1(−1) = 0 

In the previous equation, if we take 𝐺𝑗+1 = 𝑟
2, 𝐺𝑗 = 𝑟,  𝐺𝑗−1 = 𝑟

0 = 1 and 𝜆2 = 1 +
𝑏 ℎ2

𝜀
, then we will get 

−𝑟2 (1 +
𝑏 ℎ2
𝜀
) + 𝑟 (2 +

𝑏 ℎ2
𝜀
) − 1 = 0 

−𝑟2𝜆2 + 𝑟(1 + 𝜆2) − 1 = 0  ⇒ (1 − 𝑟𝜆2)(𝑟 − 1) = 0 

Then, the roots of the quadratic equation are given by:   𝑟1 = 1 and 𝑟2 =
1

𝜆2
. 

2. Derivation of Trapezoidal Rule 

We can derive the trapezoidal rule by using polynomial interpolants of 𝑓(𝑥) function. The usage of a Lagrange 

interpolant for each sub-interval [𝑥𝑖−1, 𝑥𝑖],   𝑖 = 1, 2, 3, … , 𝑛 leads to the trapezoidal rule in [13], that is, 

∫ 𝑓(𝑥) 𝑑𝑥 ≈ ∫ 𝑃(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

  

𝑥𝑖

𝑥𝑖−1

 

where  

𝑃(𝑥) =
𝑥 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖

𝑓(𝑥𝑖−1) +
𝑥 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

𝑓(𝑥𝑖) 

∫ 𝑓(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 ≈ ∫ 𝑃(𝑥)𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 = ∫ (
(𝑥 − 𝑥𝑖)

𝑥𝑖−1 − 𝑥𝑖
𝑓(𝑥𝑖−1) +

(𝑥 − 𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1
𝑓(𝑥𝑖))𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 

   = 
𝑓(𝑥𝑖−1)

𝑥𝑖−1 − 𝑥𝑖
∫ (𝑥 − 𝑥𝑖)𝑑𝑥 +

𝑓(𝑥𝑖)

𝑥𝑖 − 𝑥𝑖−1
∫ (𝑥 − 𝑥𝑖−1)𝑑𝑥 
𝑥𝑖

𝑥𝑖−1

 
𝑥𝑖

𝑥𝑖−1

 

   = 
𝑓(𝑥𝑖−1)

−(𝑥𝑖 − 𝑥𝑖−1)
 
(𝑥 − 𝑥𝑖)

2

2
  |
𝑥=𝑥𝑖−1

𝑥𝑖

+ 
𝑓(𝑥𝑖)

𝑥𝑖 − 𝑥𝑖−1
 
(𝑥 − 𝑥𝑖−1)

2

2
  |
𝑥=𝑥𝑖−1

𝑥𝑖
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   = −
𝑓(𝑥𝑖−1)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖)

2

2
−
(𝑥𝑖−1 − 𝑥𝑖)

2

2
] +

𝑓(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖−1)

2

2
−
(𝑥𝑖−1 − 𝑥𝑖−1)

2

2
] 

   = −
𝑓(𝑥𝑖−1)

(𝑥𝑖 − 𝑥𝑖−1)
 . [0 −

(𝑥𝑖−1 − 𝑥𝑖)
2

2
] +

𝑓(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖−1)

2

2
− 0] 

   = 
𝑓(𝑥𝑖−1)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖−1 − 𝑥𝑖)

2

2
] +

𝑓(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖−1)

2

2
] 

∫ 𝑃(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

=
(𝑥𝑖 − 𝑥𝑖−1)

2
 [
𝑓(𝑥𝑖−1)

2
+
𝑓(𝑥𝑖)

2
]   

For the composite trapezoidal rule, we have, 

∫𝑓(𝑥)𝑑𝑥 =∑ ∫ 𝑓(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

𝑛

𝑖=1

   

𝑏

𝑎

= ∑(𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

[
𝑓(𝑥𝑖−1)

2
+
𝑓(𝑥𝑖)

2
] 

∫𝑃(𝑥) 𝑑𝑥

𝑏

𝑎

=
ℎ

2
 ∑[ 𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖) ] =  

ℎ

2
[𝑓(𝑥0) + 2∑𝑓(𝑥𝑖) + (𝑥𝑛) 

𝑛

𝑖=1

]

𝑛

𝑖=1

 

We note that, this is known as the composite trapezoidal rule in [13]. 

Lemma 2.1: If  

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) = 𝜀𝐷
+𝐺0          

then  

lim
𝑀→∞

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) =
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
 

PROOF. Consider the uniform case, that is 𝜏 =
ℎ

2
. Then, the mesh parameters can be written as ℎ1

∗ = ℎ2
∗ =

2ℎ

𝑀
 

and 𝜆1 = 𝜆2 = 1 +
2𝑏ℎ

𝜀 𝑀
. 

lim
𝑀→∞

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = lim
𝑀→∞

𝐺1 − 𝐺0
ℎ1
∗ =

𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
 

Lemma 2.2: If  

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −𝜀𝐷
−𝐺𝑀          

then  

lim
𝑀→∞

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −
1

𝜀
 (

1

𝑒𝜌𝑖 + 1
)  

PROOF. We follow the same steps in the proof of Lemma 2.1. For the uniform case when 𝜏 =
ℎ

2
,  we use the 

difference solution 𝐺𝑖 and the fact that ℎ1
∗ = ℎ2

∗ =
2ℎ

𝑀
; 

lim
𝑀→∞

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) = lim
𝑀→∞

𝐺𝑀 − 𝐺𝑀−1
ℎ2
∗ = −

1

𝜀
 (

1

𝑒𝜌𝑖 + 1
) 

Lemma 2.3: If  

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖 , 𝑀) = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

then 
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lim
𝑀→∞

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖, 𝑀) = (
ℎ

𝑏𝑖
)(
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

PROOF. In order to calculate the following integral 

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

the trapezoidal rule is used for the exact solution of 

𝐺𝑗
𝑖 =

{
 
 
 

 
 
 𝑎1𝑟1

𝑗
+ 𝑎2𝑟2

𝑗
   0 ≤ 𝑗 ≤

𝑀

4

𝑎3𝑟3
𝑗
+ 𝑎4𝑟4

𝑗
,   
𝑀

4
≤ 𝑗 ≤

2𝑀

4

𝑎5𝑟1
𝑗
+ 𝑎6𝑟2

𝑗
,   
2𝑀

4
≤ 𝑗 ≤

3𝑀

4

𝑎7𝑟3
𝑗
+ 𝑎8𝑟4

𝑗
,   
3𝑀

4
≤ 𝑗 ≤

4𝑀

4

 

𝐺𝑗
𝑖 =

{
 
 
 

 
 
 𝑎1 + 𝑎2𝜆1

−𝑗
,   0 ≤ 𝑗 ≤

𝑀

4

𝑎3 + 𝑎4𝜆2
−𝑗
,   
𝑀

4
≤ 𝑗 ≤

2𝑀

4

𝑎5 + 𝑎6𝜆1
−𝑗
,   
2𝑀

4
≤ 𝑗 ≤

3𝑀

4

𝑎7 + 𝑎8𝜆2
−𝑗
,   
3𝑀

4
≤ 𝑗 ≤

4𝑀

4

 

Using the properties of Green’s function in [14–18], we get, 

𝑎1 + 𝑎2𝜆1
−𝑗
= 𝑎3 + 𝑎4𝜆2

−𝑗
 

𝑎3 + 𝑎4𝜆2
−𝑗
= 𝑎5 + 𝑎6𝜆1

−𝑗
 

𝑎5 + 𝑎6𝜆1
−𝑗
= 𝑎7 + 𝑎8𝜆2

−𝑗
 

For 𝐺0 = 𝐺𝑀 = 0, we have, 

𝑎1 + 𝑎2𝜆1
−𝑗
= 0 

𝑎7 + 𝑎8𝜆2
−𝑗
= 0 

For j = M/4, we have,  𝑎1𝜆1 + 𝑎2(𝑘1
−1(1 − 𝜆2 + 𝜆1)) − 𝑎3𝜆1 + 𝑎4𝑘3𝑘2

−1  = 0. 

For 
ℎ2

𝜀
, we have, 𝑎3𝜆2 + 𝑎4(𝑘2

−2(1 − 𝜆2 + 𝜆1)) − 𝑎5𝜆2 − 𝑎6𝑘1
−2𝑘3

−1  =
ℎ2

𝜀
. 

For j=3M/4, we have, ⇒ 𝑎5𝜆1 + 𝑎6(𝑘1
−3(1 − 𝜆2 + 𝜆1)) − 𝑎7𝜆1 − 𝑎8𝑘3𝑘2

−3  = 0. 

In order to get the difference solution exactly, we need to determine the eight unknown coefficients. Two 

equations can be obtained by using the boundary conditions:  𝐺0 = 𝐺𝑀 = 0; the difference equations related 

to the nodes 𝑥𝑀/4, 𝑥2𝑀/4  and 𝑥3𝑀/4 give us other three equations; and finally, the continuity conditions can 

be applied to obtain the other three equations. Next, the corresponding numerical algorithm can be obtained 

by using the fitted finite difference operator in order to get a system of finite difference equations on a standard 

mesh. We remark that the mesh is often a uniform mesh in practice. Finally, the obtained system can be solved 

in a practical way to get the numerical solutions. We refer the readers to [16] for other approaches in 

constructing fitted finite difference operators. 
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[
 
 
 
 
 
 
 1
1
𝜆1
0
0
0
0
0

1
𝑘1
−1

𝜉1
0
0
0
0
0

0
−1
−𝜆1
1
𝜆2
0
0
0

0
𝑘2
−1

−𝑘3𝑘2
−1

𝑘2
−2

𝜉2
0
0
0

0
0
0
−1
−𝜆2
1
𝜆1
0

0
0
0

−𝑘1
−2

−𝑘1
−2𝑘3

−1

𝑘1
−3

𝜉3
0

0
0
0
0
0
−1
−𝜆1
1

0
0
0
0
0

−𝑘2
−3

−𝑘3𝑘2
−3

𝑘2
−4 ]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0
0
0
ℎ2
𝜀
0
0
0
0 ]
 
 
 
 
 
 
 
 

 

where 𝑘1 = 𝜆1

𝑀

4 , 𝑘2 = 𝜆2

𝑀

4 , 𝑘3 = 𝜆1𝜆2
−1, 𝜉1 = 𝑘1

−1(1 − 𝜆2 + 𝜆1), 𝜉2 = 𝑘2
−2(1 − 𝜆1 + 𝜆2), 𝜉3 = 𝑘1

−3(1 − 𝜆2 +

𝜆1), and 𝜂 = 𝜀(𝜆1 − 1)(1 + 𝜆1

𝑀

4 𝜆2

𝑀

4 ). 

Using the symbolic programming MATHEMATICA, one can solve 𝐴𝑋 = 𝐵 linear system and obtain the 

following results: 

𝑎1 =
ℎ2
𝜂
𝑘1  𝑘2  𝑘3   

𝑎2 = −
ℎ2
𝜂
𝑘1  𝑘2  𝑘3   

𝑎3 =
ℎ2
𝜂
(−𝑘2  𝑘3  + 𝑘1  𝑘2  𝑘3  + 𝑘2  ) 

𝑎4 = −
ℎ2
𝜂
𝑘2
2 

𝑎5 = −
ℎ2
𝜂
(𝜆2 − 𝜆2𝑘2 + 𝜆1𝑘2) 𝜆2

−1 

𝑎6 =
ℎ2
𝜂
𝑘1
3𝑘2  𝑘3   

𝑎7 =
ℎ2
𝜂

 

𝑎8 =
ℎ2
𝜂
𝑘2
4 

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= ∫ 𝐺𝑖 𝑑𝑥 + ∫ 𝐺𝑖 𝑑𝑥 + ∫ 𝐺𝑖 𝑑𝑥 + ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

𝑥𝑖+𝜏

𝑥𝑖

𝑥𝑖

𝑥𝑖−1+𝜏

𝑥𝑖−1+𝜏

𝑥𝑖−1

 

where 𝜏 =
ℎ

2
. 

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4) 

Unless otherwise indicated, we will apply the trapezoidal rule for numerical integration until the end of this 

work. 

𝐼1 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖−1+𝜏

𝑥𝑖−1

= ℎ1 [
𝐺0
2
+ 𝐺1 + 𝐺2 +⋯+ 𝐺𝑀

4
−1
+

𝐺𝑀
4

2
] 
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𝐼1 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖−1+𝜏

𝑥𝑖−1

= ℎ1 [
0

2
+ 𝐺1 + 𝐺2 +⋯+ 𝐺𝑀

4
−1
+

𝐺𝑀
4

2
] 

𝐼1 = ℎ1

[
 
 
 

∑ 𝐺𝑗

𝑀
4
−1

𝑗=1
]
 
 
 

+
ℎ1
2
𝐺𝑀
4

 

𝐼1 = ℎ1 ∑(𝑎1𝑟1
𝑗
+ 𝑎2𝑟2

𝑗
 )

𝑀
4
−1

𝑗=1

+
ℎ1
2
(𝑎1𝑟1

𝑀/4
+ 𝑎2𝑟2

𝑀/4
 ) 

𝐼1 = ℎ1 ∑(𝑎1𝑟1
𝑗
 ) + ℎ1 ∑(𝑎2𝑟2

𝑗
 )

𝑀
4
−1

𝑗=1

𝑀
4
−1

𝑗=1

+
ℎ1
2
(𝑎1𝑟1

𝑀/4
+ 𝑎2𝑟2

𝑀/4
 ) 

𝐼2 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖

𝑥𝑖−1+𝜏

= ℎ2 [

𝐺𝑀
4

2
+ 𝐺𝑀

4
+1
+ 𝐺𝑀

4
+2
+⋯+ 𝐺2𝑀

4
−1
+

𝐺2𝑀
4

2
] 

𝐼2 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖

𝑥𝑖−1+𝜏

= ℎ2

[
 
 
 𝐺𝑀

4

2
+ ∑ 𝐺𝑗

2𝑀
4
−1

𝑗=
𝑀
4
+1

+

𝐺2𝑀
4

2

]
 
 
 

 

𝐼2 =
ℎ2
2
(𝑎3𝑟3

𝑀/4
+ 𝑎4𝑟4

𝑀/4
 ) + ℎ2 ∑ (𝑎3𝑟3

𝑗
+ 𝑎4𝑟4

𝑗
 )

2𝑀
4
−1

𝑗=
𝑀
4
+1

+
ℎ2
2
(𝑎3𝑟3

𝑀/2
+ 𝑎4𝑟4

𝑀/2
 ) 

𝐼3 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+𝜏

𝑥𝑖

= ℎ1 [

𝐺𝑀
2

2
+ 𝐺𝑀

2
+1
+ 𝐺𝑀

2
+2
+⋯+𝐺3𝑀

4
−1
+

𝐺3𝑀
4

2
] 

𝐼3 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+𝜏

𝑥𝑖

= ℎ1

[
 
 
 𝐺𝑀

2

2
+ ∑ 𝐺𝑗

3𝑀
4
−1

𝑗=
𝑀
2
+1

+

𝐺3𝑀
4

2

]
 
 
 

 

𝐼3 =
ℎ1
2
(𝑎5𝑟1

𝑀/2
+ 𝑎6𝑟2

𝑀/2
 ) + ℎ1 ∑ (𝑎5𝑟1

𝑗
+ 𝑎6𝑟2

𝑗
 )

3𝑀
4
−1

𝑗=
𝑀
2
+1

+
ℎ1
2
(𝑎5𝑟1

3𝑀/4
+ 𝑎6𝑟2

3𝑀/4
 ) 

𝐼4 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

= ℎ2 [

𝐺3𝑀
4

2
+ 𝐺3𝑀

4
+1
+ 𝐺3𝑀

4
+2
+⋯+ 𝐺𝑀−1 +

𝐺𝑀
2
] 

𝐼4 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

= ℎ2 [

𝐺3𝑀
4

2
+ 𝐺3𝑀

4
+1
+ 𝐺3𝑀

4
+2
+⋯+ 𝐺𝑀−1 +

0

2
] 

𝐼4 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

= ℎ2 [

𝐺3𝑀
4

2
+ ∑ 𝐺𝑗

𝑀−1

𝑗=
3𝑀
4
+1

] 
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𝐼4 =
ℎ2
2
(𝑎7𝑟3

3𝑀/4
+ 𝑎8𝑟4

3𝑀/4
 ) + ℎ2 ∑ (𝑎7𝑟3

𝑗
+ 𝑎8𝑟4

𝑗
 )

𝑀−1

𝑗=
3𝑀
4
+1

 

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4) 

Since the integral 𝑇3 integral can be written as the sum of the integrals 𝐼1,  𝐼2  𝐼3 and  𝐼4, we have 

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= (
ℎ

𝑏𝑖
) tanh (

𝑏𝑖ℎ

2𝜀
) = (

ℎ

𝑏𝑖
) 
𝑒
𝑏𝑖ℎ
𝜀 − 1

𝑒
𝑏𝑖ℎ
𝜀 + 1

 

𝑇3 = lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖, 𝑀) = (
ℎ

𝑏𝑖
)(
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

        Finally, we proved that the numerical and analytical results converge exactly (see [11]), that is, 

−
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
𝑈𝑖−1 + 𝑈𝑖 −

1

𝑒𝜌𝑖 + 1
𝑈𝑖+1 = (𝑓𝑖 − 𝑐𝑖 𝑈𝑖) 

ℎ

𝑏
 (
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

3. Conclusion 

In this paper, we studied different finite difference methods for the convection-diffusion problem. We 

presented numerical behaviour of the convection-diffusion problem. We applied a uniformly convergent 

numerical algorithm, called Il’in-Allen-Southwell scheme, with better accuracy throughout the domain for 

various values of  𝜀. At the end of the study, we showed how to construct such a method. Finally, we have 

constructed a uniformly convergent numerical method for the convection-diffusion problem. 
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